CS1800
11121-Tves. :"
Admin

- Hes out, are 12/1
- reg lectures 11/28, 12/1
- exam \#3 an $12 / 5$ (snort)

Agenda

1. Growth of functions Review
2. Sequences ${ }^{\text {P Series }}$
$2 A$ - value of arbitrary term
$2 B$ - sum the first n terms
3. Growth of Functions

Function $f(n)$ where $n=$ size of input

$$
f(n)=\# \text { steps regis by algorithm }
$$

Upper Band - big on

$$
f(n)=O(g(n))
$$

$f(n)$ grows mare dolt than g (n)

$$
f(n) \leq l \cdot g(n) \quad \forall n \geq k
$$

Complexity $(2.5 s$
$f(n)$ reps sarthe an-time of seyerithom assign to aosest upper band

True or False?

$$
\begin{array}{ll}
n^{4}=0\left(n^{3}\right) & F \\
4 \lg n+n=0(n \lg n) & T \\
2 n=0\left(n^{2}\right) & T \\
2 n=0(n) & T
\end{array} \quad 2 n \leq c \cdot n \forall n \geqslant k
$$

Complexity ax >s?

$14 n^{3}+14+n$	n^{3}, n^{k}
$4 \lg n+2^{12}$	$\lg n$,
$2^{2 n}$	$2^{n}, k^{n}$
1045231875	$0(1), k$
$16 n+\operatorname{lgn}+6 n^{2}$	n^{2}, n^{k}
$3 n+7$	n

Upper- Band (0)

n^{3}, n^{k}
$\lg n$
$O(1), ~ K$
n^{2}, n^{k}

Lower-Band (Ω)

Upperllaver band (θ)
ex: $f(n)=2 n$
$f(n) \leqslant c_{i} \cdot n$
$f(n) \geq L_{2} \cdot n$
$c_{1}=3$
$r_{2}=1 \quad q_{n}=6(n)$

2. Sequences Series

Sequence: ordered list of numbers
litauset, except:

- adermaters
- dopes rede
- numbers coly

Finite seq: $\left\{x_{1}, a_{2}, a_{3_{1}}, \ldots, x_{n}\right\}$ Infinite seq: $\quad\left\{a_{1}, a_{2}, z_{3}, \ldots\right\}$ $a_{k}=$ value of the $k^{t h}$ term

We care about:

1. compotation the valve of a_{k}

- sequence has a pattern
- we can figure at the next term, given the first 3-5
- unit formula for $k^{\text {th }}$ term so Iden' 4 need to compete everything else

2. Sun of the first n valves

- we cord calculate by trend (or in a loup recursion)
- went formiza for the sum ot the first terms

Cove for both formulas:

- don't need wee the previas selves to compote
- given k, a few other thing 3 compare a_{k} in cone step $O(1)$
- by hand, or with a loup/recusion, it's k steps ene ar
- (same with comparing sum ot foot n)

$2 A$ Formula for term a_{k}

Depends on what type of sequences

1. arithmetic \geqslant each has fomian
2. Geometric
big three! for u_{k}

Arithructic: always add same valve to get to next term
(ex)

$$
\begin{aligned}
& \{4,7,10,13,16, \ldots\} \quad \begin{array}{l}
\text { 父 } \\
\pi_{1} \\
22
\end{array} z_{3} z_{4} z_{5}
\end{aligned}
$$

- always add 3 to get to next term
$\bar{l} d$, common difference
- Formula for $a_{k}=a_{1}+(k-1) \cdot d$

According to formula:

$$
\begin{aligned}
z_{\varphi} & =4+(6-1)(3) \\
& =4+5.3 \\
& =19 \quad \ddot{\vdots} \\
z_{a 4} & =4+(94-1)(3) \\
& =4+93.3 \\
& =283
\end{aligned}
$$

Geometric: Always multiply by same vale to get next term
(ex)

$$
\begin{array}{ll}
\{1,2,4,8,16,32, \ldots\} \\
a_{1} x_{2} 2_{3} a_{4} k_{5} z_{6}
\end{array} \quad \begin{aligned}
& \text { 旲 }
\end{aligned} a_{7}=64
$$

- always multiply by 2 to get next valve
\rightarrow r, common ratio
- Formula for $a_{k}=a_{1} \cdot r^{k-1}$

According to formula

$$
\begin{aligned}
& z_{7}=(1)\left(2^{6}\right)=64 \\
& z_{13}=(1)\left(2^{12}\right)=4096
\end{aligned}
$$

Quadratic: value of a_{k} is given by $a k^{2}+b k+c$ our $j o b$ is to figure at u, b, c (k, k^{2} aregiven)

How do we know it a sequence is quadratic?

- its differences are arithmetic
(ex) $\{-3,3,13,27,45, \ldots\}$
diffs $6101418 \longrightarrow$ diftsure arithmetic seq $44 \quad$ (common diff 4 4)
second levee difference
this sequence is quadratic, therefore: $\quad a_{k}=2 k^{2}+6 k+c$
wekas
we need: u, b, c

$$
\begin{array}{lll}
z_{1}=-3 & k=1 & a \cdot 1^{2}+b \cdot 1+c= \\
z_{2}=3 & k=2 & a \cdot 2^{2}+b \cdot 2+c= \\
z_{3}=13 & k=3 & a \cdot 3^{2}+b \cdot 3+c=-3 \\
+2+2 b+c=3 \\
9 a+3 b+c=13
\end{array}
$$

3 equations, need to find 3 variadles:

Solvefor a

$$
\begin{gathered}
8 a+2 b=16 \\
8 a+2(6-3 a)=16 \\
8 z+12-6 a=16 \\
2 a=4 \\
2=2
\end{gathered}
$$

$$
a_{x}=2 \cdot k^{2}+b k+c
$$

Solvetero

$$
\begin{aligned}
b & =6-3 u \\
& =6-3 \cdot 2=0
\end{aligned}
$$

$$
2 k=\frac{2 \cdot k^{2}}{a}+0 k+c
$$

$$
\begin{aligned}
& 4 a+2 b+c=3 \\
& -a+b+c=-3 \\
& 3 a+b=6 \quad b \text { in tems of } a: \quad b=6-3 a \\
& 92+36+c=13 \\
& \begin{aligned}
-a+b+c & =-3 \\
8 a+2 b & =16
\end{aligned} \\
& \text { Plug in } b=6-3 a
\end{aligned}
$$

Solve for c

$$
\begin{aligned}
2+6+c & =-3 \\
2+0+c & =-3 \\
2+c & =-3 \\
c & =-5
\end{aligned}
$$

2B -Sum of the first n terms Poetize Series
In general: $\quad \sum_{k=1}^{n} a_{k}=a_{1}+z_{2}+\ldots+z_{n} \quad\left(b_{y} d e+n\right)$
want: formula to compote the sum Constant \leftrightarrows appends on type of sequence!

$$
6 \quad \sum_{k=1}^{4} \pi_{k}=4+7+10+13=34
$$

Formula: $\sum_{k=1}^{n} u_{k}=\frac{(\# \text { therms })(\text { first }+ \text { (oast })}{2}$

Acconling to formula

$$
\begin{array}{lll}
\text { formula } & \text { \#terms: } 4 \\
\sum_{k=1}^{4} h_{k} & \text { first: } 4 & \frac{(4)(4+13)}{2}=2.17 \\
\text { last: } 2_{4}=4+3.3=13
\end{array}
$$

100 \#terms: 100
$\sum_{k=1} a_{k}$ fist : 4

$$
\frac{(100)(4+301)}{2}=1525
$$

Geometric
lex $\quad\{4,2,4,0,16, \ldots\}$

$$
\begin{array}{lllllll}
x_{1} & i_{2} & x_{3} & k_{4} & k_{5} & \cdots
\end{array}
$$

i) $\quad \sum_{k=1}^{4} 2_{k}=1+2+4+8=15$

Formula: $\sum_{k=1}^{n} a_{k}=z_{i} \cdot \frac{1-r^{n}}{1-r}$

According to formula:

$$
\sum_{k=1}^{4} a_{k} \begin{array}{ll}
u_{1}=1 \\
r=2 \\
n=4
\end{array} \quad 1 \cdot \frac{\left(1-2^{4}\right)}{(1-2)}=\frac{1-16}{-1}=\frac{-15}{-1}=15
$$

$$
\sum_{k=1}^{2} z_{k} \quad \begin{aligned}
& n=2 \\
& n=12
\end{aligned} \quad 1 \cdot \frac{\left(1-2^{12}\right)}{(1-2)}=\frac{1-4096}{1-2}=4095
$$

What type of Segrence do yo here?

- Arithmetic: Common difference
- Geometric: Common ratio
- Quadratic: differences we arithmetic

Anthmetic

$$
a_{k}=z_{1}+(k-1) \cdot d
$$

$$
\sum_{k=1}^{n} u_{k}=\frac{(\# \text { terms })(\text { first }+1 \text { list })}{2}
$$

Geometric

Quadratic

$$
a_{k}=2 k^{2}+b k+c
$$

weknas
we need: x, b, c

