Welcome everyone!
The last class was quite full, please don't leave any seats between students
(it will allow us all to have desks to write on)
thanks!

CS1800 (Discrete Structures)

Day 1
Welcome to CS1800 :)

Agenda:

- Make some friends
- What does it take to be effective at math?
- how to be successful in CS1800
- Admin stuff:
- syllabus review
- please use piazza!
- Numbers in different bases

Make some friends :)
(I have some instructions)
解

Garden Gnome Problem (please avoid working on this before day1, thank you!)

Given an arbitrary lineup of gnomes with red or blue hats:

Front

- - -

A monster starts at the back of the line and asks each, "What color is your hat?":
correct response ----> gnome lives
incorrect response ----->gnome is eaten!

Where all the gnomes can:

- see all the gnomes in front of them
- hear the response (red / blue) and outcome (eaten / not eaten) of each response behind them

How can the gnomes use *only the responses to signal each other to maximize gnome survival?

Remember:
Be mindful of how you feel during this math problem please :)

In Class Activity 1 (no submissions for any in class activity)

Take 5 to 7 minutes and work on the gnome problem in a small group (no more than 5 please) of your new friends.

Be mindful of how you feel* during the course of the problem. I'll ask a few folks to share this (individually and collectively) just afterwards.
*yes I mean the touchy-feely stuff: e.g. confident, uncomfortable, embaressed, frustrated, excited, angry, fatigued, proud

How did we feel doing math?

Being an effective math student:

- Being confused is part of doing a math problem, you're welcome to be confused!
- Hard feelings (frustration, self-doubt, fatigue) will tax our motivation / sharpness:
- work with a good friend (and be a good math friend)
- be generous and patient helping each other
- take care of your circumstances:
- eat / sleep well
- start work early to allow more time if needed
- Don't ignore hard thoughts (e.g. "that HW grade is much lower than I would've liked"), take productive steps for yourself (visit me in office hours!)
- Have fun! (really, no joke: math can be fun). Fun will sustain you while you're working

Succeeding in CS1800:

1. Attend all classes in person
2. Work hard and be super friendly / cooperative in recitation
3. Start your HW early
(read it on the day assigned)
4. Make use of office hours
(tip: further from due date its super quick to get an appointment)

If you're doing all of this and you'd still like more support, know that we'll be starting a small group TA-led weekly HW tutor session. (details to come)
<website / syllabus policy review \& q/a>
(there's some fun math coming just after, I promise!)

Anatomy

Numbers
$0,1,2,3, \ldots, 9$
ARE OUR 10 DiGIT

How Do frogs (8 fingers) or comportry (a fingers) represent vales?

Base a - Binary: intuition
What value does (011011)a Represent?

| 64 | 32 | 16 | 8 | 4 | (2) | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 1 | 1 | 0 | 1 | 1 |
| $64+0+16+8+0+2+1$ | | | | | | |

Binary seems ODO, where Does that representation SYSTEM COME from?

Base-10 (Deumac) : Reoneswructo vanes w/ 10 Dicies

$$
\begin{aligned}
& 192=100 \cdot 1+10 \cdot 9+1 \cdot 2 \\
& i \neq \uparrow_{i=1}^{4} \prod_{i=0}=10^{0} \cdot 1+10 \cdot 9+10^{\circ} \cdot 2
\end{aligned}
$$

Eant place value represents a vawe of 10^{i}

Base-a (Bunaky): Remescurma vawes al a Dicies

$$
\begin{aligned}
& \left(\begin{array}{l}
1 \\
1 \\
14 \\
4
\end{array}\right)=4 \cdot 1+2 \cdot 1+1 \cdot 0=6 \\
& 4^{2} 1
\end{aligned}=2^{2} \cdot 1+2^{1} \cdot 1+2^{2} \cdot 0 \quad l
$$

Notice:

- We use Panentranses w/ sooscript to indicare Binaky (Assount Base-1D oryerwise)
- Binaar has oncy a digres: 0,1

Decimal and Binary: comparison

\rightarrow ThE i-TH PLACE REPRESENTS $B^{?}$

Base 16 (HEXAOECIMAL) RePneswinto Vawes w/ 16 Dibies

$$
((1)(A))_{16}=1 \cdot 16^{2}+2 \cdot 16^{\prime}+15 \cdot 16^{\circ}
$$

Hex Has 16 Dicirs

$$
(B F F)_{16}
$$

$$
\begin{aligned}
& (01101)_{2} \\
& B_{1 T}=\text { Binary Diorr } \\
& \text { (EITHER OOR } 1 \text {) }
\end{aligned}
$$

In Class Activity 2

(000),

- What is the smallest and largest value you can represent with 3 binary digits (bits)?
- What are all the values you can represent with 3 binary digits?
- If you wrote these all out in a big column, the smallest on top and largest on bottom, what patterns do you notice?

Stuck?

Try solving a simpler problem by changing "binary" to "base-10" above.

- Ask for help (and check if your new friends need any), cooperation encouraged!

(++ if you still have time)

- What are all the values you can represent with N binary digits?
- What are all the values you can represent with N digits in base b ?
$(000)_{2}$

