CS1800 Day 19

Admin:
- HW6 due today
- HW7 released today (due next Friday)
- slightly shorter than most
- more time to prep for exam?2
- will only count as 78% of other HWs with 100 points
- practice exam?2 problems are out
- slightly more induction examples
- | want to make sure you have plenty to pull from in exam?2

Content:
- Induction with equalities and inequalities



Induction allows us to prove a never-ending sequence of statements: S(1), S(2), S(3), S(4), ...

Process: Metaphor (Dominos):

To knock over all the dominos

|

A

S trremesT  SERERST  SratenerT

\ ) 3




Examecs



sou\mggé “0?\"!0&3

|+ 9+« Bllor 32 + &
= 333 D
=
= 2— é‘L "The sum of 27k where k goes from 0 to 6"

Kco
4SYAMTING VAWE of K



In Class Activity: Summation Notation

Express each sum below in summation notation
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Compute each sum below (the secok®one has a pattern and
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Algebraic Induction:

Show that the sum of the first n even integers is n(n+1)
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Algebraic Induction: Expressing our sum in summation notation

Show that the sum of the first n even integersis n(n+1)
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Induction Four Step Recipe: (AKA: how to not get turned around in a big induction proof)
i .’-’
1. Write out the statement for general n 9060 W orAL

2. Specify the list of statements you're proving /R Lﬁof NEESDED N
- your base case need not be n=1 c Croes
- you're welcome to skip by more than 1 if you'd like S(3), S(5), S(7), S(9), ... A

3. Prove the "Base case" (the smallest n for which your statement is true)

4. Prove the conditional: "If S(n) then S(n+1)"
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Algebraic Induction:

Show that the sum of the first n even integersis n(n+1)
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Induction proofs will ask us to prove S(n) — S(n+1).

For sumes, its helpful to be able to "pull out'—rom-
elevantfor S(r+3) i s




In Class Activity: &°+ &‘ "'éb"'éb'*- . .-l- 9“-15 “Z;__o a“ = a"_ \

Show that the sum ofkhe ﬁrslt n pbwers\of 2 is equal to a“ -\
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In Class Activity: a°+ &‘ "'é}"'jﬁ*- . .-l- 3“-15 “Z;_o 3“ = a"_ \
Show that the sum of the first n powers of 2 is equal to a“. \
o) . 0
Sh) = = 3" =3 -\
¥-=° Noucrwe Step 5(n) e aa)
\
%A& CASE Q\:\) P\SS*‘“‘"- ‘Vé_ s% = ah _ \
e\ . o w<o
% ° - - - \ cé - 0 o=\ <
g0 Ze0 a €=0
= 9 % a“ - \

oo\

= 3™ o)



C_)(t\} = %_ 9" = a“ -\ &(““0 2_ 9" M\

“-<0 =<0
(NRueTWE SR Sln) %"\

Acvome S L‘\)

.A

23L‘3°7—“§'\ 25 - a*\,\, vL
-3\ S +5‘:

(\ad

e



Induction with inequalities: why? (preview a bit ahead, not necessary for exam?2)

Suppose two algorithms both accomplish the same task but take a different number

of "computes" to do so. For a list of size N

Algorithm 1 takes: 2N computes

Algorithm 2 takes: N! computes
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Goal: We want to show that algorithm 1 is faster for all lists sufficiently large

(N is greater than some threshold)
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Induction with inequalities:

$ o "
S(h)- 7 ¢ W)
Prove that 2N < N! for all N above some threshold
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Algebra: Working with inequalities (1 of 3)

Move 1: add the same things to both sides, it preserves the inequality
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Algebra: Working with inequalities (2 of 3)

Move 2: multiply by a positive value, it preserves the inequality
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Move 3: multiply by a negative value, it swaps the inequality
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Algebra: Working with inequalities (3 of 3)

Move 4: sum two inequalities (large side together & small side together)
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In Class Activity: Gee CAST

Show thatn”™2 > n + 10 for all n above jne threshold
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In Class Activity: %z—ﬂmw-r Q !\\'a \\*\O
Show thatn~2 > n + 10 for all n above some threshold S(u~\> @*\5 7 N\
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