CSG389 CCS, Northeastern University 23 February 2005
Spring 2005 Exam 1 Solutions

Rev. 03

Name:

Instructions

There are four (4) questions on the exam spread across 8 pages. You may find questions that could
have several answers and require an explanation or a justification. As we’ve said, many answers in
storage systems are “It depends!”. In these cases, we are more interested in your justification. So
make sure you're clear. Good luck!

If you have several calculations leading to a single answer, please place a | box around your answer |

Problem 1 — Scheduling Algorithms. [30 points]

(a) Given the system setup you used in Project 1 (i.e, a single host issuing random 4KB requests
to a single Quantum Atlas 10k disk) and a high frequency of arrivals (e.g., 300 I/Os per
second), why do the CLOOK and SSTF scheduling algorithms perform very similarly?

Both algorithms attempt to schedule requests that will incur the shortest seek distance. CLOOK
chooses a request that is closest in the seek distance to the current head position and is located
in the “sweeping direction” of the disk heads. SSTF does the same without the restriction on
the sweeping direction of the disk heads. With small inter-arrival times and random requests
the conceptual difference of the sweeping direction is negligible.

(b) Given the existing storage interface between hosts and storage systems based on the SCSI com-
mon architecture model (CAM), can a host operating system implement Shortest-seek Time
First (SSTF) scheduling algorithm inside its device driver (i.e., outside the disk firmware)?
Justify your answer.

Yes. A device driver can approximate the seek distance by the distance of requests in the LBN
space.

Alternative answer: We also accepted No, if properly justified that the device driver does
not know the exact geometry or the mappings of logical blocks to physical locations.

(¢) Why does the Shortest Positioning Time First (SPTF) scheduling algorithm typically out-
perform the other scheduling algorithms we discussed (for example SSTF and CLOOK)?

SPTF schedules requests that will incur the shortest positioning time as a sum of seek distance
and rotational latency. SSTF or CLOOK are insensitive to the rotational latency and can
schedule requests that have short seek distance but incur large rotational latencies.

(d)

Give two reasons why it is infeasible (if not impossible) to implement the Shortest Positioning
Time First (SPTF) scheduling algorithm outside disk firmware, given the existing storage
interfaces.

Reason 1: The device driver would have to know detailed mappings of logical blocks to physical
locations as well as the seek profiles for all disks it would operate with.

Reason 2: The command overheads caused by the interconnect hardware and protocol can
introduce enough error to diminish the effectiveness of the rotationally sensitive scheduling.

Why do modern disk drives implement Age-sensitive-SPTF (A-SPTF) in their firmware in-
stead of the traditional SPTF you experimented with in Project 17

Age sensitive scheduling prevents starvation (large response times). Requests that have been
queued for longer periods of time are given preference over other requests even if they they
incur longer positioning times compared to the majority of the other requests.

One priority-based scheduling scheme uses two queues and assigns priority based on request
criticality: one queue is for synchronous requests and the other one for asynchronous ones.
For each category (synchronous and asynchronous) give two examples of operating system
I/O activities that fall into each category.

Synchronous Asynchronous
Example 1:
reading a block of a newly opened | prefetching blocks of a large file
existing file when sequential access is detected
Example 2:

FS metadata block writes for files | flushing dirty pages/blocks from
opened with 0_SYNC flag or after | FS cache to the disk with
an fsync() call bdflush() thread

Problem 2 — Storage Interconnects. [20 points]

(a)

The new Serial ATA (S-ATA) standard defined a new link layer to replace the shared bus
design of the Parallel-ATA. The S-ATA link layer uses point-to-point serial links between a
controller and a single device. Recall from the lecture, that in the “Master-Slave” Parallel-
ATA architecture, two storage devices (e.g., disks) are connected to an IDE/ATA controller
and hold the parallel bus during the entire execution of a command (i.e., they do not “dis-
connect” from the bus unlike SCSI devices). List at least three reasons why the S-ATA is
“better”.

Reason 1: With point-to-point links, devices do not compete for a shared link, which can cause
delays when one device wants to communicate while the other device is holding a bus.

Reason 2: Serial links allow transmission over longer distances; cross-talk between individual
data signals is eliminated.

Reason 3: Serial-ATA protocol offers greater transmission speeds than Parallel ATA.

Assume an operating system that is running multiple applications sharing the same storage
device. Give two reasons how Direct Memory Access (DMA) coupled with operating system’s
support for scatter/gather (iovec[]-based) I/O can be beneficial.

Reason 1: Smaller command processing overhead: an OS can issue a single I/0O operation
for data for two (or more) unrelated items when such items e.g., FS blocks are mapped to
consecutive logical block numbers.

Reason 2: Offloading CPU: with properly set vector, a single I/O can deliver/fetch data
to/from non-contiguous memory locations. This is for example useful when coalescing multiple
blocks on different memory pages into a single 1/0 for journal-write in journaling file systems.

()

Fibre-channel (FC) uses 8b/10b encoding to create 10-bit symbols from 8-bit characters. List
two benefits of the 8b/10b encoding.

Benefit 1: It allows detection of errors such as bit flips.

Benefit 2: It allows for extra control characters that are not part of the original 256-character
alphabet (e.g., ASCII). A third benefit is that one chooses a 10-bit encoding of symbols, such
that no symbol has a long run of zeros or a long run of ones. Hence, self-clocking on a serial
bus is easier to implement.

Give two reasons why the iSCSI target discovery mechanisms must be much more complicated
than in the case of a target discovery in parallel SCSI architecture.

Reason 1: The number of possible devices that can be discovered is not bound by the precisely
defined number of “slots” on the parallel bus.

Reason 2: The addresses of the devices may not be known apriori.

Bonus: Reason 3: An internet network is generally less reliable: packet drop, congestion, or
network partitioning can occur at any time.

Problem 3 — File system basics. [15 points]

Assume a disk with two partitions, each containing a separate file system. The root file system
is an FFS and contains all system binaries and libraries as well as a directory for temporary files,
/tmp. The XF'S file system contains all of the user data.

During the boot sequence, first the root file system is mounted and then the XFS file system is
mounted underneath the /home directory.

[...]
mount -t ffs / /dev/partitionl
mount -t xfs /home /dev/partition2

[...]

The structure of the resulting file system looks as follows:

/
+-- bin
I
I
+-- 1ib
I
I
+-- tmp
I
+-- home

|
+--joe
|

+--jim

Answer the following file system questions. In explaining your answer, assume a basic FFS
implementation and think about the i-node operations performed.

(a) Can you create a symbolic link in your root file system, /tmp/joes-home, to a directory,
/home/ joe, in the mounted XFS file system with home directories? Explain your answer.

1n -s /home/joe/ /tmp/joes-home

Yes. Symbolic link is a special file whose content is the path to the object (i.e., directory or
file) the link is referring to. Therefore, the symbolic link can refer to an object in a different
file system because the path is traversed element by element.

(b)

Now, assume the same setup as before in part (a). Can you create a hard link in the root file
system’s /tmp directory to another directory, /home/jim, in the file system? Explain your
answer.

No. A hard link has its own i-node that references the i-node of the original file the hardlink is
referring to. Since i-nodes and reference counts are specific to each file system implementation,
it is not possible to have hard links cross file system boundaries.

Does the Virtual File System (VFS) layer have to understand the structure of “i-nodes” for
all file systems it supports? Justify your answer.

No. A VFS’s virtual node, v-node, just includes a pointer to the i-node of the file in the
respective file system. Once dereferenced, the i-node is accessed by filesystem-specific functions
and hence VFS need not understand the structure of the i-nodes of every file system.

The first DOS filesystem supported only filenames with “8+3” filenames (NAME.TYP, where
NAME is at most 8 characters, and TYP is at most 3 characters). Furthermore, all filenames
were uppercase. If that DOS filesystem is mounted at /dos, what would you expect to see
when you type:

cp /home/joe/index.html /dos/index.html
1ls /dos

INDEX.HTM or index.html. With proper justification, we accepted both answers. Which is
returned depends on whether it is the VFES or the DOS-filesystem that returns the name.

FFS uses blocks and clusters (fixed size extents). Fixed size and variable size extents have
each their advantages and disadvantages. What is an advantage of fixed size extents over
variable size extents?

There are many possible answers. One of them is that fired-size extents allow very compact
structures, i.e., bitmaps, for keeping track of which extents are allocated and which ones are
not. Since the size of each extent is the same, simply checking the bitmap will reveal how much
space is allocated. With variable extent-size, on the other hand, more complicated structures
(e.g, B+tree with extents sorted by size as is the case in XFS), are needed to determine which
extent(s) can be used to allocate a file.

Problem 4 — Building Filesystems with Consistent Metadata. [35 points]

Ron Hacker wants to build a “best-of-breed” file system that combines various features of the
different systems we studied in the class. He models his system after the XFS (i.e., extent-based
allocation, B+ trees, journaling, etc.) and wants to build his improvements on top it. His initial
prototype uses a fixed-size journal of 32 MB located at the beginning of his filesystem.

However, he is not quite sure how to ensure that he can make heads or tails of the various
metadata-integrity-ensuring techniques so he hires you as a consultant.

(a)

His first improvement is to cache all of the data and metadata of a newly created file and
flush them both to the disk only when the file is closed. He claims that with metadata-only
journaling mode and large (volatile) memory used as a cache, he can ensure data integrity
and good performance for creating and writing many large files. Is he correct? Justify your
answer.

Yes. Using metadata-only journaling mode and writing data in place only when the file is
closed allows for a newly created file to be written out sequentially and yields good throughput
since data are written only once and metadata are written to nearby locations in the journal.
It can also potentially eliminate extraneous writes when a file is updated frequently. However,
it could also be argued that data integrity was not maintained, since the newly created file was
not written out until the close. If the system crashes before the close, the data is lost. This
answer was also accepted.

Outline the steps that his filesystem must do to ensure integrity after an application’s invo-
cation of the close() system call.

It must (i) allocate blocks (extents) for the data (update allocation structures), (ii) create a
new i-node and update an i-node block, (iii) insert a new entry into the directory entries
B+tree, (iv) possibly update the i-node of the directory with new access/modification date.
Recall that the data blocks are already in memory. So allocating blocks means assigning the
mn-memory blocks to extents that are free. Note also taht the ordering of the operations is
dictated by “soft updates”.

What is the minimal number of I/O requests that the operating system must issue in order
to create and write a single large file using Ron Hacker’s new filesystem? Justify your answer.
Assume that the log has been just checkpointed and that he can allocate the entire file into
a single extent.

Two. Assuming a file fits into a single extent, then one 1/0 is for writing out the data to the
disk and the other 1/0 is for all operations to the journal. Note that writing the operations
(i), (i), (iii) and (iv) together with the commit record can be coalesced into a single I/0
operation.

He is paranoid about data consistency, so he decides to use data journaling in addition to
metadata journaling. However, to his dismay, he observes that his large-file (10MB+) write
performance suffers. Explain to him what is going on.

With data journaling mode, the data is being written twice to the disk - once into the journal
and second time in place onto the disk when the journal is checkpointed. Thus, he would
observe performance that is approzimately half of what he observed for large file writes in his
original design.

After he understands what’s going on, he is content to take the performance hit and to stick
with both data and metadata journaling; he wants to make his filesystem a commercial success
and thus wants to ensure that data is not lost. So he comes back with a different idea.

He wants to implement a mixed strategy whereby he uses soft updates for writing large files
and journaling mode (for both data and metadata) when writing small files. Explain to him
why this strategy is not going to work. (Recall that soft updates consist of global ordering
while journaling mode uses write-ahead logging.)

There are several reasons. Since soft-updates modifies meta-data in place (in disk blocks
outside the journal), while journaling mode writes updates first into the journal before check-
pointing them in place. Now suppose one is writing a large file. Without any additional
structures, it is impossible to do recovery since soft-updates could update data in-place by
writing blocks outside the journal. This renders the in-journal copy invalid.

Since he is not really happy what he hears from you, he takes another approach for his
startup and settles for much less. He wants to device a new way to improve the performance
of ext2 (which is based on the Berkeley Fast File System). He wants to add a ticket number
(also called a sequence number or nonce) to every metadata block written, and increment the
ticket number by one when each successive block is written. He claims that this will speed
up his recovery (fsck) after a crash because he will know exactly when his metadata updates
failed and thus just repair those instead of having to crawl through every directory and file’s
metadata. Is he correct?

No. Since a single metadata update operation typically touches multiple structures, it will be
impossible to determine the state after a crash if, for example, two update operations that do
not have dependencies were executing concurrently when the crash occurred.

In his desperate attempt to have some viable product, he wants to ditch his XFS prototype
as well as his plans to improve ext2 and use LFS instead to penetrate into a new application
domain. His new application generates a read-mostly workload that uses lots of large files
that grow only slowly over time. What performance problems would you expect to observe?
Then suggest your own patch to LFS to fix this problem.

Over time, the blocks of a single file will be spread across many segments. Reading a whole
file will then result in random accesses with poor performance. The patch should ensure that
blocks of the same file are in the same segment. One possibility to ensure this is to keep
multiple segments in memory, instead of just one, and have each segment collect data from
one files.

