CS1800 Day 19

Admin:

- HW6 due today
- HW7 released today (due next Friday)
- slightly shorter than most
- more time to prep for exam2
- will only count as 78% of other HWs with 100 points
- practice exam2 problems are out
- slightly more induction examples
- I want to make sure you have plenty to pull from in exam2

Content:

- Induction with equalities and inequalities

Induction (Weak):

Induction allows us to prove a never-ending sequence of statements: $S(1), S(2), S(3), S(4), \ldots$

Process:
Prove the first statement, $S(n)$ for some n

- Show that each statement implies the next statement:

Metaphor (Dominos):
To knock over all the dominos

Push over the first one

- Place each other domino so that if the one behind it falls, it too will fall

Example

Summation Notaracod

$$
\begin{aligned}
& 1+\partial+4+8+16+3 \partial+64 \\
= & \partial^{0}+\partial^{1}+\partial^{2}+\partial^{3}+\partial^{4}+\partial^{5}+\partial^{6} \\
= & \sum_{k=0}^{6} \partial^{k} \quad \text { STane sum vane of } 2
\end{aligned}
$$

"The sum of $2^{\wedge} k$ where k goes from 0 to 6 "

In Class Activity: Summation Notation

$$
\begin{aligned}
& \text { Express each sum below in summation notation } \\
& \begin{array}{c}
q+11+13+15+17 \\
q+2 \cdot 0 \\
q+2 \cdot 1
\end{array} \sum_{i+2 \cdot 2}^{q+2 \cdot 3} 9+2 \cdot 4
\end{aligned} \sum_{i+2+3+4+5+\ldots+n}^{4} q+2 k \sum_{k=1}^{n} k .
$$

Compute each sum below (the second one has a pattern and simplifies)

$$
\begin{array}{cc}
\sum_{k=10}^{12} \partial k & \sum_{k=0}^{101}(-1)^{k}=0 \\
=2 \cdot 10+2 \cdot 11+2 \cdot 12 & -1^{0}+-1^{1}+-1^{2}+-1^{3}+\ldots+ \\
1+-1+1+-1+1+-1+\ldots
\end{array}
$$

Algebraic Induction:
Show that the sum of the first n even integers is $n(n+1)$

$$
\begin{array}{l|c|c}
n=1 \\
\partial=1(1+1) & n=2 & n=3 \\
H & \partial+4=2(\partial+1) & \partial+4+6=3(3+1)
\end{array}
$$

Algebraic Induction: Expressing our sum in summation notation
Show that the sum of the first n even integers is $n(n+1)$

$$
\begin{gathered}
2+4+6+8+\ldots+2 n \\
=2 \cdot 1+2 \cdot 2+2 \cdot 3+2 \cdot 4+\ldots+2 n
\end{gathered}
$$

Statement $n:$ " $\sum_{k=1}^{n} \partial k=n(n+1)^{\prime \prime}$

Induction Four Step Recipe: (AKA: how to not get turned around in a big induction proof)

1. Write out the statement for general n
2. Specify the list of statements you're proving

- your base case need not be $\mathrm{n}=1$

3. Prove the "Base case" (the smallest n for which your statement is true)
4. Prove the conditional: "If $S(n)$ then $S(n+1)$ "

$\sqrt{ }$ - Work from Som sine $\sum_{\text {moo }}^{n}$
\rightarrow REMOVE LAST ITEM FROM SUM
\rightarrow APPCY SOn)

Show that the sum of the first n even integers is $n(n+1)$
Sitrement n : " $\sum_{k=1}^{n} \partial k=n(n+1)^{\prime \prime}$
Base Case ($n=1$)

$$
\sum_{k=1}^{1} \partial k=\partial \cdot 1=2=1(1+1)=n(n+1)
$$

$S(n) \rightarrow S(n+1):$
Assume statemente n is trué

$$
\begin{aligned}
\sum_{k=1}^{n+1} \partial k & =\partial(n+1)+\sum_{k=1}^{n} \partial k \\
& =\partial(n+1)+n(n+1) \\
& =(n+1)(n+2)
\end{aligned}
$$

$$
\begin{aligned}
& S(n)=\sum_{k=1}^{n} \partial k=n(n+1)^{\prime \prime} \\
& S(m i)=\sum_{k=1}^{n-1} \partial k=(n+1)(n+2)^{\prime \prime} \\
& \text { Noote ro secf } \\
& \text { - Expacss S(}{ }^{11} \text {) } \\
& \text { - Next scide }
\end{aligned}
$$

Summation Notation in induction Problem y

$$
\begin{aligned}
\sum_{k=1}^{n+1} \partial k & =\partial \cdot 1+\partial \cdot \partial+\partial \cdot 3+\ldots+\partial \cdot n+\partial \cdot(n+1) \\
& =\partial \cdot(n+1)+\sum_{k=1}^{n} \partial k
\end{aligned}
$$

Induction proofs will ask us to prove $S(n) \longrightarrow S(n+1)$.
For sums, its helpful to be able to "pull out" the sum relevant in $\mathrm{S}(\mathrm{n})$ from the sum relevant for $S(n+1)$ in this way.

Show that the sum of the first n powers of 2 is equal to $\int_{1}^{n+1}-1$

$$
\begin{aligned}
& n=0 \\
& \partial^{0}=\partial^{0+1}-1 \\
& 1=2-1 \\
& 1=1
\end{aligned}
$$

$$
\begin{array}{c|c}
n=1 & n=2 \\
\partial^{0}+\partial^{2}=\partial^{n+1}-1 & \partial^{0}+\partial^{\prime}+\partial^{2}=\partial^{\partial+1}-1 \\
1+\partial=4-1 & 1+\partial+4=8-1 \\
3=3 & 7=7 \\
\partial^{0}+\partial^{\prime}+\partial^{2}+\partial^{3}+\ldots+\partial^{n}=\sum_{k=0}^{n} \partial^{k}
\end{array}
$$

$\begin{array}{ll}\text { NOUCTVE STEP } \\ \text { Assume } & S(n) \\ \text { Sn }\end{array}$

$$
\begin{aligned}
& \begin{array}{l|l}
\text { Base Case }(n n 0) & \sum_{k=0}^{n=1} \partial^{k}=\partial^{n+1}+\sum_{k=0}^{n} \partial^{k} \\
\sum_{k=0}^{n} \partial^{k}=\partial^{0}=1=\partial^{0+1}-1 & \partial^{n+1}+\partial^{n+1}-1
\end{array} \\
& =2-1 \\
& =2^{n+1}-1 \\
& =2^{n+1}+2^{n+1}-1 \\
& =2^{n+2}-1
\end{aligned}
$$

Induction with inequalities: why? (preview a bit ahead, not necessary for exam)
Suppose two algorithms both accomplish the same task but take a different number of "computes" to do so. For a list of size N
$\begin{array}{ll}\text { Algorithm } 1 \text { takes: } 2^{\wedge} N \text { computes } & \text { Base Case } \\ \text { Algorithm } 2 \text { takes: } N \text { ! computes } & \text { st Time } \partial^{N}<N \text {. }\end{array}$

List Size	1	2	3	4	5	6	7
Algorithm 1 Computes	2	4	8	16	32	64	128
Algorithm 2 Computes	1	2	6	24	120	720	5040

Goal: We want to show that algorithm 1 is faster for all lists sufficiently large (N is greater than some threshold)

Induction with inequalities:

$$
\begin{aligned}
& S(n)=" \partial^{N}<\left.N\right|^{\prime \prime} \\
& S(n+1)=\partial^{N+1}\langle(N+1)!
\end{aligned}
$$

$$
\begin{aligned}
& \text { Prove that } 2^{\wedge} N<N \text { ! for all } N \text { above some threshold. } \\
& \text { resold. } S(n+1)=\partial^{N+1}<(N+1) \text { ! } \\
& \text { inductee STEP } S(n) \rightarrow S(m) \\
& \text { Assume } \partial^{N}<N \text { ! } \\
& \partial^{2}=\partial^{4}=16<24=4! \\
& =N! \\
& (N+1)!=(N+1) \cdot N! \\
& \begin{array}{l}
>(N+1) \partial^{N} \\
>2 \cdot \partial^{N}
\end{array} \\
& =2^{N+1}
\end{aligned}
$$

Algebra: Working with inequalities (1 of 3)
Move 1: add the same things to both sides, it preserves the inequality
if $3<4$ THEN $3 \cdot 10<4+10$

$$
x<y \quad \rightarrow \quad x+c<y+c \forall c \in \mathbb{R}
$$

Algebra: Working with inequalities (2 of 3)
Move 2: multiply by a positive value, it preserves the inequality
if $3<4$ THEN $3.10<4.10$
If $x<y$ THEN $x \subset<Y C \forall C \in \mathbb{R}$ wiNk $c>0$
Move 3: multiply by a negative value, it swaps the inequality
if $3<4$ THEN $3 \cdot-1>4 \cdot-1$
if $x<y$ THEN $x<>y<\forall \in \mathbb{R}$ writ $c<0$

Algebra: Working with inequalities (3 of 3)
Move 4: sum two inequalities (large side together \& small side together)

$$
3<4
$$

If AND THEN $3+5<4+6$

$$
5<6
$$

if $x<y \quad$ THEN $\quad x+\omega<y+z$
$\omega \in Z$

Show that $\mathrm{n}^{\wedge} 2>n+10$ for all n above some threshold \quad SA >E CASE $n=4$

n	\cdot	2	3	4	5	6
n^{2}	1	4	9	16	25	36
$n+10$	11	12	13	14	15	16

$$
n^{2}>n+10 \text { FF } T T T
$$

$$
\underset{n+1}{\text { Sente }}=(n+1)^{2}>n+11 \text { " }
$$

Show that $\mathrm{n}^{\wedge} 2>\mathrm{n}+10$ for all n above some threshold

$$
\text { STATEMENT } n=" n^{2}>n+10 "
$$

Base Case $n=4$

$$
n^{2}=4^{2}=16>14=4+10=n+10
$$

INDUCTWE STEP $S(n) \rightarrow S(n+1)$
Assume $S(n)$

$$
\begin{aligned}
(n+1)^{2} & =n^{2}+2 n+1 \\
& >n+10+2 n+1 \\
& >n+1
\end{aligned}
$$

$$
\begin{aligned}
& -n^{2}-n+10<0 \\
& 10<n^{2}+n \\
& 10<n(n+1)
\end{aligned}
$$

n is $4 e$ smaluest

