Class 10 notes: Unification grammar

A grammar should have the ability to deal with:

This boy

Those boys

The boy

The boys
 * This boys

 * Those boy

We want to implement number agreement without duplicating all the

NP rules for NP-sing and NP-plural

We notice that a verb phrase with the verb appearing in gerund or present participle form can be used as a noun phrase post-modifier, and with some restrictions as a pre-modifier also.

The student working in my office . . .

The graduate courses being offered on Wednesday . .

The lightly falling snow . . .

We want to express this fact without duplicating all the VP rules for

VP-ing, VP-inf, VP-pprt, etc.

What is a feature structure?

F1 (value1

F2 (value2

...

FN (valueN

where valueI is one of:

a. an atomic symbol

b. a feature structure, given literally

c. a pointer to a feature structure given literally elsewhere

If only a. and b., then it would be a tree. But with c., we have a DAG

When we express our grammars using feature structures, we can:

· Represent restrictions such as: the main verb must have the “ing” form

· Represent MATCHING (“agreement”) constraints such as: determiner and noun must be compatible

· Assign features to parent constitutents based on the features of their children (upwards “inheritance”)

The use of embedded (hierarchical) feature structures:

· Provide a hierarchy of features for easier expression of MATCHING rules

· Assign meaningful and useful OUTPUT properties to higher-level phrases based on properties of their constitutents’

This boy

Those boys

The boy

The boys
 * This boys

 * Those boy

This and boy have the feature: Number (SG

Those and boys have the feature Number (PL

The has no Number feature (implicitly Number (NULL)

Embedded FS for these words in the lexicon

boy:

Noun (Number (SG

 Person (3

 Count (T

those:

Det (Number (PL

NP (Det Noun

<Det Number> = <Noun Number> (a matching constraint)

<NP Number> = <Noun Number> (upwards inheritance)

This rule uses the Path notation: <f1 f2 f3 . . >

We satisfy these constraints by a process called UNIFICATION.

Number (SG unifies with Number (SG or Number (NULL.

(Draw DAGs)

The student working in my office . . .

The graduate courses being offered on Wednesday . .

The lightly falling snow . . .

NP (Det Nominal VP

<NP Head> = <Nominal Head>

<Det Head Agreement> = <Nominal Head Agreement>

<VP Head VFORM> = PRESPART

Now let’s look at a re-entrant feature structure:

S (
Agreement (*1 Number (SG

 Person (3

Subject (Agreement (**1

Draw the DAG

Define Unification (U):

FS1 U FS2 if there are no features with incompatible values

if a feature does not exist, it is assumed to have the value NULL

· NULL is compatible with any value

· two atomic values are compatible only if they are the same symbol

· two non-atomic values v1 and v2 are compatible only if each feature occurring in v1 is compatible with the same feature in v2. (the order is unimportant).

 FS1 U FS2 produces a value:

It is a “merged” DAG, where the structure contains all features of both arguments, and includes pointers where necessary.

Examples from pp. 402-403 in text.

Implementation: using an complex DAG representation of:

Number (SG

Person (3

[image: image1.png]

The Unification Algorithm:

[image: image2.png]funcion UNIFY(1L. 1

[E—

ieate- Rt ontnte o1
el R ot o2

it sl then
T omerer2

e 2reatis ull then
o1

eI Tt and 2t ans entica then
niere 12
return 2

e ot - (2 s ol sturs st then

e it
or ach e n 2l do
thrfeat - ind or et

e comesponding o e in -l
W UNFY e sl otk et vl eturn il then

return e
retum 1
s return e

Computation of:

Number (SG U Person (3

[image: image3.png]

[image: image4.png]

Final step: Change pointer of F2 to point to F1

Why not add “number” feature to F2 instead?

A more complex example:

[image: image5.png]o s

o

ST ™
o s

o N o
X\g. N PR g
o N

Adding feature unification to the chart parser.

Grammar rules have attached contraints:

S (NP VP

<NP Head Agreement> = <VP Head Agreement>

<S Head> = <VP Head>

Express the whole rule as a feature structure:

S (Head (**1

NP (Head (Agreement **2

VP (Head (*1 Agreement **2

Attach a feature structure (DAG) to each edge label:

S (@ NP VP, (0, 0), (), Dag

Whenever the FUNDAMENTAL RULE is applied (i.e., a complete edge is merged with an incomplete edge), the DAG associated with the complete edge is unified with the appropriate part of the feature structure of the incomplete edge.

[image: image6.png]uncion EARLIV-PARSErords grammmar e

ENQUICE((y — w5, Pith doycharfo)
o from O LEXG vords do
o cch state i] o
WINCOMPLET 2t and
NEX-CAT 10 ot rt f st then
Pripicton)
el INCOMPLETE st and-
NEXI-CAT e 8 partof psscthe
e
CompLetiae

et
end
o
procedure PREDICTORI 4 — x5 By f do)
Torach (5 — 1 in GRAMAR-RULES-FOR . grammar) do
ENQUILEGH —+ w U dage, char)
et

procedure SCASNER((A —» e £, |
B C PARIS-Or-SPEECH) hen
ENQUEVK(S — wond[f ey 1 dos, hart 1)
procedure COMPLITER(E = 1 o)
Torach (4 — wa Py o, dag.) inchart] do
v dig NS TS0 o) P!
ENGUILE(A —+ B, s chart)
et

o)

procedure UNIFY-SEATES g a2, cat)
sty

UNIPYCFOLL - AT et -cp), FOLLOW-PATH <)

procedure EXQUEL K stae chart-cnirs)
St s o subsumal by st n ey then
Pusse.charn)
et

[image: image7.png]procedure COMPLETER(E — 7 &, [l dago))
Torcach (4 — By o da) i chart do
v dig - UNIP-S TS0 o) P!
ENQUIVKUA —+ o8 B [ofnc—das) charif)
end

A final wrinkle: The question of when NOT to insert an edge because that rule has already been placed into the chart.

The same rule could be generated several times with different feature structures. So we cannot ignore two instances of the same rule. However, there is a condition we can test and ignore if found: If the rules are the same, and the new edge is SUBSUMED by an existing edge (that is the dag already there is a more general

version of the new dag), we need not add the new edge.

[image: image8.png]procedure ENQUEUE(state, chart-entry)
St s ol subsumal by st n ey then
Pusse.charn)
nd

Let’s spend some time investigating the use of feature structures to handle

verb phrase sub-categorization.

The naïve approach:

VP (Verb

<VP Head> = <Verb Head>

<VP Head Subcat> = INTRANS

VP (Verb NP

<VP Head> = <Verb Head>

<VP Head Subcat> = TRANS

VP (Verb NP1 NP2

<VP Head> = <Verb Head>

<VP Head Subcat> = DITRANS

More sophisticated approach:

Specify properties of the arguments that must unify with the verb’s SUBCAT

features:

VP (Verb NP1 NP2

<VP Head> = <Verb Head>

<VP Head Subcat First Cat> = NP

<VP Head Subcat Second Cat> = NP

