CS1800
10/24-Tue.
Amin

- Back to recitations this week!
- How 5 out on Fri, are $11 / 3$

Agenda

1. Variance us. EV
2. Toint/Conditionare probability
3. Bayes Rule

Formulas

$$
\underset{L}{E} E x]_{T R r}=\sum \operatorname{Pr}\left(s_{i}\right) \cdot x_{i}
$$

Expualve

$$
\begin{aligned}
& \operatorname{Var}[x]=\sum\left(x_{i}-\mu\right)^{2} \cdot \operatorname{Pr}\left(S_{i}\right) \\
& \operatorname{Pr}(E \mid F)=\operatorname{Pr}(E \cap F) / \operatorname{Pr}(F) \quad \text { Pond. } \\
& \operatorname{Pr}(F)=\operatorname{Pr}(F \mid E) \cdot \operatorname{Pr}(E)+\operatorname{Pr}(F \mid \neg E) \cdot \operatorname{Pr}(\neg E)
\end{aligned}
$$

Bayes

1. Vaniance
\rightarrow BKC EV aresn't tele the whole stang ${ }^{c}$ zuerage
() EV, vziziance: chole pictre
(ex) Roll a 6-sided die
(A) \$8 it 3, lose $\$ 1$ othenvix
(B) it $2,3,4,5,6$, lose 62 othenise

$$
\begin{aligned}
& E[X]=\sum \operatorname{Pr}\left(s_{i}\right) \cdot x_{i} \\
& E[x] \\
& E[y] \\
& 8 \cdot y_{6}+-1 \cdot 5 / 6 \\
& 3 / 6=1 / 2 \\
& 1 \cdot 5 / 6+-2 \cdot \frac{1}{6} \\
& 3 / 6=1 / 2 \\
& \$.50 \\
& E[x]=E[y] \\
& \operatorname{Var}[x]=\sum\left(x_{i}-\mu\right)^{2} \cdot \operatorname{Pr}\left(s_{i}\right) \rightarrow \underset{\substack{\text { context }}}{\rightarrow} \\
& \mu=E \cdot V_{1}
\end{aligned}
$$

(A)
(B)

$$
\text { (7) } \begin{aligned}
& x_{1}=8, \operatorname{Pr}\left(s_{1}\right)=1 / 6 \\
& x_{2}=-1, \operatorname{Pr}\left(s_{2}\right)=5 / 6 \\
& M=.5 \\
&(8-.5)^{2} \cdot(1 / 6)+(-1-.5)^{2} \cdot(5 / 6) \\
&=11.25
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}=1 \quad \operatorname{Pr}\left(s_{1}\right)=5 / 6 \\
& x_{2}=-2 \operatorname{Pr}\left(s_{2}\right)=1 / 6 \\
& \mu=.5
\end{aligned}
$$

$$
(1-.5)^{2} \cdot(5 / 6)+(-2-.5)^{2}(1 / 6)
$$

$$
=1.25
$$

Higher variznce \Rightarrow higher n'sk, volatility
2. Joint / Conditional Probability
$S=$ sample space $=$ all posside out comes
$E=$ event spue $=E S S$ = outcomes we cere about
now we hare >1 event

- joint probability - two events occeving simultarearly cents happens together $\operatorname{Pr}(E \cap F) \operatorname{Pr}(E \wedge F)$
- Conditionze probability - one event occurring in the presence of another event. Have more information!

$$
\operatorname{Pr}(E \mid F)
$$

Probability table

- joint - (conditional)
- marginal
(ex) roll a 6 sided die
$A=$ roll is even
$B=$ roll is prime
$\neg A=$ roll is not even
$\tau B=$ roll is not prime
$\operatorname{Pr}(A \cap B)=j$ joint $=$ die is even + prime at same time
$\operatorname{Pr}(A \mid B)=$ Cold $=$ even, given that it's prime
(ave

Add we the squars... $Y_{6}+2 / 6+2 / 6+Y_{6}=6 / 6=1$ ï

$$
\operatorname{Pr}(A)=\operatorname{Pr}(A \cap B)+\operatorname{Pr}(A \wedge \neg B)
$$

(totze prob of A : happens $\omega(B$, or $\omega / 7 B$)
(ex) Drow balls at of $a n$ orn 2 ung, each has 6 rea balls, 3 blececres

- arow from urn \#1, then un \#2

$$
\begin{equation*}
A=\mathrm{rd} \quad A=B l v e \tag{B}
\end{equation*}
$$

(ind)
Bubre

$\left.\left(r_{3}\right) \cdot\left(y_{3}\right)=\frac{4}{9}\right)\left(r_{3}\right) \cdot\left(r_{3}\right)=\frac{2 / 9}{9}$
$\left(u_{3}\right) \cdot\left(y_{3}\right)=\frac{2}{9}\left(\frac{1}{3}\right) \cdot\left(\frac{1}{3}\right)=\frac{1}{9}$

$$
\begin{aligned}
& \operatorname{Pr}(B=r a)=\frac{4}{9}+\frac{2}{9}=\frac{2}{3} \\
& \operatorname{Pr}\left(B=a_{v a}\right)=\frac{2}{a}+\frac{1}{9}=\frac{1}{3}
\end{aligned}
$$

$10: 48$

$$
\operatorname{Pr}(E \mid F)=\operatorname{Pr}(E \cap F) / \operatorname{Pr}(F)
$$

Pr of $E \operatorname{given} F$
\rightarrow more info!
(ex) Rolling z die
$E=$ even $F=$ prime \quad what it I know F ?

$$
\operatorname{Pr}(E \mid F)
$$

Intuition... primes ae now sample space

$$
\frac{\operatorname{lr}(E \cap F)}{\operatorname{Rr}(F)}=\frac{y_{6}}{3 / 6}=\frac{1}{6} \cdot \frac{6}{3}
$$ $\{2,3,5\}$

$$
\operatorname{Pr}(\text { even })=4_{3}
$$

$$
=\frac{1}{3}
$$

(ex) Use Formula...
soll two die
What is prob. One of the dice is 24 , given that the sum is 7?
$E=$ one die is a y $\quad F=$ sum is 7

$$
\operatorname{Pr}(E \mid F)=\frac{\operatorname{Dr}(E \cap F)}{\operatorname{Dr}(F)}=\frac{2 / 36}{6 / 36}=\frac{2}{36} \cdot \frac{36}{6}=\frac{2}{6}=\frac{1}{3}
$$

$$
\begin{aligned}
E \cap F= & \text { zee autcones velere } \\
& E \text { is trie nid } F \text { is trea } \\
& (4,3),(3,4)
\end{aligned}
$$

3. Bayes Rue
G expansion of conditional probability move information \rightarrow probability?

$$
\operatorname{Pr}(\text { covid })=\text { ? } \quad \operatorname{Pr}(\text { could } \mid \text { test pos })=\frac{?}{\text { butter answer! }}
$$

What we know...

$$
\begin{aligned}
& \operatorname{Pr}(E \mid F)=\frac{\operatorname{Pr}(E \cap F)}{\operatorname{Pr}(F)} \rightarrow \text { whet it I dart Enow? } \\
& \operatorname{Pr}(E \cap F)=\operatorname{Pr}(F \cap E)=\operatorname{Pr}(E \mid F) \cdot \operatorname{Pr}(F)=\operatorname{Pr}(F \mid E) \cdot \operatorname{Pr}(E)
\end{aligned}
$$

What we know ... joint
$\operatorname{Pr}(F) \rightarrow$ what it I den't know?

$$
\begin{aligned}
& \operatorname{Pr}(F)=\operatorname{Pr}(F \cap E)+\operatorname{Pr}(F \wedge \neg E) \\
&(\sim \operatorname{Plogin}
\end{aligned}=\operatorname{Pr}(F \mid E) \cdot \operatorname{Pr}(E)+\operatorname{P(F|\neg E)\cdot \operatorname {Pr}(\neg E)}=
$$

(*)

$$
\operatorname{Pr}(E \mid F)=\frac{D(E \cap F)}{\operatorname{Pr}(F)}=\frac{\operatorname{Pr}(F \mid E) \cdot \operatorname{Pr}(E)}{\operatorname{Pr}(F)}
$$

(ex) Totlenhram Hotspur (Soccer)
Lane's farante player: Son
Setup:

- Son plays 20(38 matches
- Hotspurs win 75% grammes when Son plays
- Hotspurs win 40\% games when Son dent play
$\operatorname{Pr}($ Son was playing f we wan)

$$
\left.\begin{array}{l}
\operatorname{Pr}(s)=20 / 38 \\
\operatorname{Pr}(\omega \mid s)=.75 \\
\operatorname{Pr}(\omega \mid 7 s)=.40
\end{array}\right\} \text { na }
$$

(141)

$$
\operatorname{Pr}(s \mid \omega)=\frac{\operatorname{Pr}(\operatorname{sn} \omega)}{\operatorname{Pr}(\omega)}=\frac{\operatorname{Pr}(\omega \mid s) \cdot \operatorname{Pr}(s)}{\operatorname{Pr}(\omega)}=\frac{(.75)\left({ }^{20}(38)\right.}{? ?}
$$

What is prob that we wen?

$$
\begin{aligned}
& \operatorname{Pr}(\omega)=\operatorname{Pr}(\omega \wedge s)+\operatorname{Pr}(\omega \wedge 75) \\
&=\operatorname{Pr}(\omega \mid s) \cdot \operatorname{Pr}(3)+\operatorname{Pr}(\omega \mid 75) \cdot \operatorname{Pr}(75) \\
&=(.75)(20 / 38)+(.40)(18 / 38) \\
&=.58) \\
& \operatorname{Pr}(s \mid \omega)=\frac{(.75)(20 / 38)}{.58}=\$.68
\end{aligned}
$$

$\operatorname{Pr}(E \mid F)=\frac{\operatorname{Pr}(F \mid E) \cdot \operatorname{Pr}(E)}{\operatorname{Pr}(F)} \rightarrow$ not known $\operatorname{P}(E \cap F)$
\rightarrow not know! reed to figure it at

$$
\operatorname{Pr}(F)=\operatorname{Pr}(F \mid E) \cdot P(E)+\operatorname{P}(F \mid \neg E) \cdot \operatorname{P(~} \bar{E})
$$

