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About Jiri

• Undergraduate/Master’s – MIT
• Electrical Engineering and Computer Science

• IBM, Boblingen, Germany
• Software Engineer in  S/390 I/O microcode group

• PhD in 2003 – Carnegie Mellon Pittsburgh, PA

• EMC, Hopkinton, MA
• Centera System Architect

– Content-addressable storage system

• Network Appliance
• Research staff in Advanced Development
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Course Info on CSG389

• “Information Storage Technologies”
• Focus on the ecosystem/data centers

• Not “Enterprise Storage Systems”
• the “nuts and bolts” of Storage Systems

• If you took csg389 before…
• That’s OK
• Less than 20% overlap, mostly foundations

• Emphasis on real-world applications
• …and big systems
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Plan for today

• Class Structure
• First some administrative stuff

• Storage hierarchy
• Our goals and why you should care

• Disk components
• How it’s going to work

• On-disk data organization
• what they’re all about

• Disk Technology Trends
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Class Structure

• Discussions
… and lots of it
• interested in hearing what YOU have to say and learned

• Reading primary & secondary sources
• No textbook, may assign some chapters from a book on

reserver in the library
• Read materials beforehand

– Posted on the web usually the next day after a class

• Homeworks
• Reading materials before class
• Writing assignments
• Practical assignments
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Collaboration

• Encouraged to discuss class materials
• Especially in the class
• But no collaboration allowed on HWs
• Give credit where credit is due

• Exams
• Two (midterm and final)
• Want to know what you individually learned
• Closed books

– I am interested in your thoughts: how you put concepts
together not on memorizing facts and putting them on
paper
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Scope and Breadth

• I expect you already know:
• Basics of networking (Ethernet, TCP/IP)
• Basics of OS - virtual memory,  filesystems, synchronization

primitives

• Will teach distributed systems concepts
• … to build (small, but) solid foundations for later on
• No rigorous theory or proofs

• Build upon the foundations and apply concepts
• Limited coding/development (no large lab assignments)

• Focus on technology, how it shapes systems research
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List of Topics

• Storage technologies basics
• Disk drives and technology trends

• Distributed and Clustered Computing
• Basics of distributed systems - consensus
• Fault models (Byzantine, fail-stop)

• Database systems
• Basic architecture

– Logging, locking, ACID properties
• Basics of data organization (data layout)

• Applications
• Traditional DB workloads (OLTP, DSS)

– Amazon, Google, Yahoo, eBay…
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List of Topics cont’d

• Disk arrays
• Basic architecture and mission-criticality

• Clustered storage systems (bricks)
• Oceanstore, FARSite, FAB, Google File System

• Data Management: Protection
• Disaster Prevention and Recovery (Backups)
• Long-term archival and document retention

• Data Management: Predictability
• Performance expectations and service level

agreements
• Security

• Preventing unauthorized access
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List of Topics cont’d 2

• Interconnect Technologies
• Software and protocols (SAN and IP networks)
• Hardware

• Abstraction and modularization
• Building systems out of components

– JAVA, JNI

• Virtualization
…and what it buys users
• IBM mainframes, Virtual Machines and Xen

• Leading edge
• Object stores
• CAS systems

• Others?
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What Is a Storage System?

• Hardware (devices, controllers, interconnect)
& software (file system, device drivers,
firmware) dedicated to providing management
of and access to persistent storage.

• Different views of storage systems
• Logical: defined by functional interfaces

– Program  File System  Controller Firmware

• Physical: defined by component technologies
–   CPU    I/O Controller  Device ASIC
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What Makes Storage Systems Unique

• Combine so many topic areas
• hardware design, local and distributed operating

systems, networking, performance analysis …
• Still so much room to contribute

• performance actually matters here
– it may dominate system performance in many cases

• simplifying/automating storage management
– 6-10 dollars spent for every $1 on hardware
– dealing with heterogeneity

• Linux/Windows clients
• broadband/consumer networks vs. data center LAN

• helping users find desired information
– web & growing disk capacity cause information overload
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Performance: Amdahl’s Law

• Speedup limited to fraction improved
• obvious, but fundamental, observation

50%

50%

90% reduction in BLUE
yields only

45% reduction in total

• Consequence for storage systems
• this has been going on for years!

50%

5%
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Technology Trends
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Storage Performance Dominates

• Example of Amdahl’s Law
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• Assume 50 seconds CPU &

50 seconds I/O

2001

• by 2002
• CPU improves by: N = 50/25 = 2
• Program performance improves by:

       N = 100/75 = 1.33

2002

• by 2003
• CPU performance - factor of 2
• Program performance  N = 75/62.5=1.2

2003

• by 2004
• CPU performance - factor of 2
• Program performance N = 62.5/56.5 = 1.1

2004

CPU Time
 I/O Time

2005
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Even for Once CPU-bound Workloads
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• by 2002
• CPU improves by N = 90/45 = 2
• Program performance improves by

N = 100/55 = 1.81

2002

• by 2003
• CPU performance - factor of 2
• Program performance

N = 55/32.5  = 1.7

2003

• by 2004
• CPU performance - factor of 2
• Program performance

N = 32.5 / 21.25 = 1.53
2004

• by 2005
• CPU Performance - factor of 2
• Program performance

N = 21.25 / 15.6 = 1.36

2005

CPU Time
 I/O Time
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Memory/storage Hierarchies

• Combine technologies to balance costs and
performance benefits
• small memories are fast but expensive
• large memories are slow but cheap

• Exploit locality to get the best of both worlds
• locality = re-use/nearness of accesses
• allows most accesses to use small, fast memory

• Locality is a general concept
• power, management, etc.
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Example Memory Hierarchy Values

0.3 KB; 0.1 ns 

2MB; 7 ns

1 GB; 20 ns; $0.09/MB

72 GB; 3.6 ms; $0.005/MB

320 GB each; 10 ms; $0.003/MB

Many TB; 1 minute - 1 hour;
$0.001/MB

Representative data: 2004

(CPU cache memory)

(physical memory)

(swap space and local FSs)

(long-term storage: file servers and databases)

(off-line/archival storage)

Notice the gap
between

DRAM and
disk drives

REGISTERS

STATIC RAM

DYNAMIC RAM

MAGNETIC DISK

MAGNETIC TAPE, WORM DISK

20 KB; 1 ns C
ap
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HIGH-CAPACITY DISK, OPTICAL DISK

non-volatile

volatile
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Storage Systems Change Drivers

• Technology
• eliminates some problems and creates new ones

– … and enables new applications over time
• incommensurate scaling makes things interesting
• must be on top technology characteristics & trends

• New application requirements
• changes rules/assumptions, often forcing redesign

– example: home entertainment vs. database servers
– example: mobile computing vs. file system caching

• Systems complicated & consist of many parts
• to do top-quality job, must know about them all!
• … and their interactions too.
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What Is a Storage System?

• Hardware (devices, controllers, interconnect)
& software (file system, device drivers,
firmware) dedicated to providing management
of and access to persistent storage.

• Different views of storage systems
• Logical: defined by functional interfaces

– Program  File System  Controller Firmware

• Physical: defined by component technologies
–   CPU    I/O Controller  Device ASIC
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Physical View: Memory Hierarchy

I/O 
Devices

I/O bus
CPU Memory

Memory
bus

Disk
Reference

100-500 GB
10 ms

Memory
Reference

1GB
30 ns

C
A
C
H
E

L1/L2 Cache
Reference

20 / 2MB
1 / 5 ns

Size:
Speed:

Register
Reference

300 B
0.2 ns

Registers
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Physical View: Computer System

I/O
Controller

I/O
Controller

NetworkGraphics
OutputDisk Disk

I/O
Controller

I/O Bus

Bus 
Adapter

CPU Memory Bus

Cache

CPU
Main 

Memory

Applications

Device Drivers

OS Software

Software
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Physical View: Storage Subsystem

Rest of System

I/O Controller

Bus Adapter
I/O Bus

System Bus
Device Driver(s)

CompletionsRequests

Independent Disks storage subsystem
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Logical View: Storage Interfaces

Program Physical
Media

High level of abstraction No abstraction

Program

File System (Database)

Device Driver

I/O Controller

Disk Media

<File Name, Offset>

<Partition, Block #>

<Disk #, Sector #>

<Cylinder, Track, Sector>
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Program’s View of File system

usr

jiri gene

A B C D

There are more advanced ways of organizing data too…

Directory Hierarchy



26NEU csg389 Fall 2006, Jiri Schindler

File system/OS Level Organization

Directory
DATA

DATA

Block #42

Block #44

<A, 3>

Inodes

Inode #3

<B, 5>

< , >

Inode #5

Various
Information

Data Blocks

DATA

Block #20

Block #20

Various
Information

Block #42
Block #44
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OS’s Logical View of Storage Systems

• Linear address space of equal-sized blocks
• each identified by logical block number (LBN)

– SCSI or ATA

65 7 12 23 ……

• Common block size: 512 bytes
• Number of blocks: device capacity / block size
• OS-to-storage requests defined by few fields

• R/W, block #, # of blocks, memory source/dest
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Disk Drive Physical Characteristics
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Outline

• Overview of disk components
• Overview of disk operation
• Components in more detail

• magnetic recording
• Access time in more detail

• service components
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What’s Inside A Disk Drive?

SpindleArm

Actuator

Platters

Electronics

SCSI
connector

Image courtesy of Seagate Technology
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Disk Electronics

• Connect to disk

• Control processor

• Cache memory
• Control ASIC

• Connect to motor

Just like a small
computer – processor,
memory, network iface
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Disk Structure

Read/Write Head

Upper Surface
Platter

Lower Surface

Cylinder

Track

Sector

Arm

Actuator

250,480tracks
31,310cylinders
8heads
4platters
73.4 GB*capacity
ST373453model

Seagate Cheetah 15K.3

*often GB = 1 billion bytes (109), not 230

(the difference is 7%!)
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Disk: top view of single platter

Tracks organized into sectors

Surface organized into tracks
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Head in position above a track

Disk Access
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Rotation is counter-clockwise

Disk Access
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About to read blue sector

Disk Access – Read
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After BLUE read

After reading blue sector

Disk Access – Read
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After BLUE read

Red request scheduled next

Disk Access – Read
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After BLUE read Seek for RED

Seek to red’s track

Disk Access – Seek
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After BLUE read Seek for RED Rotational latency

Wait for red sector to rotate around

Disk Access – Rotational Latency
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After BLUE read Seek for RED Rotational latency After RED read

Complete read of red

Disk Access – Read
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After BLUE read Seek for RED Rotational latency After RED read

Seek
Rotational Latency
Data Transfer

Disk Access – Service Time Components
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Disk Recording
Components

How the bits get/stay
there
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Disk Drive – Media

sector

5,400 to 15,000
rpm

track
Thin Film Medium

Substrate + undercoat

Non-magnetic underlayer

magnetic storage layer
Overcoat +

lubricant

Courtesy of Jimmy Zhu, CMU
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ISOLATION
ZONE

DATA
SECTOR

Adjacent tracks
separated by an
isolation zone

Disk Drive – Servo
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AVERAGE DENSITY
ACROSS ENTIRE

SURFACE IS LESS
DUE TO ECC,

INTERSECTOR GAP,
BLOCK HEADERS,

ETC.

ONE TRACK

DATA SECTORS

SIGNAL AMPLITUDE

NO. OF BITS
PER INCH (BPI) x 
NO. OF TRACKS
PER INCH (TPI) = 
AREAL DENSITY

ON-SECTOR DENSITY

DATA (SECTOR)

INTERSECTOR GAP

Disk Drive – Density
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Barracuda 7200.7

Cheetah 15K.3DeskStar 120GXP

Recent CGR closer to 100%, likely not sustainable,
expected to fall back toward 60% CGR
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Barracuda 7200.7
DeskStar 120GXP

Most of the
improvement comes

from higher TPI
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Disk Drive – Density

• Densities not expected to grow forever
• superparamagnetic limit

– when thermal forces swap bits on their own
• particle size has limits eventually

• Aspect ratios for bits
• linear density is 10-20X track density

– a lot of it is the inter-track isolation zone
• so, track density offers more room for improvement

– track density doesn’t help data transfer and can hurt
track-following (it’s all about better servo performance)
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Disk Drive – Magnetic Recording

• How does a disk’s magnetic recording work?
• this will be only a high-level overview

• Important for several reasons
• gives some insight into external properties of disks
• wastes some of the potential capacity
• will (eventually) impose some fundamental limits*
• you might work for a disk company some day

*note that such limits have been talked about for
many years,  and have always been overcome so far
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The magnetic recording process

FLUX
TRANSITION

SUBSTRATE

COIL

DIRECTION OF

ROTATION (D.O.R.)

CORE

READ/WRITE
GAP

MEDIA
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Using magnetic recording to store data

FLUX
TRANSITION

SUBSTRATE

COIL

DIRECTION OF

ROTATION (D.O.R.)

CORE

READ/WRITE
GAP

MEDIA
0

1

1

1 1
0

0

0

t

t
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Recovering magnetically recorded data

FLUX
TRANSITION

SUBSTRATE

0

1

1

1 1
0

0

0

COIL

DIRECTION OF

ROTATION (D.O.R.)

CORE

READ/WRITE
GAP

MEDIA

VOLTAGE
+

-

LEAKAGE
FIELD
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Recording and its output (simplified)

OUTPUT PULSES

FLUX DIRECTION

D.O.R.

+

-
+-

0
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SERVO
170-BIT REED-

SOLOMON ECC
EDC: SHIFTED

CHECKSUM OF DATA 
AREA CONTENTS

AUTOCORRELATED
(DEFECT-TOLERANT)

SYNC FOR DATA AREA
AUTOCORRELATED

(DEFECT-TOLERANT)
SYNC FOR HEADER AREA

D.O.R.

DATA

ECC SCOPE
OF PROTECTION

Disk Drive – sector format
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• Addressable unit is a sector

• Sector breaks down into several different fields
• Typical data portion size - 512 bytes*
• Typical format

– sync followed by address field (cyl, head, sector, crc)
• crc used to verify cyl, head, sector info

– gap followed by the data
– ecc over the data

• verify data and correct bit errors
– header, ECC and gaps typically use between 40 and 100 bytes

Servo Gap Header

Disk Drive – detailed sector format

Sync Data (512 bytes) ECC Gap

Sync Cyl Head Sector CRC

*520 and 528 also possible, larger Real Soon Now
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Disk Drive – error-correction code (ECC)

ECC

DATA

DATA

ECC

MEMORY
X X X X X X X

X X X X X X X

X X X X X X X

WRITE
CHECK BITS

GENERATE NEW
CHECK BITS

READ

WRITE

COMPARE
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Recording Channel Data Flow

Channel write dataInput
user data

ECC encoder Channel encoder

Equalizer

DetectorECC decoder Channel decoder

output
user data

Analog readback signal

10010110 110101101 1011011010

10010110 110101101 1011011010
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Encoding and ECC
• Why encoding?

– Signal processing channels can only detect changes so rapidly
• so, only so many 1s in a row

– Timing can only stay in sync for so long
• so, only so many 0s in a row

• Why ECC?
• At such high densities, problems occur frequently
• ECC detects and can allow on-the-fly correction
• Important consequence

– when writing a sector, one ends up with one of three states
• all written
• all not written
• sector destroyed

– NEVER just partially modified (and able to pass ECC check)
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Disk Access Time
Components

Moving the bits on and off
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Response Time for Disks

• Response time: user-visible service time
• Queue time + Access time

• Access time: service time for a disk access
• Command + Seek + Rotation + Transfer

– we’ll focus on the last three today
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Seek Time

• Time required to move head to desired track
• A seek has up to four components

• accelerate
• coast at max velocity

– only if going far enough to reach max velocity
• decelerate
• settle onto correct track

– even required for switching tracks
• remember thermal expansion and runout?

– takes extra time to settle before writing
• need to make extra certain to avoid destroying adjacent data

– reads, on the other hand, can take chances

– short seeks today just rely on track settling mechanism
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“Average Seek Time”

• Watch out for misrepresentations
• purposeful or accidental

• What it is
• depends on workload
• for random workloads, average of seeks for all

possible reqs
• What it is not

• seek time for average of possible distances
– this would be 0.5 * number of cylinders

• seek time for distance from any LBN to any other
– avg. distance for random workloads is about 1/3 of total
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A Real Seek Profile

Note that it isn’t linear
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Rotational Latency

• Time required for first desired sector to reach head
• Depends on rotation speed

• measured in Rotations Per Minute (RPMs)

• Computing average rotational latency
• for almost all workloads, we can safely assume that there is

an equal likelihood of landing on any sector of the track
• this gives equal probability of each rotational latency

– from 0 sectors to N-1 sectors
• thus, average rotational latency is time for 1/2 revolution
• e.g., for 7200 RPM

– one rotation = 60s / 7200 = 8.33 ms
– average rotational latency = 4.16 ms
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Media Transfer Time

• Time for needed sectors to rotate under head
• Computing transfer time

• simple case: all sectors on one track
– sectors desired * time for revolution / sectors per track

• more complex case: spread across two or more
tracks

– add a head switch time, as needed

media
accessseek rot.

latency hs media
access

time

media transfer time

media
accessseek rot.

latencysimple case:

complex
case:
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Disk Drive Typical Characteristics

*note these are external data rates, internal are higher
(without all the ECC, sector gaps, etc.)

Numbers for
Seagate

Cheetah 15K.3
(late 2002)

• Seek times: 0.6 – 7 ms, depends on distance
• average 3 – 4 ms
• improving at 7-10% per year

• Head switch time: 0.6 ms
• Rotation speeds: 15,000 RPM

• average latency of 2 ms
• improving at 7-10% per year

• Data rates: 50-75 MB/s*, depending on zone
• avg sector xfer time of 25 us
• improving at 40+% per year
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Cheetah 15K.3
UltraStar 73LXZ
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Where Does Disk Head’s Time Go?
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Impact of Request Sizes
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Microdrive: Compact FLASH form factor
Capacity:    4 gigabytes (January 2003)
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Disk Drive Firmware Algorithms
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Outline

• Mapping LBNs to physical sectors
• zones
• defect management
• track and cylinder skew

• Bus and buffer management
• optimizing storage subsystem resources

• Advanced buffer space usage
• prefetching and caching
• read/write-on-arrival
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How functionality is implemented
• Some of it is in ASIC logic

• error detection and correction
• signal/servo processing
• motor/seek control
• cache hits (often)

• Some of it is in firmware running on control processor
• request processing
• request queueing and scheduling
• LBN-to-PBN mapping

• Key considerations: cost and performance and cost
• optimize common cases
• keep things simple and space-conscious
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Recall the storage device interface

• Linear address space of equal-sized blocks
• each identified by logical block number (LBN)

65 7 12 23 ……

• Common block size: 512 bytes
• Number of blocks: device capacity / block size
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Recall the physical disk storage reality

Cylinder

Track

Sector
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Physical sectors of a single-surface disk
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LBN-to-physical for a single-surface disk
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Extending mapping to a multi-surface disk
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Some real numbers for modern disks

• # of platters: 1-4
• 2-8 surfaces for data

• # of tracks per surface: 10s of 1000s
• same thing as # of cylinders

• # sectors per track: 500-900
• so, 250-450KB

• # of bytes per sector: usually 512
• can be chosen by OS for some disks
• disk manufactures want to make it bigger
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Clarification of Cylinder Numbering
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First Complication: Zones

• Outer tracks are longer than inner ones
• so, they can hold more data
• benefits: increased capacity and higher bandwidth

• Issues
• increased bookkeeping for LBN-to-physical

mapping
• more complex signal processing logic

– because of variable bit rate timing

• Compromise: zones
• all tracks in each zone hold same number of

sectors
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Constant number of sectors per track
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Multiple “zones”
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A real zone breakdown

• IBM Ultrastar 18ES (1998)

247114731068310
2601068298169
273981587628
286876170457
312704455276
325552645055
338450434664
351346622483
364224712642
37412633781
39037700
SPTEnd cylinderStart cylinderZone
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Second Complication: Defects

• Portions of the media can become unusable
• both before installation and during use

– former is MUCH more common than latter

• Need to set aside physical space as spares
• simplicity dictates having no holes in LBN space
• many different organizations of spare space

– e.g., sectors per track, cylinder, group of cylinders, zone

• Two schemes for using spare space to handle
defects
• remapping

– leave everything else alone and just remap the disturbed
LBNs

• slipping
– change mapping to skip over defective regions
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One spare sector per track
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Remapping from defective sector to spare
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LBN mapping slipped past defective sector
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Some Real Defect Management Schemes

• High level facts
• percentage of space: < 1%
• always slip if possible

– much more efficient for streaming data

• One real scheme: Seagate Cheetah 4LP
• 108 spare sectors every 12 cylinders

– located on the last track of the 12-cylinder group
– used only for remapped sectors grown during usage

• many spare sectors on innermost cylinders
– used to provide backstop for all slipped sectors
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Computing physical location from LBN

• First, check list of remapped LBNs
• usually identifies exact physical location of

replacement
• If no match, do the steps from before

• but, also account for slipped sectors that affect
desired LBN

• About 10 different management schemes
• For any given scheme, the computations can be

fairly straightforward.  However, it is quite complex
to discuss them all at once concretely
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When defects “grow” during operation

• First, try ECC
• it can recover from many problems

• Next, try to read the sector again
• often, failure to read the sector is transient
• cost is a full rotation added to access time

• Last resort, report failure and remap sector
• this means that the stored data has been lost
• until next write to this LBN, reads get error

response
– new data allows the location change to take effect
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Error Recovery Algorithm for READs
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Third Complication: Skew

• Switching from one track to another takes time
• sequential transfers would suffer full rotation

• Solution: skew
• offset physical location of first sector to avoid extra

rotation
– selection of skew value made from switch time statistics

• Track skew
• for when switching to next surface within a cylinder

• Cylinder skew
• for when switching from last surface of one cylinder

to first surface of next cylinder
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What happens to requests that span tracks?
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What happens to requests that span tracks?
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Sector 12 rotates past during track switch, so full rotation needed
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Same request with track skew of one sector
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Examples of Track and Cylinder Skews
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Computing Physical Location from LBN

Figure out cylno, surfaceno, and sectno
• using algorithms indicated previously

Compute total skew for first mapped physical
sector on this track
• totalskew = (cylno * cylskew) +

  (surfaceno + (cylno * (surfaces-1)) * trackskew)

Compute rotational offset on given track
• offset = (totalskew + sectno) % sectspertrack
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Basic On-disk Caching
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On-disk RAM

• RAM on disk drive controllers
• firmware
• speed matching buffer
• prefetching buffer
• cache

• Canonical disk drive buffers
• several fixed-size “segments”
• latest thing: variable-size segments
• down the road: OS style management

one $ 
segment

sector
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Prefetching and Caching

• Prefetching
• sequential prefetch essentially free until next

request arrives
– and until track boundary

• Note: physically sequential sectors are prefetched
– usefulness depends on access patterns

• Example algorithms
– prefetch until buffer is full or next request arrives
– MIN and MAX values for prefetching
– if track n-1 and n have been READ, prefetch track n+1

• Caching
• data in buffer segments retained as cache
• most of the benefit comes from prefetching
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Disk Drive – Complete System?
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Not really, recall this…

Rest of System

I/O Controller

Bus Adapter
I/O Bus

System Bus
Device Driver(s)

CompletionsRequests

Independent Disks storage subsystem
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Mark Kryder’s Slides

CTO of Seagate
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What’s next …

• Next lecture: 9/19

• Readings will be posted tomorrow


