Northeastern University

where information lives

Platform Considerations in Fixed Content Clustered Storage Systems

Jim Espy – EMC²

11/14/2006

© 2005 EMC Corporation.

1

Outline and Focus

- Overview
- Fixed Content Storage Cluster
 - Components and System Attributes

- Discussion with Comparisons to Block Storage
- Summary and Take-Away Thoughts

Overview – The Big Picture

Some Top Level Goals and Requirements

where information lives

Access to and Protection of Valued Information

- Store and retrieve information when needed anywhere and anytime
- Expectation of reliability, availability and security SLO's and SLA's

Managed Information

- Policy-based access
- ILM Tiered storage

Specific Need to Store/Archive Reference Data

- Fixed content
- Data never changes
- Requires proof of immutability

nvtech.com

Proposed Solution

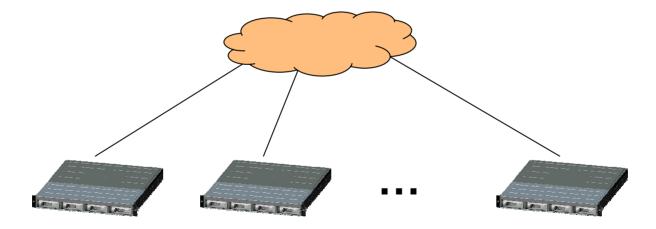
- Object Approach to Storage
 - Store data and metadata
 - Utilize hash coding to produce unique naming for stored items
 - Allows for location independence and data redundancy elimination SIS

Cluster Implementation

Primarily a software solution – Platform abstraction

ere information

- Interconnected low cost scaleout commodity storage nodes Purpose-built
- System-level approach to data reliability, availability and load balancing
- Self-healing storage without need for immediate service
- Minimized management
- Non-disruptive upgrade


Some Key Platform Measurements

Very Low Purchase and Upgrade Cost

- Very Low Ownership Cost
- Nearline Tier Performance
- Scalability to Small and Very Large Systems
- High Data Availability
- High Data Reliability
- Simplified Serviceability
- High Level of Platform Abstraction

Fixed Content Storage Cluster

Enablers: Leverage Commoditization

where information lives

- Just What are These Commodity Components?
 - Driven by high volume commercial markets Not the enterprise market

Disk Drives

- High capacity devices @ 100's GBs For just a few hundred bucks
- Gamers, DVR, iPods, cell phones
- Flashrom gaining Also due to iPods and cell phones

Processors and I/O Devices

PC and low-end server-class boxes – Linux and Windows

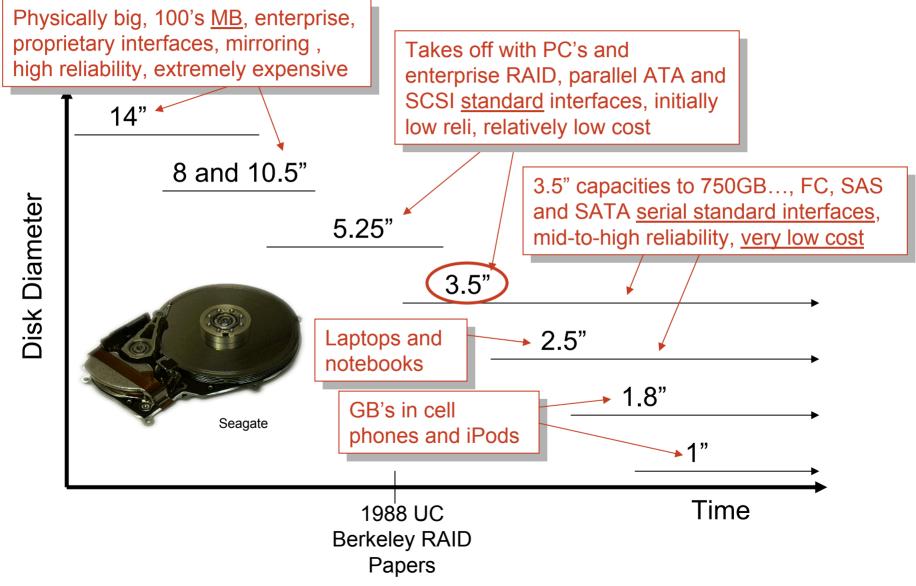
Networking

- Ethernet ports (wired and wireless) nearly as ubiquitous as AC wall outlets
- Low cost switches and routers

Can Literally Buy This Stuff Anywhere

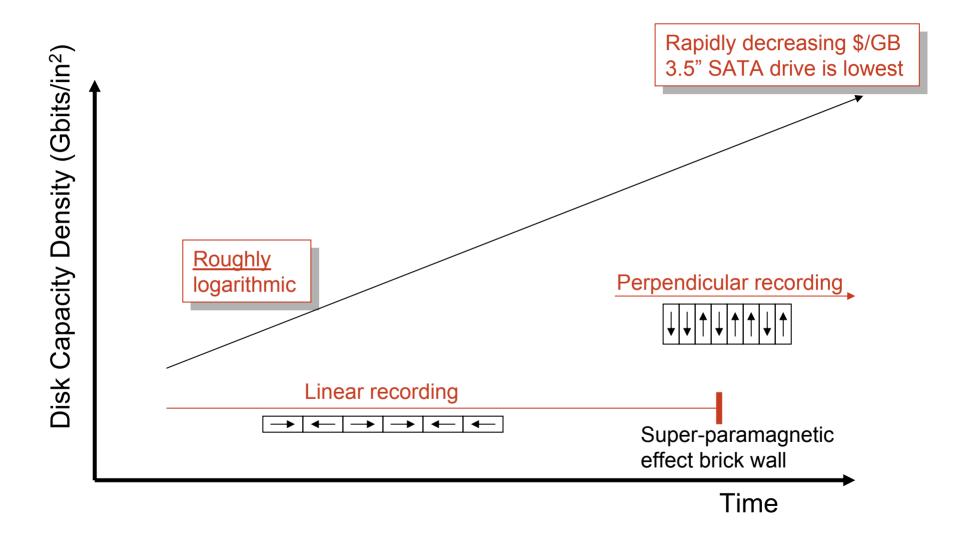
But what Best Buy sells isn't exactly enterprise class

Enablers: Leverage Connectivity

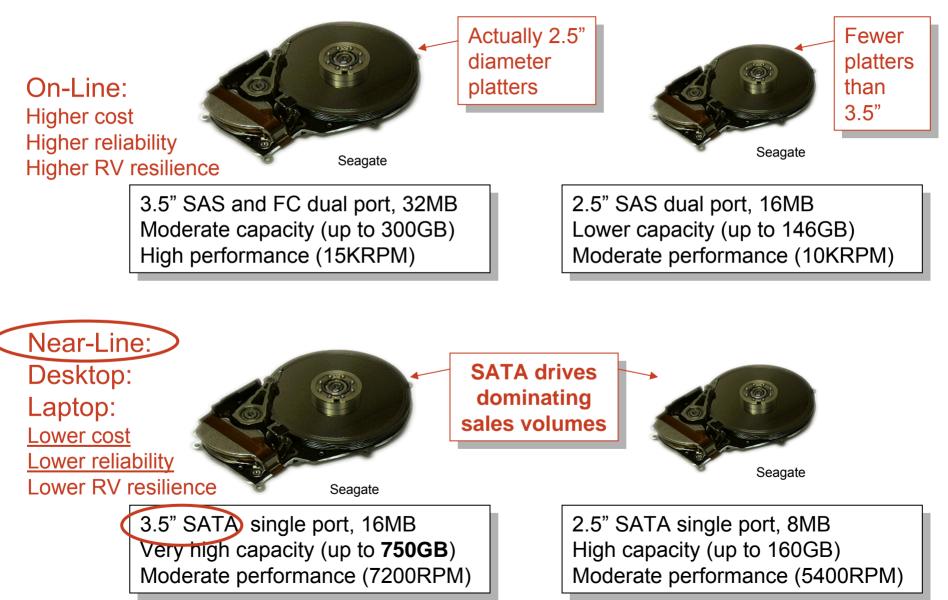

- Connection Standardization a Key Enabler
 - Once all these commodity devices could interconnect, every took off
 - Standards and serialization
 - Sub-system chip interconnect to networked storage

where information lives

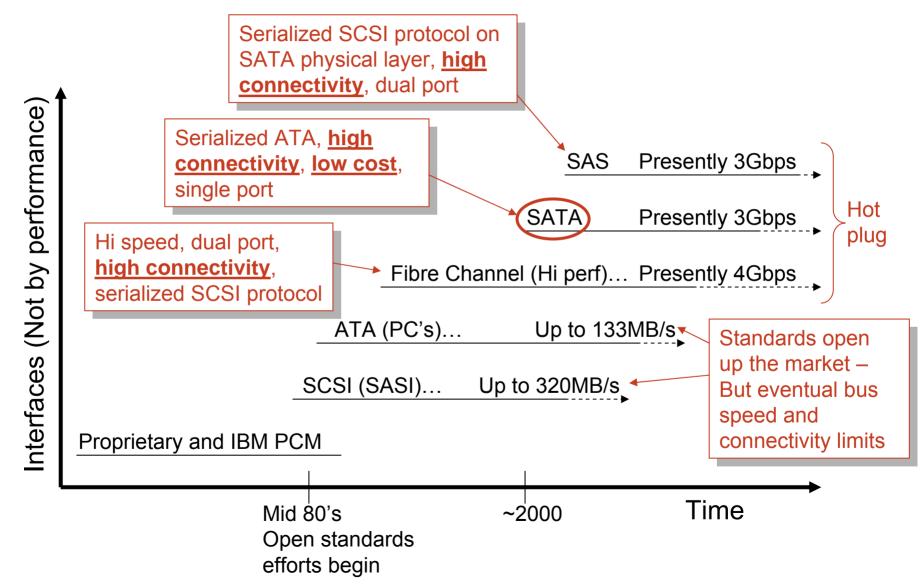
Scalability



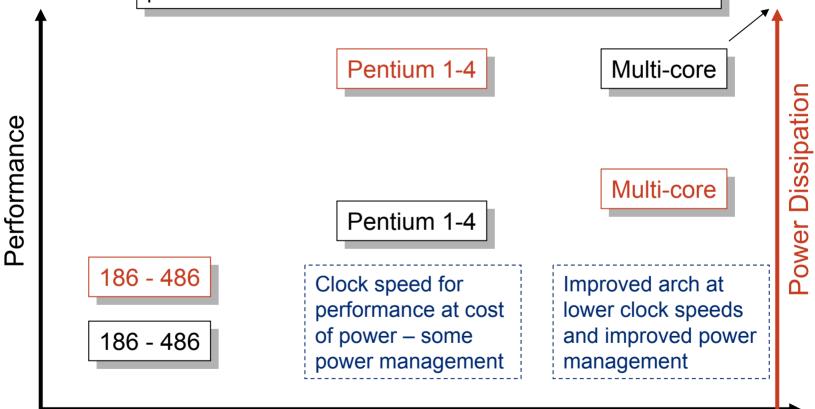
Drive Diameters → High Volume & Low Cost



Disk Drive Capacities and Recording Technology


EMC² where information lives

Disk Drive Parameters – Changing with Time


Disk Drive Interfaces – Towards Standards

Processor Trends - Intel

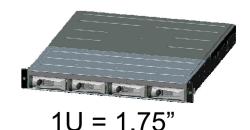
Could also utilize AMD and PwrPC with claims of equal performance at lower power. But who has more commodity platforms and is as entrenched with Linux?

More Processor Trends

Linux

- Increasing use in server markets
- SMP, drive hot plug, etc. support

Support Chip Architectures and Serialized I/O


Faster FSB and memory speeds – ECC support

here information

- Integrated drive interfaces ATA initially, now SATA
- Move from parallel PCI-X to 2.5Gbps PCI-express Going to 5Gbps
- Also HyperTransport

Numerous PC and Server Class Modules

- Rackmount form factors Also commoditized
- Various cost/performance levels
- Most with multiple drive slots SAS and SATA

Storage Connectivity Trends

- Moved From Parallel Busses to Serial Connect
- SCSI/Fibre Channel Enables Connectivity & Scaling
 - Creation of Storage Area Networks SAN's using specialized FC switches
 - − 1Gbps \rightarrow 2Gbps \rightarrow 4Gbps \rightarrow Expecting 8-10Gbps
 - But it's considered relatively expensive
- Possible Lower Cost SCSI, TCP/IP and Ethernet
 - iSCSI SAN's using low cost commodity Ethernet switches
 - 1Gbps → 10Gbps → ??
 - Stack has a lot of overhead Requires costly off-load engines
- Infiniband Also Vying for Attention
 - Originally hoped to take over Now "mostly" an HPC cluster connect

But Cluster Interconnect Could Just be TCP/IP

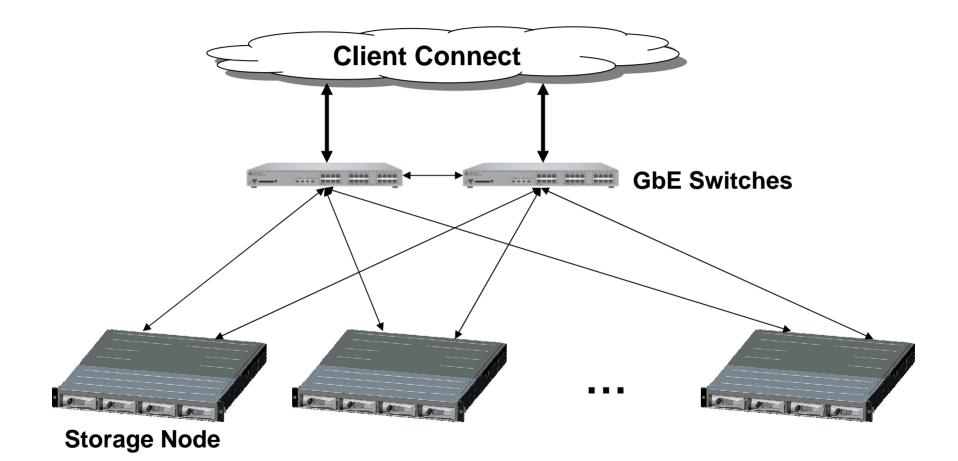
Lowest cost of all with lots of routing and aggregation features

So...

Why Not Just Network Some Storage PC's Together?

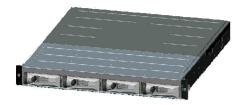
Well, that's essentially what Google and others did

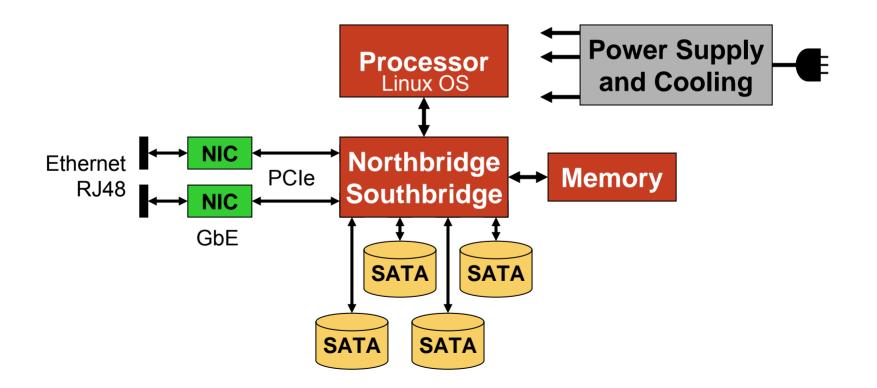
where information lives


- Low cost and simple
- What could go wrong?
- …Because It's About System Design
 - How to best take advantage of what is essentially a software architecture?

Some Myths:

- Disk \$/GB is so low that storage is essentially free
- Processors (PC's) are so inexpensive that processing is essentially free
- Networks are so ubiquitous that connectivity is essentially free




Scaleout Cluster Storage Interconnect - GbE

Commodity-Based Cluster Storage Node

Commodity-Based Storage Node

Well Known Configurations

- Basically a simple non-HA DAS device
- 500GB drives and growing Front accessible and cooler air
- Fairly powerful processors Around 1GB memory

where information lives

Standardized abstraction mechanisms – IPMI

But You Get What You Pay For

- Low cost SATA drives vs. FC or SAS drives
- Lower reliability, more sensitive, smaller queues and cache
- Drives originally intended for low duty cycle operation
- Half duplex and slimmer feature set

Resource Utilization

- Take advantage of what is paid for
- Everyone always want more bloody memory!!

Commodity-Based Network Interconnect

where information lives

Keep it Simple

- Well known tree structures
- Let software handle the load balancing

Let the Network do the Heavy Lifting

- Existing standard protocols OSPF, LACP, …
- Ethernet networks designed to handle certain failure situations

• What About Security?

– ACL's, NAC, VLAN's, IPv6, ...

System SW-Level Availability

- No Single-Point-of-Failure (SPoF) So-Called
 - Node, drive, switch or link failure will not result in data unavailability or loss
 - Only explicit cluster HW redundancy involves GbE interconnect
 - <u>Node has no intrinsic HA features</u> Except dual NIC's
 - Node failure in a large cluster has low impact on performance

Expect Failures

Effective detection and isolation

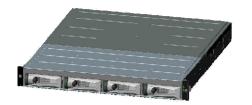
Contrast with Block-Based Dual-SP RAID Arrays

System SW-Level Data Reliability

where information lives

RAIN: Redundant Array of Independent Nodes

- − N of M protection where $M N \ge 1$
- Object to be stored broken into M fragments
- Redundancy Fragments Distributed Across M Nodes One per node
- Any N recovered fragments can reconstruct original object
- Rebuild is across all nodes utilizing node parallelism for performance
- Only actual stored fragments need to be rebuilt
- <u>Sparing is across entire system</u> No dedicated devices but limited
- Re-build time vs. "exposure" period


Also

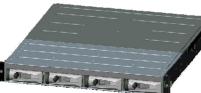
- Node busses support parity or ECC Note that PC memory is not ECC
- Node serial connections support CRC
- Hash addressing provides an end-to-end check

Contrast with Block-Based RAID Arrays

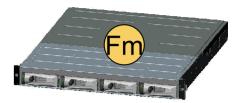
Node Failure

· Lo

4



.



...

- •
- •

JWE 11/14/2006 © 2006 EMC Corporation.

Scaling – Performance and Capacity

where information lives

Scale to PetaBytes

- Continue to add nodes Also enhances performance
- Issue becomes one of interconnect BW scaling
- Needs to be non-disruptive

Also Need to Scale Down

- Not everyone needs bulk storage
- Impact on RAIN

Impact of Increasing Capacity/Spindle

> Again, Contrast with Block-Based RAID Arrays

Management and Service

Lowering the TCO

- Fewer staff per TB of storage
- Lower cost service contracts

Self-Healing Enables Scheduled Service

where information lives

- So-called periodic grooming Scheduled service
- Enabled by non-dedicated sparing
- Scheduled service calls cost a lot less than immediate, unplanned ones

Customer Serviceable?

- Low number of actual serviceable units
- Throw-away devices?
- Let faulty devices die on the vine?

Mechanical Issue - Racking

Another TCO Issue – Limited Floor Space

- Maximize storage density
- Stacking in a Rack is Not That Easy
 - SATA drives are more sensitive than FC or SAS drives
 - Sensitive to heat and vibration Decreasing reliability
 - A big item is Rotational Vibration (RV)
 - Measured in radians/sec²
 - Stack nodes up and they transmit vibration to each other
 - Possible R/W errors
 - Weight is also a problem Raised floor limits

Why All the Fuss About Power and Cooling?

where information lives

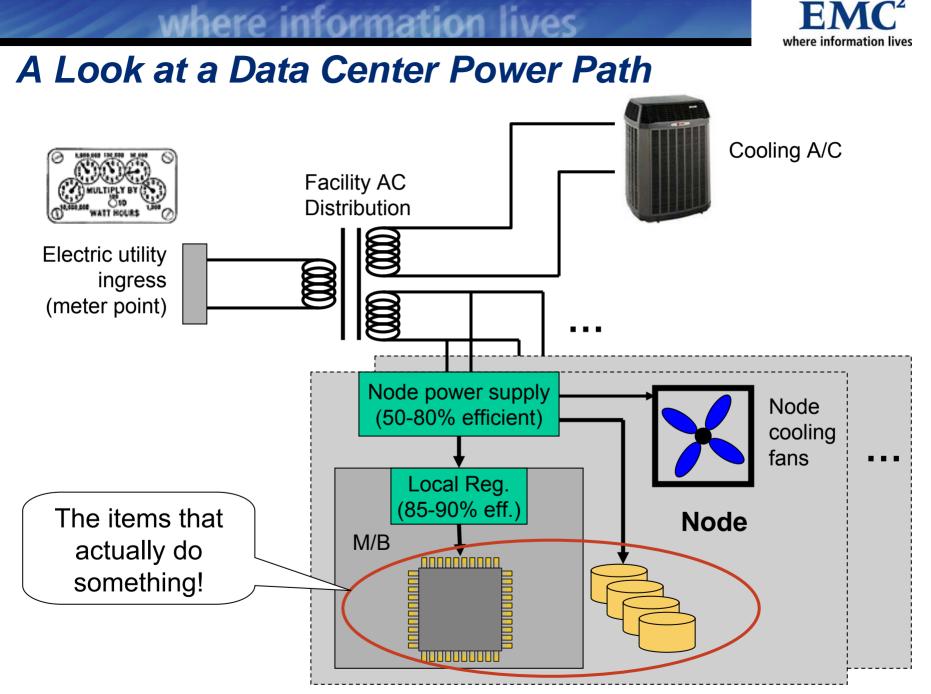
- It's Another Big TCO Problem
 - Good news Fantastic progress in compute and storage densities
 - Bad news Power densities also increased
 - IT data centers electric bills too high
 - Cooling capacities running up against physical limits

Made Up Example – Modest ½ Rack Cluster

- Cost: \$75000 Depreciates over time
- Power rating: 5000W @ 24/7/365 usage
- Typical commercial utility rate: \$0.14/KWhr (and going up)
- → 43800KWhrs per year
- → \$6132 electric bill per year
- But wait...there is ~ 1.5KW data center cooling and overhead per KW used
- → 109500KWhrs per year
- − \rightarrow \$15330 electric bill per year \leftarrow A decent %/yr of original purchase \$

An Issue of Load and Conversion Efficiency

- Need to Look at the Entire System
 - It's all about the electric bill and A/C needs/capacity


where information lives

- Contemporary Server Technology
 - Most devices built for speed, not power savings
 - Unless they were laptop oriented Solutions expensive
 - Power supplies came from the lowest bidder Not the most efficient
 - Motherboard standards not optimized for power conversion

Drives Don't Help

- Market push for higher performance Drive spindle speeds going up
- A large multiplier

Data Centers Have Their Own Issues

What Can be Done?

- Lower the Load
 - Drives and processors

Improve Conversion Efficiencies

where information lives

- Spend a bit more and re-architect
- ATX standard updates Google proposal

Improve Distribution

DC proposed – Expensive for existing facilities to convert

Congress Actually Getting Involved

Proposing Energy Star* Ratings

What About MAID?

Massive Array of Inexpensive Disks

where information lives

- Potential for very large power savings
- But only if one has a rather large number of drives to begin with

Controlled Power Shutdown

- Drives and/or processing Predicated on acceptable latencies
- Wake up still faster than tape latencies <10 seconds

Requires Careful Management

- Reliable re-start of large number of drives Scary
- Cannot leave drives off for long time periods without checking

Existing Low-Level Mechanisms

- Standard drive spin-down commands
- JWE 11/14/2006 Intelligent Platform Management Interface IPMI

Summary Thoughts

Key Items

HW Platforms Built From Commodity Devices

- But That Doesn't Preclude Careful System Design
- System-Level Approach to Data Availability
- System-Level Approach to Data Reliability
- New Approaches to Management and Service
- Power Has Become Non-Trivial

EMC² where information lives