NLP Class notes – Feb 1, 2006 (slightly revised after class)

Remember class meets next week from 3-6 p.m.

I. HMM based tagging

A. Optimal Search and the Dynamic Programming Principle

Branch and Bound search: finds the optimal path. Principle: given a queue of paths (without loops), always extend the shortest (or “best”) path; add new paths and re-sort the queue; until the shortest path reaches the goal.

Dynamic Programming Principle:

The best way through a particular intermediate place is the best way TO it from the starting place, followed by the best way FROM it to the goal. So ignore all paths

From S to G through an intermediate node I other than the minimum-length path from S to I. This gets the same result more efficiently!

Given a queue of paths, always extend the shortest (or “best”) path.; add new paths, resort the queue, and remove non-optimal duplicates; until the shortest path reaches the goal.

B. Hidden Markov Models for POS tagging

Each state in the graph is a POS tag

We have model parameters giving the state transition probabilities: aij

Since this graph is fully connected (except <s>), we express it as a transition matrix. Using the matrix we can calculate the probability of any tag sequence by multiplying the transition probabilities. This is called a Markov Model, or a Markov Chain.

P(t1n) ~ Π P(tk | tk-1) = Π ak-1,k
There are 2 assumptions underlying this approximation:

· Limited Horizon

· Time Invariant

If the states were words instead of POS tags (e.g., in a limited vocabulary domain), or if people spoke in POS tags, then given alternatives for an input sequence, we can decide which one is most probable.

argmax Π P(tk | tk-1)

 t1n
But if the observations do not match the states we are trying to detect, we have a HIDDEN MARKOV MODEL. This model has another set of parameters: bik representing P(wk | ti)

Making two more assumptions (obviously not really true):
· Words are independent of each other (only the tags have contextual dependency)
· Words depend only on their tags
We get the most probable tag sequence for any word sequence w1n:

t1n ~ argmax Π P(wk | tk) P(tk | tk-1)

 t1n
To evaluate this in a naive way would make tagging exponential in the length of the input which is to be tagged. (Number of possible tag sequences ~ Tn where T is the average number of potential tags per word in a sentence of length n.)

The Viterbi algorithm applies dynamic programming to this problem and greatly reduces the search space. The dynamic programming principle says: the best tag sequence that includes an assignment with tagi at position k is the best sequence TO tagi at position k, followed by the best sequence FROM tagi at position k to the end. So ignore all paths from <s> to tagi at position k except the most probable one.

We use a table (called a lattice) to calculate tag sequence probabilities using this algorithm. Columns = word positions, rows = possible tags.

The table is filled from left to right: δ1(start) = 1.0, δ1(tag) = 0.0 for tag ≠ start

[image: image1.png]vt to e #

Figure .17 Th ot the dbedua s e (ot e Ve i,
o ol Kseps e robailaty of e best ot s frand poer o he rsvous

ht . e have oy il ot coumns a1 e el of clurn

ol slon
e cllsars led o, hckicing

3;he et e s an e or e,
o s, we o he bl L resonsimct e ot st sauancs PPSS.

VRO VE.

For each cell j in column i + 1: δi+1(tj) represents max Prob of getting to that cell,

Ψ is a back pointer to the cell in the previous column that yields this max Prob.

When the last column is reached, δ gives the P(best tag sequence) and following the Ψ pointers backwards retrieves that sequence.

 δi+1(tj) = max (δi (t) * P(tj | tk) * P(wi+1 | tj))

tk εT

ψi+1(tj) = argmax (δi (t) * P(tj | tk) * P(wi+1 | tj))

tk εT

Consider the sentence: Fish like to swim fast.

Fish = NN, NNS, VB, VBP

Like = NN, VB, VBP, IN

To = TO

Swim = NN, VB, VBP

Fast = RB, JJ, NN, VB, VBP

Number of paths for naïve algorithm? 240

For Viterbi, maximum number of active paths at any step: 16

Illustration of the Viterbi algorithm in action.

	9
	JJ

	
	δ91 = 0.0 because P(fish | JJ) = 0.0

	
	

	8
	RB

	
	Same as JJ
	
	

	7
	IN

	
	Same as JJ
	δ72 = δ31 * P(IN | NNS) P(like | IN)

ψ = 3
	

	6
	VBP

	
	δ61 = 1.0 * P(VBP | <s>) * P(fish | VBP)

ψ = 1
	δ62 = δ31 * P(VB | NNS) P(like | VB)

ψ = 3
	

	5
	VB

	
	δ51=1.0* P(VB | <s>) * P(fish|VB)

ψ = 1
	δ52 = δ21 * P(VB | NN) P(like | VB)

ψ = 2
	

	4
	TO

	
	Same as JJ
	
	δ43 = δ62 *

P(TO | VBP) *

P(to | TO)

ψ = 6

	3
	NNS

	
	δ31=1.0 * P(NNS | <s>) * P(fish | NNS)

ψ = 1
	
	

	2
	NN

	
	δ21 = 1.0 * P(NN | <s>) * P(fish | NN)

ψ = 1
	A very low value will be here compared to other values in this column, because P(like | NN) is low.
	

	1
	<s>

	δ = 1.0
	
	
	

	
	
	strt
	fish
	like
	to

Step 1. Only one input to each cell. Active paths = 4

Step 2. 4 inputs to each of 4 cells. Active paths = 16

Assume: δ31 * P(VBP | NNS) P(like | VBP) > any of:

δ21 * P(VBP | NN) P(like | VBP)

δ51 * P(VBP | VBP) P(like | VBP)

δ61 * P(VBP | VB) P(like | VBP)

Assume: δ31 * P(IN | NNS) P(like | IN) > any of:

δ21 * P(IN | NN) P(like | IN)

δ51 * P(IN | VBP) P(like | IN)

δ61 * P(IN | VB) P(like | IN)

Assume: δ21 * P(VB | NN) P(like | VB) > any of:

δ31 * P(VB | NNS) P(like | VB)

δ51 * P(VB | VBP) P(like | VB)

δ61 * P(VB | VB) P(like | VB)

Step 3: 4 inputs to just 1 cell (TO). Active paths = 4

Assume: δ62 * P(TO | VBP) P(to | TO) > the three other choices.

Note that P(to | TO) = 1.0.

Step 4: one input to each of 3 cells. Active paths = 3.

II. Discussion of NL grammar using CFG as a model

A. What is a Context Free Grammar: (Vn, Vt, S, R)

Vn – set of non-terminal symbols

Vt – set of terminal symbols

S – member of Vn (the “start symbol”)

R – set of Rules of the form Vn (α

where α is a non-empty sequence of symbols from (Vn U Vt)

A CFG G defines a language L(G) over the vocabulary Vt, which we will consider the words of the language. A sequence of words w1n ε L(G) if there is a derivation of w1n, beginning with a “current string” c = S, and in each step transforming c by replacing the LHS of a rule of R by its RHS.

Example of a CFG for a baby NL subset:

Vn = S, N, V

Vt = snakes, bite

R = S (N V

 N (snakes

 V (bite

Derivation of the sentence “snakes bite”:

S

N V

snakes V

snakes bite

A derivation not only proves that a sequence is in L(G), but it assigns a structure to it (called “constituent structure”). This can be represented in a phrase structure tree:

S (
N (snakes

V (bite

Or the same phrase structure can be represented in a more software-friendly (but human-unfriendly) manner using bracketing:

[S [N snakes] [V bite]]

Programming languages/compilers are based on CFG’s and CF parsers. In the NLP field, many CFGs for natural language have been attempted, running into many thousands of rules. Many challenges exist in this effort:

· Attachment ambiguity

· Agreement

· Overgeneration

· Long distance dependency

We will be considering the first three of these today.

Ch. 9 introduces a CF grammar of a fragment of English.

We will briefly review these structures and some problems that arise. The examples in the text are from ATIS – Air Traffic Information System, a NL interface to an intelligent agent helping people with airline reservations. Why ATIS? Because the domain lends itself to the kind of simple sentence structure that is well modeled by “toy” English CF grammars:

“I want a flight from Boston to San Francisco on Feb. 10 in the morning”

But are not completely trivial:

“Tell me how I can get from the airport in Philadelphia to downtown”

We will consider the grammar for declarative sentences, defined by the rule:

S (NP VP , and use Harry Potter as a source of examples.

Three other forms (imperative, Y/N question, WH question) are described in your text – you should make sure you understand those.

So we need rules for NP and rules for VP. One important modification to the basic CFG model: in NLP, Vt = {set of words U set of lexical category (POS) symbols – such as DT, NN, VB}. We use a different process to attach words to the POS symbols – at the end if using the grammar generatively, and at the beginning if using the grammar for parsing.

First pass on the NP:

NP (Pronoun

NP (Proper-Noun

NP (Determiner Nominal

Nominal (Noun

Nominal (Noun Noun

First pass on the VP:

VP (Verb

VP (Verb NP

VP (Verb PP

VP (Verb NP PP

PP (Preposition NP

Examples:
Harry received a warning

He looked at the grandfather clock

Hermione left the hospital wing in February

 NP pre-modifiers (things before the head noun):

1. Mass nouns don’t require determiners

2. Post-determiners include cardinal numbers, ordinal numbers, and quantifiers, and adjectives (in that order).

3. Both adjectives and determiners can be an entire phrase (DTP and AP).

Let () mean an optional constituent:

NP ((DTP) (Card) (Ord) (Quant) (AP) Nominal

Each optional constituent is shorthand for two rules, one without the constituent. So the rule above is shorthand for 32 rules in a CFG.

DTP (Determiner

DTP (Pre-determiner Determiner

DTP (Possessive-Pronoun

DTP (NP ‘s

AP (Adjective

AP (Adverb Adjective

Examples:
They took their usual places in Lockhart’s classroom.

He saw three very large owls flutter across the sky

Every statue’s shadow looked like Filch.

 NP post modifiers

1. PP can follow the head noun

2. Relative clause

3. non-finite VP (begins with VBG, VBN, or “to VB”)

Nominal (Nominal PP (PP) (PP)

Nominal (Nominal RelClause

RelClause ((who | that) finite-VP

Examples:
The delicious smell of baking pumpkin wafting through the corridors

woke them.

Hagrid asked the man who sat behind the counter for a supply of some

basic potion ingredients for Harry.

Illustration of attachment ambiguity

Motivation for features: write rules non-finite VP

Coordination (often a source of great syntactic ambiguity):

S (S (and | or) S

VP (VP (and | or) VP

NP (NP (and | or) NP

PP (PP (and | or) PP

AP (AP (and | or) AP

Example: Ron and Hermione dropped their trowels and hurried to the edge of the forest.

Agreement: a challenge for CFG

Subject-verb agreement:
Harry knows the answer

* Many students knows the answer

Determiner-noun agreement:
Harry received chocolate frogs for Christmas.

* Harry received chocolate frog for Christmas.

This robe belonged to your father.

* This robes belonged to your father

That wand can turn blood into water

* That wand can turn hand into foot

Duplicate all S rules for NP3SG and VP3SG / NPN3SG and VPN3SG ???

Duplicate all NP rules for NPSG, NPPL, and NPMass?

More on VP’s: auxiliary verbs and tenses

VP (VFIN //replace Verb with VFIN – finite verb group

VP (VFIN NP

VP (VFIN PP

VP (VFIN NP PP

VFIN (VBP

// present tense

VFIN (VBD

// past tense

VFIN (DO not VB

// present or past with negation

VFIN (HAVE ((not | never)) VBN
// perfect tense (present or past)

VFIN (BE ((not | never)) VGB
// progressive tense (present or past)

VFIN (BE ((not | never)) VBN

// passive tense (present or past)

VFIN (Modal ((not | never)) VB

// modal

More on VP’s: complements

Constructs that can follow the main verb group:

NP, PP, a non-finite VP (begins with VBG, VBN, VB to-VB), (that) S

Different verbs accept (subcategorize for) different combinations (patterns) of complements. Knowing these for each verb helps resolve ambiguity. Also very important in semantic interpretation.

Ex:
Ron wanted to skip Herbology.

Hermione started making study schedules for Harry and Ron.

Harry noticed that they were straining to escape the straps holding them

inside the box

Over-generation: a grammar that covers a significant amount of NL syntax is likely to also generate many non-grammatical structures.

Ex: NP ((DTP) (Card) (Ord) (Quant) (AP) Nominal

* All the three first many very large dragons.

III. Parsing NL with CFG

What is parsing?

[image: image2.png]e
By

Vbl Now

Bk

Naïve methods:

· Top down, depth first

· Bottom up, breadth first

· Top down with bottom up filtering

A better solution:

· Early Algorithm

Sample grammar from text:

[image: image3.png]S NPV Der — that] this |

S A NPTP Noun —» book| i | meal | maney
s Verh — ook incde | prfer
NP = Dt Nominal s — does

Nominal — Noun
Nominal — Noun Nomisal | Prcp — from | 10 on

NP = Proper-Youn | Prper-Noun = Houston] WA
P s verd

VP s Vet NP Nominal — Nowinal PP

Top down parsing:

Generate legal trees, searching for one that matches the input. Expand each non-terminal leaf, using all rules with the same LHS. (In depth first, always expand leftmost non-terminal leaf.) When a lexical category (or word) is reached, remove tree from consideration (prune the search) if it does not match the next unconsumed input word.

[image: image4.png]e e
N %

N
o Nem W Nom
o
T~ T T
NF T F 3
N A
o6 N v R 06 Nem v
| | A
Nown Nown 06 |
T
7 W

Noun W Nom

Nown

Bottom up parsing

Generate legal sub-structures, searching for sequences that can combine at the next higher level. For each current node, find all rules whose RHS matches beginning at that node. For each such rule found, combine into a single node at the next level.

[image: image5.png]ook Tt izt

Nown Det Nown Ve Dt Noun
Book tt Ngh Book Mg
NoM Now Nom
Nown Dt N Ve Dt N
Bkt fight Book . fizht
N N
Nom Nomo v now Nom

N D

L
Book W ook et figh Book da figk
w
woow Y
Nom Now

Vb o N

Book W mih o

Problems with these algorithms:

Top down: Many partial trees are generated that have no relation to the input words.

Example: Fish head up the river in spring.

Where rules are:

S (VP; S (NP VP

VP -> verb NP PP; VP –> verb NP; VP (verb PP (PP);

NP (noun Nominal; NP (noun; NP (Proper-noun

PP (prep NP

Bottom up: Many sub-trees are generated that do not represent real constituents. (consider compound nominals where some words can also be verbs).

Example: The oil can handle color is red.

… oil can handle cover … yield 16 possibilities in the first tier.

10 Groups of 2:

oil can (NP; can handle (NP; handle color (NP

oil can (S; can handle (S; handle color (S

 oil can (VP; can handle (VP in 2 ways; handle color (VP

Top down parsing algorithm

An Agenda is a stack of possible search-states for backtracking

A Search-state contains a set of partially expanded trees, and a pointer to the next word in the input

Accessors for a Search-state are current-input and node-to-expand, and tree
Apply-rules returns a new set of Search-states to be pushed on the Agenda

Implicit in this algorithm is a representation of trees, with nodes that have a cat property.

Also implicit is the ability to get a set of POS values for a word from some lexicon.

[image: image6.png]funcion Top-Dow-Pakst

T ——

awen 1S e Beximn of)
e e Ponagend)
lonp
S eSS PARSE carrent et then
[—————
e
AT NODE- TO-EXPANcrentscarc-sate) £ POS then
[t—
c
FOSCURREN NP carren-searhstae) then
[T T ———————y
e
e
e

[R T ———————
it azendais s then
retum et
o
e

S ————

Example: Harry disappeared.

Illustrates two things:

Need for bottom up filtering

Need to avoid re-parsing

Top down parsing with bottom up filtering

Two modifications:

Grammar rules have LHS (a non terminal), RHS (a list of terminals and non-terminals) and a LC (a list of terminals that can begin a constituent of type LHS).

Apply-rules filters the search-states it returns to include only those whose LC is compatible with the current input.

The Early Algorithm and the Chart

S

B

A

D

E

F

G

C

4

5

4

2

4

3

4

3

5

annp,md = P(md|nnp)

dt

VB

md

nnp

prp

vbd

<s>

