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Plan for today

• Questions from last time
• On-disk data organization

• what they’re all about

• Storage access methods
• Block-based access
• File-based access
• Object-based access
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Disk Drive Firmware Algorithms
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Outline

• Mapping LBNs to physical sectors
• zones
• defect management
• track and cylinder skew

• Bus and buffer management
• optimizing storage subsystem resources

• Advanced buffer space usage
• prefetching and caching
• read/write-on-arrival
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How functionality is implemented
• Some of it is in ASIC logic

• error detection and correction
• signal/servo processing
• motor/seek control
• cache hits (often)

• Some of it is in firmware running on control processor
• request processing
• request queueing and scheduling
• LBN-to-PBN mapping

• Key considerations: cost and performance and cost
• optimize common cases
• keep things simple and space-conscious
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Recall the storage device interface

• Linear address space of equal-sized blocks
• each identified by logical block number (LBN)

65 7 12 23 ……

• Common block size: 512 bytes
• Number of blocks: device capacity / block size
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Recall the physical disk storage reality

Cylinder

Track

Sector
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Physical sectors of a single-surface disk
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LBN-to-physical for a single-surface disk
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Extending mapping to a multi-surface disk
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Some real numbers for modern disks

• # of platters: 1-4
• 2-8 surfaces for data

• # of tracks per surface: 10s of 1000s
• same thing as # of cylinders

• # sectors per track: 500-900
• so, 250-450KB

• # of bytes per sector: usually 512
• can be chosen by OS for some disks
• disk manufactures want to make it bigger
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Clarification of Cylinder Numbering
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First Complication: Zones

• Outer tracks are longer than inner ones
• so, they can hold more data
• benefits: increased capacity and higher bandwidth

• Issues
• increased bookkeeping for LBN-to-physical

mapping
• more complex signal processing logic

– because of variable bit rate timing

• Compromise: zones
• all tracks in each zone hold same number of

sectors
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Constant number of sectors per track
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Multiple “zones”
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A real zone breakdown

• IBM Ultrastar 18ES (1998)

247114731068310
2601068298169
273981587628
286876170457
312704455276
325552645055
338450434664
351346622483
364224712642
37412633781
39037700
SPTEnd cylinderStart cylinderZone
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Second Complication: Defects

• Portions of the media can become unusable
• both before installation and during use

– former is MUCH more common than latter

• Need to set aside physical space as spares
• simplicity dictates having no holes in LBN space
• many different organizations of spare space

– e.g., sectors per track, cylinder, group of cylinders, zone

• Two schemes for using spare space to handle
defects
• remapping

– leave everything else alone and just remap the disturbed
LBNs

• slipping
– change mapping to skip over defective regions
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One spare sector per track
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Remapping from defective sector to spare
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LBN mapping slipped past defective sector
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Some Real Defect Management Schemes

• High level facts
• percentage of space: < 1%
• always slip if possible

– much more efficient for streaming data

• One real scheme: Seagate Cheetah 4LP
• 108 spare sectors every 12 cylinders

– located on the last track of the 12-cylinder group
– used only for remapped sectors grown during usage

• many spare sectors on innermost cylinders
– used to provide backstop for all slipped sectors
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Computing physical location from LBN

• First, check list of remapped LBNs
• usually identifies exact physical location of

replacement
• If no match, do the steps from before

• but, also account for slipped sectors that affect
desired LBN

• About 10 different management schemes
• For any given scheme, the computations can be

fairly straightforward.  However, it is quite complex
to discuss them all at once concretely
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When defects “grow” during operation

• First, try ECC
• it can recover from many problems

• Next, try to read the sector again
• often, failure to read the sector is transient
• cost is a full rotation added to access time

• Last resort, report failure and remap sector
• this means that the stored data has been lost
• until next write to this LBN, reads get error

response
– new data allows the location change to take effect
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Error Recovery Algorithm for READs

NO

YES

YES

YES NO

NO

NO

READ
SELECTOR

ECC
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RETRY
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REACHED?

RETRY
SECTOR
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Third Complication: Skew

• Switching from one track to another takes time
• sequential transfers would suffer full rotation

• Solution: skew
• offset physical location of first sector to avoid extra

rotation
– selection of skew value made from switch time statistics

• Track skew
• for when switching to next surface within a cylinder

• Cylinder skew
• for when switching from last surface of one cylinder

to first surface of next cylinder
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What happens to requests that span tracks?
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What happens to requests that span tracks?
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Same request with track skew of one sector
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Examples of Track and Cylinder Skews

955536493563063

975637498623242

10258390101643341

TrackTrack CylinderSPTCylinderSPT

IBM
Ultrastar 18ES

Quantum
Atlas 10k

Zone

Skew
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Computing Physical Location from LBN

Figure out cylno, surfaceno, and sectno
• using algorithms indicated previously

Compute total skew for first mapped physical
sector on this track
• totalskew = (cylno * cylskew) +

  (surfaceno + (cylno * (surfaces-1)) * trackskew)

Compute rotational offset on given track
• offset = (totalskew + sectno) % sectspertrack
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Basic On-disk Caching
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On-disk RAM

• RAM on disk drive controllers
• firmware
• speed matching buffer
• prefetching buffer
• cache

• Canonical disk drive buffers
• several fixed-size “segments”
• latest thing: variable-size segments
• down the road: OS style management

one $ 
segment

sector
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Prefetching and Caching

• Prefetching
• sequential prefetch essentially free until next

request arrives
– and until track boundary

• Note: physically sequential sectors are prefetched
– usefulness depends on access patterns

• Example algorithms
– prefetch until buffer is full or next request arrives
– MIN and MAX values for prefetching
– if track n-1 and n have been READ, prefetch track n+1

• Caching
• data in buffer segments retained as cache
• most of the benefit comes from prefetching
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Disk Drive – Complete System?

BUS
I-FACE

BUFFFER/
CACHE

BUS

CONTROL
PROCESSOR

I/O 
DevicesCPU Memory

C
A
C
H
E

MEDIA
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Not really, recall this…

Rest of System

I/O Controller

Bus Adapter
I/O Bus

System Bus
Device Driver(s)

CompletionsRequests

Independent Disks storage subsystem
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File Systems
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Key FS design issues

• Application interface and system software
• Data organization and naming
• On-disk data placement
• Cache management
• Metadata integrity and crash recovery
• Access control
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Starting at the top: what applications see

• At the highest level (in most systems)
• contents of a file: sequence of bytes
• most basic operations: open, close, read, write

• open starts a “session” and returns a “handle”
• in POSIX (e.g., Linux and various UNIXes)

– handle is  process-specific integer called “file descriptor”
– session remembers current offset into file
– for local files, session also postpones full file deletion

• handle is provided with each subsequent operation
• read or write access bytes at some offset in file

– could be explicitly provided or remembered by session

• close ends session and destroys the handle
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Sidebar: shared and private sessions

fd1

fd2

File
descriptor

Open file
object

File

offset

fd1

fd2

File
descriptors

Open file
objects

File

offset

offset

• Two opens of the same file yield independent
sessions

• A session can be shared across handles or
processes
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Where information resides

User Level

System Calls

File Descriptors

File System

Kernel
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Some associated structures in kernel

File Structures

 fds[0]
 fds[1]
 fds[2]
 ...
 fds[n]

f_flag
f_count=1
f_offset
f_inode

f_flag
f_count=2
f_offset
f_inode

f_flag
f_count=1
f_offset
f_inode

. . .

Process B

“sharing” file structure
but have different file
descriptors

 fds[0]
 fds[1]
 fds[2]
 ...
 fds[n]

Process A
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Moving data between kernel and application

• Common approach: copy it
• as in  read(fd, buffer, size)  or  write(fd, buffer, size)
• simplifies things in two ways

– application knows it can use the memory immediately
• and that the corresponding data is in that memory

– kernel has no hidden coordination with application
• e.g., later changes to buffer do not silently change file

• Sometimes better approach: hand it off
• as in  char *buffer = read(fd, size)

– notice that buffer containing data is returned
• this allows page swapping (via VM) rather than copying

• downsides
– sometimes not much of a performance improvement
– makes file caching more difficult
– can be confusing for application writers
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The uio structure for scatter/gather I/O

uio_offset
uio_iovcnt = 3
*uio_iovec[]
...

base

length

base

length

base

length {
{

{

struct uio

struct
iovec[]

File
(logical view)

process address
space
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Remember that the FS data lives on disk

User Level

System Calls

File Descriptors

File System

Kernel

Disk



45NEU csg389 Fall 2006, Jiri Schindler

From file offsets to LBNs

file offsets 1 20 20 2119…

…LBN space
1658

1670 2004

101 102 119 12110098 99FS blocks … 120

• File offsets
• 0 to num_blocks_in_file

– offset to a file given in block number

• File System blocks
• 0 to num_blocks_in_filesystem
• Single block may span multiple disk LBNs

FS block size = 8 LBNs (4KB)

99 120
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Mapping file offsets to disk LBNs

• Issue in question
• must know which LBNs hold which file’s data

• Trivial mapping: just remember start location
• then keep entire file in contiguous LBNs

– what happens when it grows?
• alternately, include a “next pointer” in each “block”

– how does one find location of a particular offset?

• Most common approach: block lists
• an array with one LBN per block in the file
• Note: file block size can exceed one logical block

– file system treats groups of logical blocks as a unit
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A common approach to recording a block list

Direct Block 1

Direct Block 2

Direct Block 12

Data

Data

Data

Indirect Block

Double-Indirect
Block

(lbn 576)

(lbn 344)

(lbn 968)

(lbn 632)

(lbn 1944)

(lbn 480)

(lbn 96)

(lbn 176)

(lbn 72). . .

. . .

Data Block 13

Data Block 14

Data Block N

. . .

Data

Data

Data

Indirect Block 1

Indirect Block 2

. . .

Data Block N+1

Data Block N+2. . .
Data Block Q+1

Data

Data

Data
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Inodes

• FS stores other per-file information as well
• length of file
• owner
• access permissions
• last modification time
• …

• Usually kept together with the block list
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Supporting multiple file system types

User Level

System Calls

File Descriptors

Kernel

Disk

LFS FFS NFS

Vnode Layer

Vnode Operators
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Vnode layer: inside kernel

• Want to have multiple file systems at once
• and possibly of differing types

• Solution: virtual file system layer
• adding level of indirection always seems to help…

• Everything in kernel interacts with FS via a
virtualized layer of functions
• these function calls are routed to the appropriate

FS-specific implementations
– once the correct FStype has been identified
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Open file object points to a vnode

Open file object
vnode Structure
(for active files)

User Area

User Area of Currently
Running Process

Pointer to file system
dependent structure
such as an inode (an
in-memory copy, of
course)

uf_ofile[]

f_vnode
offset

v_count
v_ops
v_vfsp
v_data

Array of pointers to
file system specific
functions for
implementing the
virtual FS interface
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Can also support non-disk FS

System Calls

Vnode Layer

4.2BSD File SystemPC File System

Network

Disk

NFS NFS
Server

Floppy 
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Key FS design issues

• Application interface and system software
• Data organization and naming
• On-disk data placement
• Cache management
• Metadata integrity and crash recovery
• Access control
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What makes this so important?

• One of the biggest problems, looking ahead
• with TBs of data, how does one organize things
• how to ensure we can find what we want later?

• Not nearly as easy as it seems
• try to find some old piece of paper sometime

– e.g., your exam #2 from Calculus 3
• think ahead to when you’re a lot busier…
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Common approach: directory hierarchy

• Hierarchies are good to deal with complexity
• … and data organization is a complex problem

• It works well for moderate-sized data sets
• easy to identify course breakdowns
• when it gets too big, split it and refine namespace

• Traversing the directory hierarchy
• the ‘.’ and ‘..’ entries

/

dirc

wow

dira dirb

F/S

filedirectories
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What’s in a directory

• Directories to translate file names to inode IDs
• just special file with entries formatted in some way

• often sets of entries put in sector-sized chunks

4 bytes 2 bytes 2 bytes variable length
N
U
L
L

Inode
number

Record
type

Length
of name File Name (max. 255 characters)

# FILE 5 foo.c # DIR 3 bar # DIR 6 mumble

A directory block with three entries
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Managing namespace: mount/unmount

• One can have many FSs on many devices
• … but only one namespace

• So, one must combine the FSs into one
namespace
• starts with a “root file system”

– the one that has to be there when the system boots
• “mount” operation attaches one FS into the

namespace
– at a specific point in the overall namespace

• “unmount” detaches a previously-attached file
system
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Mounting an FS

VIEW BEFORE MOUNTING

VIEW AFTER MOUNTING
/

tomd

dirc

wow

dira dirb

Namespace

directory

filesub-directories

/

tomd

junk

Root FS

directory /

dirc

wow

dira dirb

FS

filedirectories

# mount FS /tomd
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How to find the root directory?

• Need enough information to find key
structures
• allocation structures
• inode for root directory
• any other defining information

• Common approach
• use predetermined locations within file system

– known locations of (copies of) superblocks

• Alternate approach
• some external record



60NEU csg389 Fall 2006, Jiri Schindler

Sidebar: multiple FSs on one disk

• How is this possible?
• divide capacity into multiple “partitions”

• How are the partitions remembered?
• commonly, via a “partition map” at the 2nd LBN
• each partition map entry specifies

– start LBN for partition
– length of partition (in logical blocks)

• Usually device drivers handle partition map
• file system requests are relative to their partition
• device driver shifts these requests relative to

partition start
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Difficulty with directory hierarchies
• Can be very difficult to scale to large sizes

• eventually, the refinements become too fine
• and they tend to be less distinct

• Problem: what happens when number of
entries in directory grows too large??
• think about having to read through all of those

entries
• possible solution: partition into subdirectories again

• Problem: what happens when data objects
could fit into any of several subdirectories??
• think about having to find something specific
• possible solution: multiple names for such files
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On-disk Data Placement
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Key FS design issues

• Application interface and system software
• Data organization and naming
• On-disk data placement
• Cache management
• Metadata integrity and crash recovery
• Access control
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Fact – seek time depends on distance

Goal – requests in sequence physically near one another

1998year

15 msfull stroke seek
0.80 mssingle track
7.8 msseek

Quantum Atlas III

2002year

6.5 msfull stroke seek
0.20 mssingle track
3.6 msseek

Seagate Cheetah 15K.3
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Fact –positioning time dominates transfer

average seek
one cylinder
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Goal – fewer, larger requests to amortize positioning costs

< 1 hourread disk (128KB)
> 30 hoursread disk (2KB)
< 20 minread disk (seq)
73.4 GBcapacity
ST373453model

Seagate Cheetah 15K.3

time to read the entire disk,
sequentially or randomly
with varying request size
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Breakdown of disk head time
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File System Allocation

• Two issues
• Keep track of which space is available
• Pick unused blocks for new data

• Simplest solution – free list
• maintain a linked list of free blocks

– using space in unused blocks to store the pointers
• grab block from this list when new block is needed

– usually, the list is used as a stack

• While simple, this approach rarely yields good
performance
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File System Allocation (cont.)

• Most common approach – a bitmap
• large array of bits, with one bit per allocation unit

– one value says “free” and the other says “in use”
• Scan the array when a new block is needed

– we don’t have to just take first “free” block in the array
– we can look in particular regions
– we can look for particular patterns

• Even better way (in some cases) – list of free
extents
• maintain a sorted list of “free” extents of space

– each extent holds a contiguous range of free space
• pull space from a part of a specific free extent

– can start at a specific point
– can look for a point with significant room for growth
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File System Allocation – Summary

• FS performance (largely) dictated by disk
performance
• and optimization starts with allocation algorithms
• as always, there are exceptions to this rule

• Two technology drivers yield two goals
• Closeness (locality)

– reduce seeks by putting related things close to each other
– generally, benefits can be in the 2x range

• Amortization (large transfers)
– amortize each positioning delay by accessing lots of data
– generally, benefits can reach into the 10x range
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Spatial proximity can yield…

Directory
DATA

DATA

Block #42

Block #44

<A, 3>

Inodes

Inode #3

<B, 5>

< , >

Inode #5

Various
Information

Data Blocks

DATA

Block #20

Block #20

Various
Information

Block #42
Block #44

fast directory access

fast file access
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Fast File System (1984)
• Source of many still-popular optimizations
• For locality – cylinder groups

• called allocation groups in many modern file systems

• allocate inode in cylgroup with directory
• allocate first data blocks in cylgroup with inode

Inodes Data blocksBitmap

Superblock

Default usage of LBN space

Organization of an allocation group
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Other ways of enhancing locality

• Disk request scheduling
• for example, consider all dirty blocks in file cache

• Write anywhere
• specifically, writing near the disk head [Wang99]

– assumes space is free and the head’s location is known
• cool idea that nobody currently uses

• Same thing for reads
• assumes multiple replicas on the disk
• difficult to keep the metadata consistent
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FFS schemes

• To get large transfers
• larger block size

– more data per disk read or write
– use with fragments for small-file space

efficiency
• allocate next block after previous one, if possible

– do this by starting search at block # just after
previous

• fetch more when sequential access detected
– so, multiple blocks per seek+rotational latency
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Other ways of getting large transfers

• Re-allocation
• to re-establish sequential allocation when it was

not feasible at the time of original allocation
• Can you give an example?

• Pre-allocation
• to avoid a failure to allocate sequentially later

• Extents (and extent-like)
• as a replacement for block lists
• as a replacement for bitmaps
• things to consider

– When does this help?
– When does it hurt performance?
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Block-based vs. Extent-based Allocation

Block-Based Allocation Extent-Based Allocation
File

Storage
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Sidebar: BSD FFS constants

• What their purpose?
• Historical prospective

• details being pushed down

track skew in sectorsTRACKSKEW

tracks per cylinderTRACKS

revs per secondRPS

rotational delay between contiguous blocksROTDELAY

sectors per trackNSECT

min percentage of free spaceMINFREE

max contiguous blocks before rotdelay gapMAXCONTIG

max blocks per file in a cylinder groupMAXBPG

MeaningParameter
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Object-based Access
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OIDs

• Generation of unique ID
• Flat name space (no hierarchy)

• How to remember where things are?
• Divide and conquer
• Employ external applications/DATABASES

• Will discuss in the context of Centera
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What’s next…

• Lecture: 9/26
• Database structures
• DB Workloads


