Archival Storage

Lecture 11 November 21, 2006

NEU csg389 Information Storage Technologies, Fall 2006

Plan for today

- Design and Architecture for Fixed Content
- Paper discussion

Case study: EMC Centera

Designing a content-addressable government compliant-object store cluster

Digital and Mostly Fixed Content

Get the government involved...

- Regulations and requirements for data retention
 - To prevent ENRON, catch Martha Steward, spy on people, etc.
 - Sarbanes-Oxley, SEC 17.4a...
 - Throw in contradicting regulatory policies
 - US laws vs. EU privacy protection
- Storage used to be easier (maybe)
 - Shred paper documents
 - Use WORM media
 - Write to tape, destroy it
 - Laser disk JukeBoxes
 - But...
 - Management challenges
 - Speed of access to data

Enter On-line Archives

400:1 pricing difference

1993 – \$6/MB Cost to store a 30MB object: \$180

Cost to store a 30MB Object: 45¢

2003 – 1.5¢/MB

Can store only 400 objects

Can store 800,000 objects

Now, it is economically viable to use on-line disk-based storage instead of WORM technologies

 Somewhat larger purchase price and higher operational costs offset savings in data and content management including fast access

First Generation of a New Access Method

- Recognize a legal record as a unit of transfer
 - Store an E-mail, an X-ray, a digital voice recording
- Handle basic legal record requirements
 - Retention, immutability, etc.
- Audit actions
 - Deletion is an obvious one
 - Auditing reads is important as well
- Handle Trillions of objects
- Why?

Document Mngmt.

How do we Access Trillions of Items

- Use Content Addressing
 - Define a "GUID" address based on the content bit pattern
 - MD5, SHA-1, HAVAL, ... hashes
- Have a flat large address space
 - No external explicitly maintained hierarchy
 - Internally, there must naturally be some hierarchy or structure
- Decouple the address/name from the structure of storage

Nothing new (so far)

Why is Content Addressing Important?

Content authenticity

- Unique "fingerprint" is generated from the content itself
- Content is validated on delivery
- Content integrity is continuously validated in background

Content Address is location independent

- Address is globally unique
- Not a place in a hierarchy (file system)
- Not a place in a disk array (logical volume)

Identical objects are only stored once

MetaData: The Second Key Component

Andeligningel adæels finsæs shelfyvolfhtonetse jærbellæms

can't detern
 Standardized
 Can't figure
 labeling allows
 don't know
 multiple vendors
 has been on
 to consistently
 represent
 information to
 consumers

	Nutritional Facts					
١	Serving Size 1/2 cup (130g)□					
I	Servings per container about 3 🗆					
	Amount per serving□					
	Calories 130 🛛	Fat (Cal 5 🗆			
		%I V	Daily□ ′alue □			
	Total Fat 0.5g 🛛		0%□			
	Saturated Fat 0g□		0%□			
	Cholesterol Omg 🗆		0%□			
	Sodium 260mg□		11%□			
	Total Carbohydrates 22g□		7%□			
	Dietary Fiber 5g□		22%□			
	Sugars 0g□					
	Protein 10gm		20%□			
	Vitamin A 0%□ Y□ Vitami	in C	0%□			
	Calcium 4% □ Y□ I	ron	10%□			
	Percent Daily Values are based on a 2,000	caloria	e diet□			

Centera: A (New) Kind of Object-based Storage

- Stores Any Kind of Fixed Content
 - Satisfies Non-erasable/Non-rewriteable regulatory requirements
- Content Addressed Storage
 - Content authentication
- Extensible metadata stored with each object
- Scaling computational power with capacity
 - Computation close to data

Centera Object Model for Fixed Content

- Annotate fixed content with arbitrary metadata
- Store separately data and metadata (object attributes)
 - two Centera objects (CDF & Blob)
- Return Content Address of the CDF

CDF: Extensible Metadata

Write Transaction: CDFs and Blobs

- Clip Write Transaction
 - N+1 Centera Object Write Transactions
 - CDF follows BLOBs

Clip Write Transaction

- Return CDF's CA to the user
 - Content of CDFs defined by attributes and BLOB's CA

Centera HW Architecture

NEU csg389 Fall 2006, Jiri Schindler

Leveraging Commodity at Right Price Point

Protecting Fixed Content Stored on a Cluster

HW Packaging and Scalability

Intel Pentium 4 with 1 GB RAM 4 x 500 GB SATA 3 x Gb copper NIC

- Centera Cube
 - two switches for redundancy
 - 2x GbE to facilitate additional racks.
 - 32 or 16 nodes

Centera Cabinet

- No single point of failure
- Dual AC power
- Half nodes/switches are on one AC rail
- One or two cubes

Scalability (4-128/256 nodes)

- Take advantage of Parallel Processing
- Link cubes through uplinks and "root" switches
- Scale CPU with Storage Capacity
 - **Processing Power**
 - Bandwidth _

Object Write Protocol

- Initial
 - Misc. checks
 - Load balancing
- Data Xfer
 Write to nodes
- Commit
 - Respond to client
 - Update internal metadata

Key: Data reliably stored before ACK

Write Protocol Features

- Workload changes over time affect protocol changes
 - large objects, single-threaded access
 - Small objects, multithreaded access
- Current version
 - Persistent TCP connections throughout
 - Messages not sent over UDP anymore
- Leverage & harden commodity components
 - FS journaling allows grouping of multiple fsync()s
 - Write-barrier patch to Linux
 - -can use drives with Write Cache ON
 - FLUSH Disk Cache
 - Write
 - FLUSH Disk Cache

Object Read Protocol

- A1: Check access credentials
- A1: Locate object's fragment(s)
 - DHT across all nodes
- Select Suitable SN(s)
 - Load balancing if Mirroring
- Transfer Data to Client
- Check integrity/ACK
- Exchange update info
 - Piggyback on the ACK

Key: Data integrity is checked end-to-end for every read

Read Caching and Prefetching

- No prefetching across network
- Leverage commodity components
 - Node-local FS prefetching
- Workload focus
 - Reads are not (yet) primary workload
- Writes and queries are

Amount of Data Transfer

22

Architectural features at a glance

- Centera is a form of an Object Store
 - each node is a storage "brick" with object interface
 "brick" stores a fragment of an object
- Self-healing
 - Regenerate missing fragments due to disk/node failure
 - Per-object recovery can take advantage of parallelism
- Reclamation of capacity
 - garbage collect unreferenced/expired objects
- Content integrity checking
 - Proactively scrubbing data against checksum (Content Addr.)
- Single instancing of information at object level

Architecturally not unlike other "brick" projects

"Plain ol' Google" isn't good enough

- Finding information is about crawling and indexing
 - Ad hoc organization
 - You cannot plan on organization for long-term retention
- Sometimes you need very precise query results
 - Google gives you best efforts
- Temporal views are very important
 - Display my most recent work
 - Display the work I did before I made the mistake
- Context can be crucial
 - Show me the E-mail received by Joe Broker from any person who is an Analyst
 - Find all the legal documents
- Sometimes you want to index "non-text-based" information

Beyond Data Mining

Centera API: Making it all possible

- Functions implemented by an application-linked library
 - Authentication & access control
 - Load balancing across cluster's Access Nodes
 - Data xfer (R/W)
 - Querying for content (with sufficient permissions)
- Applications can take advantage of Centera-unique features
- Alternative access methods
 - Centera Universal Access server (NFS, CIFS, http, ftp)
 - Applications can use some Centera features w/o rewriting/recompiling
 - Not meant for performance, or as a "pure NAS" device
 - Centera AP is not standardized: XAM standard proposal
 - -effort initiated by EMC, IBM, Sun, HP, Archivias
 - SNIA "Content-Áware Storage" TWG

Centera Security and Auditing Features

- Access privileges based on application and user profiles
 - Audit logging on access/read/write/delete

Feature	Basic	Governance Edition	Compliance Edition Plus
Retention Enforcement			
Default Retention			
Purge Blob			
Delete CDF			
Audited Deletes			
Privileged Delete			
Content Shredding			
Remote Management			

Summary: What works well

- Scaling R/W performance with cluster size
- Object Model
 - Content Authenticity
 - Governance Edition & Compliance Edition+
 - Applications routinely extend attributes via XML
 - overcome the performance overhead of XML through indexing
- Taking advantage of commodity components
 - Build on top of high-level constructs
 - OS features: Linux (Q&A) with FS
 - Put everything into user-level processes
 - Fast refresh of both HW and SW
- Alternative access methods
 - Not all applications can/are willing to change
 - Over time can migrate to Centera API/XAM

Fixed Content-Related Research

- Common block redundancy elimination
 - How to do storage savings, single instancing of 2-4KB blocks
 - Works better at larger scale, but hard to make it work distributed
 - compression works just as well
- Single-instance storage
 - "object-level" is sufficient
 - not for free even though it is "trivial" with Content Address
- Content-based intrinsic data placement (DHT-like)
 - Want the flexibility of placing data where I want it
 - Migration of content is important (HW refresh, etc) without any churn
 - Physical transfer and simple update of a reference works great

Alternatives: NetApp R200

- FAS 960 Filer head
 - 2 uP's
 - 14 320GB drives per DS-14 shelves
 - 2 to 24 shelves in two racks (96 TB)
 - PATA drives with SATA-FC adapters
- \$/MB declines as capacity grows
 - But limits scalability
 - Performance starts at higher
- Access Method based on NFS/CIFS
 - Retention Data
 - Volumes with special semantics
 - set atime to retention period
 - Commit by setting bits to R/O

Let's do Some Numbers

Exhibit 1

Customer Recovery of Data from Tape Source: Sunbelt Software and the Yankee Group, 2004

How many times have you had to recover data from tape and the data was unrecoverable as a result of tape unreliability?

Note: Totals may not equal 100% due to rounding.

What's next ...

- Next lecture: 11/28
- Readings will be posted tomorrow