CS1800 Day 19

Admin:
- HW6 due today
- HW7 released today (due next Friday)
- slightly shorter than most
- more time to prep for exam?2
- will only count as 78% of other HWs with 100 points
- practice exam?2 problems are out
- slightly more induction examples
- | want to make sure you have plenty to pull from in exam?2

Content:
- Induction with equalities and inequalities



Induction allows us to prove a never-ending sequence of statements: S(1), S(2), S(3), S(4), ...

Process: Metaphor (Dominos):

To knock over all the dominos
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In Class Activity: Summation Notation

Express each sum below in summation notation
Qe+ B+ S+ [+ deSw 5 0
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Compute each sum below (the secon& ohe has a pattern and simplifies)
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Algebraic Induction:

Show that the sum of the first n even integers is n(n+1)

A=d n=3
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Algebraic Induction: Expressing our sum in summation notation

Show that the sum of the first n even integersis n(n+1)
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Induction Four Step Recipe: (AKA: how to not get turned around in a big induction proof)
i .’-’

1. Write out the statement for general n 9060 W orAL

2. Specify the list of statements you're proving /R Lﬁof NEESDED N
- your base case need not be n=1 c Croes
- you're welcome to skip by more than 1 if you'd like S(3), S(5), S(7), S(9), ... A

3. Prove the "Base case" (the smallest n for which your statement is true)

4. Prove the conditional: "If S(n) then S(n+1)"
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Algebraic Induction:

Show that the sum of the first n even integersis n(n+1)
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Induction proofs will ask us to prove S(n) — S(n+1).

For sumes, its helpful to be able to "pull out'—rom-
eievantfar S(v+3) i s ey




In Class Activity:
e\
Show that the sum of the first n powers of 2 is equal to é - \
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Induction with inequalities: why? (preview a bit ahead, not necessary for exam?2)

Suppose two algorithms both accomplish the same task but take a different number

(b»e Caye

of "computes" to do so. For a list of size N

Algorithm 1 takes: 2N computes
Algorithm 2 takes: N! computes
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List Size | 8] 3 "'l g é 7
Algorithm 1 Computes by 4 3 (A 32 64 ‘964
Algorithm 2 Computes ‘ [N G 3y \30 730 ?o‘-lb

Goal: We want to show that algorithm 1 is faster for all lists sufficiently large

(N is greater than some threshold)




Induction with inequalities: SQ\B _ Q “\
Prove that 2”N < N! for all N above some threshold. 5("“3 a'*““ L(Nfi\\
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Algebra: Working with inequalities (1 of 3)

Move 1: add the same things to both sides, it preserves the inequality
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Algebra: Working with inequalities (2 of 3)

Move 2: multiply by a positive value, it preserves the inequality
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Move 3: multiply by a negative value, it swaps the inequality
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Algebra: Working with inequalities (3 of 3)

Move 4: sum two inequalities (large side together & small side together)

\&

€

3
AnO TUuen)
S b
XN TN
aAnNd

nwzZ

3+§ L1446

X+  \+tZ



In Class Activity:

2 (\54
Show thatn”2 > n + 10 for all n above some threshold (’ije Case
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Show thatn”2 > n + 10 for all n above some threshold
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