CS1800

$$
10 / 6-F r i \quad!
$$

Adonis

- Hus ave today $11: 54 \mathrm{pm}$
- Hay at now

Since. from 10/10 only ore late day

- Exam \# 7 10/i7 9-5:30pm
- Fri the 13 thy it optional leatre-exam review practice exam

Agenda

1. Product/Sen Rule
2. Permutations
3. Combinations
4. Product Rule, Sum Rule
\। 1
counting
八

How many ways...?
task 1 - n ways to do it
task $2-m$ ways to do it
Product Rule:
there wee nim ways to do task 1 and task 2
and \leadsto multiply!
Sum Rule:
there are Diam ways to do task 1 on task 2 or \longrightarrow addition!
(ex) $L=\{G G$, only $\} \quad T=\{F G$, Asher $\}$
Cartesian Product $L \times T=\{(G G, F G),(G G, A z h)$, (Only, FG), (Only, Ares) $\}$
order matters \rightarrow andy Laney, then a Tam

$$
(F G, v \sigma) \notin L x T
$$

$L \times T \Rightarrow T \times L$
In general...

$$
|A \times B|=|A| \cdot|B|
$$

Because product ne!
task 1: select element from A ($|A|$ ways)
task 2: select element from B
(|B| ways)
Deck of cards

- 52 crus total
- 13 values persuit: $A, 2, \ldots Q, k$
- 4 Suits: C, D, H,S

Universe: draw an (ard, put back in the deck (when relerent) HoN MANY WAYS...

- to select a Q and then a k ?

$$
\bar{\zeta}_{\text {multiply! }}
$$

- task $1 \times$ task 2

$$
4 \cdot 4=16
$$

Cartesian Product

$$
\begin{gathered}
\{Q D, Q H, Q S, Q C\} \times\{K D, K H, K S, K C\} \\
|\operatorname{Set}||\cdot| \operatorname{Set} 2 \mid \\
=Y \cdot \varphi=16
\end{gathered}
$$

How many ways...

- fo secret 2 crab?
- task 1:52 task 2: 52
tore $\quad 52.52=270 y=52^{2}$

Bit strings: sequence of $O S$ and $1 s$
HOW MANY BIT STRINGS EXIST...

- of length 7?
\rightarrow repetition is ok IIIIII
7 tasks: Select 1 or \varnothing
\rightarrow order mattes? Yes!

$$
\frac{0 / 1}{2} \frac{0 / 1}{2} \frac{0 / 1}{2} \quad \frac{0 / 1}{2} \quad \frac{0 / 1}{2} \frac{0 / 1}{2}
$$

- total: $2^{7}=128 \quad\left(n^{k}\right)$
- of length 7, that ster with II

$$
\frac{1}{1} \frac{1}{1} \frac{0 / 1}{2} \frac{0 / 1}{2} \quad \frac{0 / 1}{2} \quad \frac{0 / 1}{2}
$$

$$
1 \cdot 1 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2=2^{5}=32
$$

Flashback ... Paverset

$$
S=\{2, b, c\}
$$

$$
\frac{a}{a} \quad \frac{b}{o}
$$

$0=$ not there
001
1 = there
010
task 1: 2 in subset?
task $2=b$ in stets?
track $3: C$ in subset? 2

$$
2 \cdot 2 \cdot 2=2^{3}=8
$$

and \longrightarrow multiply
ar \longrightarrow addition
haw many ways...

- to pick Q then k, or K then Q
- task $1 Q$ then $K: 16$
- rask $2 k$ then $Q: 16$
- totze: $16+16=32$ ways

HaN MANY BITSTRINGS EXIST....

- of length 6,7, or 8?
task 1: 2^{6}
task 2: 2^{7}
total $2^{6}+2^{7}+2^{8}$
task 3: 28

$$
=448
$$

- of length 7, that strut with O1 or 10?

$$
\begin{gathered}
\text { task } 1: 01-\cdots=2^{5} \\
\text { task } 2: 10=25 \\
\text { tot al: } 2^{5}+2^{5}=64
\end{gathered}
$$

Counting Problem...

- repetition ok?

EFren the problem,

- does coder matter?
now we know how to approach the problem

2. Permutations

$$
L=\{G G, \text { only, Rookie }\}
$$

Witch we three shows \rightarrow one of each, no rep.
Order matter $\rightarrow G G$, any \leq only, $G G$
Still product rule:

$$
\frac{3}{\text { shaw } 7} \times \frac{2}{\text { sind }} \times \frac{1}{\text { shaw } 3}=6
$$

Also: Permutation \leadsto Formula
r - permutation
n objects, arrange r of them

$$
P(n, r)=\frac{n!}{(n-r)!}
$$

Shaw example:

$$
\begin{aligned}
& n=3 \\
& r=3
\end{aligned} \quad P(3,3)=\frac{3!}{(3-3)!}=\frac{3!}{0!}=\frac{3!}{1}=3 \cdot 2 \cdot 1
$$

Formula Breakdan:
$n!\sim$ select $w / 0$ repetition
$(n-r)!\cdots$ tells us when to step
(ex) 4 Queens in a hand $\{Q C, Q D, Q S, Q H\} \rightarrow$ Stent as set

HW MANY ways...

- to arrange 2 of them?

$$
4 \cdot 3=12
$$

product ale

$$
\begin{aligned}
& n=4 \\
& r=2
\end{aligned} \quad \frac{4!}{(4-2)!}=\frac{4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1}=4 \cdot 3=2
$$

$$
T \quad \text { perm } \quad \text { formula }
$$

3. Combirations

order deesnit matter... GG, only $=0$ my, GG

$$
\begin{array}{r}
n!=(n)(n-1)(n-2) \ldots(2)(1) \\
4!=4 \cdot 3 \cdot 2 \cdot 1=24 \\
5!
\end{array}
$$

By hand...

- Pick 2 Queens
- arder doesnit motler
- msult gaes in a set

$$
\begin{array}{ll}
\{H, D\} & \{C, H\} \\
\{S, C\} & \{S, D\} \\
\{S, H\} & \{C, D\} \\
\{D, H\} \times \alpha \times & \vdots=\{H, D\}
\end{array}
$$

Combination Formula

- n objects
- choose k of them
- order doesn't matter

$$
C(n, k)=\binom{n}{k}=
$$

$$
\frac{n!}{k!(n-k)!}
$$

Choose 2 Queens

$$
\begin{array}{ll}
n=4 \\
k=2
\end{array} \quad \frac{4!}{2!(4-2)!}=\frac{4 \cdot 3 \cdot 2 \cdot 1}{(2 \cdot 1)(2 \cdot 1)}=3 \cdot 2=6\left\{\begin{array}{l}
11 \\
\vdots
\end{array}\right\}
$$

$n!\longrightarrow$ no repetition
$(n-k))$, . \rightarrow. n to stop

KI. \sim don't dabble count

How many bit STRINGS EXIST...

- of length 7
- with exactly ane zero?
secretly Combination!
we re choosing the position of the zero

0
0

By hand
7 places to put the zero everything else is cuss

0 00

Combination:

$$
\begin{aligned}
& n=7 \\
& k=1
\end{aligned} \quad\binom{7}{1}=\frac{7!}{1!(6!)}=\frac{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}=7
$$

How many bit strings exist of length 10 with 0,1 , or 2 zeroes?
-tusk 1 wo zeves

- task $2 \sim 1$ zero
- task $3 \sim 2$ zeros

$$
\begin{equation*}
\binom{10}{2}=\frac{10!}{2!8!}= \tag{45}
\end{equation*}
$$

${ }^{7}$ chase partitions
of 2 zeroes
total: $1+10+45=56$
"at most 2 zeros"

