Class 11 Notes:
Probabilistic models revisited

Probabilistic parsing

I. Language models: probability models that assigns a probability to each possible sentence.

S = the set of all possible sentences = W+ where W is the set of all words.

A language model assigns a (very small) probability to the occurrence of each sentence s ε S. (S is potentially infinite but there may be some k such that P(s) = 0 for length(s) > k)

A more useful calculation may be Pb(<s> w1 . . wi . . .) the probability of all sentences that begins with w1 . . . wi. (Sum of individual probabilities of those sentences.)

A typical approach to language modeling is the use of n-grams models.

P(<s> w1 . . wk) ~ Π P(wi | wi-1)

i = 1 to k

in speech recognition, if there are a few candidates for the next word, then choose the one with largest Pb.

Reminder: The meaning of conditional probability:

P(U | K) = P(U and K) / P(K)

Let K = x is male

Let U = x plays football

Assume our population is 40% male, we estimate P(x is male) = .4

Assume 20% of our population is both male AND plays football.

Then P(x plays football | x is male) = .2 / .4 = .5

If only males are permitted to play football:

 P(x plays football and x is male) = P(x plays football)

Then if we are told 20% of our population is both male and plays football,

we know that P(x plays football) = .2

II. Maximum likelihood estimation

Given a corpus C and a language model, estimate the model parameters. That is for all pairs of words in W, estimate P(wi | wj). These should fulfill the criterion that no OTHER set of probablities would assign a higher overall probability to the observed data (the corpus). Overall probability = Π P(s) for s ε C).

P(<s> w1 . . wk) ~ Π P(wi | wi-1) ~ Π [Ct(wi-1 wi) / Ct(wi-1)]

i = 1 to k
Example corpus: Mary likes John. John likes Karen.

<s> Mary likes John <e> <s> John likes Karen <e>

Maximum likelihood estimates:

P(Mary | <s>) = .5

P(John | <s>) = .5

P(likes | Mary) = 1

P(likes | John) = .5

P(John | likes) = .5

P(Karen | likes) = .5

P(<e> | John) = .5

P(<e> | Karen) = 1

P(Mary likes John) = 1/8

P(John likes Karen) = 1/8

P(this corpus) = 1/64. Claim: no other assignment of probabilities will result in a larger value for this corpus. (note: Σ P(wi | w) = 1 for all w in W.)

But: can see the need for smoothing.

Language models of this kind are most useful in speech recognition, and especially where the vocabulary W is limited by the application.

Individual-word bigram estimation is subject to sparse data problems even with very large corpuses.

III. Probabilistic tagging using HMM.

A. Look at the sentence “men like frying fish”. There are 3 syntactically well-formed parses, of which 2 are semantically well formed. This can motivate our interest in probabilistic parsing.

B. Tagging problem from the midterm exam. The data provided was incomplete. Tags: <s>, IN, NNS, JJ, VBP, VBG)

	wi
	C(wi)
	C(wi as IN)
	C(wi as NNS)
	C(wi as JJ)
	C(wi as VBP)
	C(wi as VBG)

	men
	20
	
	19
	1
	
	

	like
	50
	36
	
	
	14
	

	frying
	15
	
	1
	8
	
	6

	fish
	15
	
	10
	
	5
	

Our probabilistic tagging model, assuming a bi-gram tagger:

P(T | W) = P(T) P(W | T) / P(W)

when a tagger is applied we only calculate:

P(T | W) ~ P(T) P(W | T) since W is given – we calculate relative or

 proportional probabilities

Two assumptions:

bigram assumption: the next tag depends only on the prior tag

independence assumption: each word only depends on its tag

P(T | W) ~ Π P(ti | ti-1) P(wi | ti) -- this is the formula I was looking for.

P(T | W) ~ Π P(ti | ti-1) P(wi | ti)

P(NNS | <s>) P(men | NNS) *

P(IN | NNS) P(like | IN) *

P(JJ | IN) P(frying | JJ) *

P(NNS | JJ) P(fish | NNS)

	ti
	C(ti)
	C(<s> ti)
	C(IN ti)
	C(NNS ti)
	C(JJ ti)
	C(VBP ti)
	C(VBG ti)

	IN
	12000
	600
	400
	1800
	1200
	2400
	2400

	NNS
	16000
	2800
	600
	4000
	4000
	800
	1200

	JJ
	6400
	1000
	1600
	400
	600
	1200
	900

	VBP
	3400
	100
	170
	1700
	68
	51
	34

	VBG
	1800
	200
	90
	800
	36
	600
	60

P(NNS | <s>) = C(<s> NNS) / C(<s>) = 2800 / ?? (let’s say 4700)

P(IN | NNS) = C(NNS IN) / C(NNS) = 1800 / 16000

P(JJ | IN) = C(IN JJ) / C(IN) = 1600 /12000

P(NNS | JJ) = C(JJ NNS) / C(JJ) = 4000 / 6400

P(men | NNS) = C(men as NNS) / C(NNS) = 19/16000

P(like | IN) = C(like as IN) / C(IN) = 36/12000

P(frying | JJ) = C(frying as JJ) / C(JJ) = 8/6400

P(fish | NNS) = C(fish as NNS) / C(NNS) = 10 / 16000

Tagger computes:

2800/4700(or X) * 19/16000 * 1800/16000 * 36/12000 * 1600/12000 * 8/6400 *

 4000/6400 * 10/16000 = ??

I did not care if you got the right number if this formula was shown

The same process applies to the second tag sequence.

Viterbi algorithm:

Many people decided that only one cell per column fed into the next column. This is wrong.

	VBG
	
	
	

	VBP

	
	
	PVBP, 2 =

max [PJJ, 1 * P(VBP | JJ) * P(like | VBP),

 PNNS, 1 * P(VBP|NNS) * P(like|VPB)]

	JJ

	
	PJJ, 1 = 1.0*

1000/4700

1/6400
	

	NNS

	
	PNNS, 1 = 1.0 *

2800/4700 *

19/16000
	

	IN

	
	
	PIN, 2 =

max [PJJ, 1 * P(IN | JJ) * P(like | IN),

 PNNS, 1 * P(IN|NNS) * P(like|IN)]

	<s>
	1.0
	
	

	<e>
	
	
	

	
	w0 = <S>
	w1 = men
	w2 = like

If there are n non-zero cells in column k, then each cell of column k+1 will select the largest of n possibilities for its back pointer. The cells of column k+1 need not point back to the same cell of column k.

At the end of the sentence is <e>, which means there will only be one set of back pointers representing the best overall sequence of tags.

Or: if there are n non-zero cells in column k, and m possibilities for column k+1, then n*m different formulas need to be calculated to fill in the cells of column k + 1.

IV. Probabilistic CFG and parsing (pure CFG)

Basic principle: each grammar rule has a probability attached. For each non-terminal, the rules with that symbol on the LHS have a probability that adds up to 1.

Convert one of our grammars to a PCFG:

Prob.

Rule

1.0

S (NP VP

0.25

NP (Pronoun

0.2

NP (Proper-Noun

0.2

NP (Nominal

0.35

NP (Determiner Nominal

0.5

Nominal (Noun

0.5

Nominal (Noun Noun

0.2

VP (Verb

0.3

VP (Verb NP

0.4

VP (Verb PP

0.1

VP (Verb NP PP

1.0

PP (Preposition NP

This allows us to assign probabilities to parse trees using the usual independence assumptions. Since the grammar is context free, it is simpler than the tagging model.

The tree bark dies.

S (NP VP 1.0

same

NP (Determiner Nominal 0.35
same

Nominal (Noun 0.5

Nominal (Noun Noun 0.5

VP (Verb NP 0.3

VP (Verb 0.2

NP (Nominal 0.2

Nominal (Noun 0.5

Determiner (the

same

Noun (tree

same

Verb (bark

Noun (bark

Noun (dies

Verb (dies

Theoretical analysis of parse tree probability:

Most probable tree, given input is:

Argmax [P(T | S)] =

All parse trees for S

Argmax [P(T, S) / P(S)]

Drop the P(S) since re are maximizing over parse trees for the same sentence.

P(T, S) = P(T) since S is embodied in the tree itself, therefore:

Choose T = Argmax [P(T)]

P(T) ~ Π P(Rule(n)) --- what assumption is made to get this formula?

 n ε nodes(T)

This gives us P(S) as a side effect.

Q: what happens if the lexical information is not embodied in the grammar rules?

How to parse: instead of all parses we want to produce the most likely parse. The text shows an interesting algorithm for this (CYK), but it requires the grammar to be in Chomsky Normal Form (CNF)

All rules are of the form:

N (N N

N (t

There is a well known constructive proof that any CFG can be converted to CNF:

Overview:

Case 1: Let Ri = N (S1 where S1 is a single non-terminal:

· Remove this rule and wherever N occurrs on the RHS of any rule, add a new rule with S1 substituted for N.

Case 2: Let Ri = N (a1 . . aj where j > 2

· Add a new non-terminal Ni to the grammar and

· replace Ri with N (a1 Ni

· add a rule Ni (a2 . . aj

Case 3: Let Ri = S t or Ri = t S

· Add a new non-terminal Ni to the grammar, and
· replace Ri with Ri (N Ni or Ri (Ni N
· add a rule Ni (t
Example: VP network in grammar above (with NP (pronoun only NP rule).

Where do we get the probabilities to use? As in the case of tagging, we need a hand-parsed corpus to learn them. Can we assume there is one “best” parse for each sentence? (not true in “real life”)

The Penn Treebank has been used over and over for this. Contains parse trees for the Brown corpus plus some WSJ text. Here is a sample file from a preliminary version which was distributed for free.

Simple minded learning of probabilities from the Treebank:

P(N (whatever) ~ Count (N (whatever) / Count (N)

Notice that the individual word probabilities are the same ones used in tagging, if a grammar is written using the POS tags as its lexical categories. That is:

P(noun (tree) = P(tree | noun) ~ Count(noun (tree) / Count(noun)

V. Parsing with probabilistic CFG:

Probabilities can be added to the chart data. Whenever a complete edge is created, its probability can be calculated (a simple recursive algorithm):

Let edgei = NP (Determiner Noun PP * “the man in the park”

P(a lexical edge) = P(the | Determiner) as stated previously. This information must be encoded as a feature in the lexicon.

P(edgei) = P(rule of edgei) Π P(edgei’s children)

But: How to make the most probable overall parse come out first??? It is necessary to use a bottom up algorithm, which we investigated on the midterm.

When a new complete edge is created, instead of adding it to the chart immediately and applying the fundamental rule, put it on a queue, which is kept sorted by probability value.

CYK algorithm:

Idea of the algorithm is similar to Viterbi: Use an array where element [i, j, A] = the maximum probability P for a constituent of type A going from word i to word j. Back pointers are used as in Viterbi to retrieve the final answer.

The final answer will be the cell [1, n, S] where there are n words in the input.

Base case: strings of length 1 (individual words). If i = columns and j = rows, these will occupy the diagonal. (All other values are below the diagonal.)

Recursive case: Combine adjacent strings using a rule A (BC. If this is possible, then B and C will be in the matrix already. If there is more than one way to get an A over the same substring, take the one with the maximum probability (since G is purely context free.)

[image: image1.png]L —————

Crsasand sl posonsonts o vontssuon sonernnais|

s case

Tt 1 o n_vords

Tor 4~ o sonteras
104 — st arammar then
A1 P)

o 20 sanvords
[="
Tork -1t
Tor A~ 1 o man sosterls
o 8- 1 0 ma sosterils
o € 1t sonerminat
b= i, Pk £ PABC)
6o =31 A1) then
1141 -
AL kA8

Here are two tough questions: when you apply the algorithm to convert your grammar to CNF, can you automatically convert the probabilities also? And after you get the most probable parse tree using the CNF grammar, can you translate it back to the equivalent parse tree from the previous grammar?

Conclusion: better to stick with the regular bottom up chart parser.

Lexicalized grammars:

Address limitations of pure probabilistic CF parsing:

1. Probabilities vary with context!

Example: pronouns are much more likely as subject than object. (Statistics from Switchboard corpus).

2. Probabilities vary with the specific words: certain verbs take standard prepositional modifiers, whereas others don’t.

Sue wiped the fork on the dishtowel – on the dishtowel modifies wiped

Sue bought the painting on the wall – on the wall modifies painting

One solution is: lexicalized CFG, using the “head” concept.

[image: image2.png]=

Vitgimes

INS(workers) VDG NRsicks)

workrs

|
NSk i

wmed sk o

il

Nitiny

in)

b

Theoretical view:

P(rulei) is “conditioned” on the heads of all constituents (LHS and RHS) -- this would not be trainable.

Actual approach taken by Charniak and others:

P(rulei) is conditioned on the head of the LHS constituent.

P(rulei for NP | NP)

P(rulei for NP | NP, head = w))

This captures subcat information about the main verb of a clause.

But what is P(head = w)? THAT is conditioned on head of the immediate parent.

P(T, S) = Π [P(rulei for X) | X, head(X) = w1] *

 [P(head(X) = w1 | head(parent of X) = w2)]

