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THE END OF THEORY?
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● Old science: models 
◆ All models are wrong, but some are useful (George Box) 

● New science: just data 
◆ Do not need to know culture and conventions  
◆ Do not need to know the underlying mechanisms  
◆ All models are wrong, and increasingly you can succeed 

without them 

● What is the new scientific method? 
◆ Statistical tools will crunch the numbers and offer a new 

way of understanding the world 
◆ ‘There's no reason to cling to our old ways. It's time to ask: 

What can science learn from Google?’

THE END OF THEORY?
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GOOGLE FLU TRENDS (GFT) 
Uses search keywords to predict reports by 

Center for Disease Control
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● Methodology 
◆ First version: find best matches among 50 million searchers to 

explain 1152 flu cases 
◆ Later versions: improvements to eliminate other seasonal trend 

(e.g. basketball) 

● Underwhelming results  
◆ 2009: missed nonseasonal 2009 H1N1 influenza 
◆ 2013: overestimated the proportion of doctor visits 
◆ Not better than simpler predictions 

● Reasons for the challenges 
◆ Overfitting and confounding, lacks subject matter info 
◆ Algorithm dynamics 
■ changes to both queries and algorithms 

◆ Cannot easily replicate the search results, poor documentation.
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SPECIFIC ISSUES

● Large data hide true quantitative signal 

● Large data generate spurious correlations 

● Large data help mistake correlation for causation 

● Large data amplify bias and confounding
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‘A big computer, a complex algorithm and a long 
time does not equal science’

— Robert Gentleman
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LARGE DATA HIDE SIGNAL

● A simulation study 
● 100 subjects 
● 2 groups 
● 10 differentially abundant 

proteins 

● Plot the first two principle 
components 
● Expect good separation 

between the groups
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REVIEW Fan, Han and Liu 299

Figure 1. Scatter plots of projections of the observed data (n= 100 from each class) onto the first two principal components of the bestm-dimensional
selected feature space. A projected data with the filled circle indicates the first class and the filled triangle indicates the second class.

important variables can be highly correlated with
several spurious variables which are scientifically
unrelated.We consider a simple example to illustrate
this phenomenon. Let x1, . . . , xn be n indepen-
dent observations of a d-dimensional Gaussian ran-
dom vector X = (X1, . . . , Xd )T ∼ Nd (0, Id ). We
repeatedly simulate thedatawithn=60 andd=800

and 6400 for 1000 times. Figure 2a shows the em-
pirical distribution of themaximum absolute sample
correlation coefficient between thefirst variablewith
the remaining ones defined as

r̂ = max
j≥2
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Fan et al., National Science Review, 1:293, 2014

2 proteins 40 proteins

200 proteins 1,000 proteins

‘We are drowning in 
information but starved 
for knowledge’
— John Naisbitt



SPECIFIC ISSUES

● Large data hide true quantitative signal 

● Large data generate spurious correlations 

● Large data help mistake correlation for causation 

● Large data amplify bias and confounding
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LARGE DATA HIDE SIGNAL

● A simulation study 
● 60 subjects with 

quantitative phenotype 
● red: 800 proteins 

unrelated to phenotype 
● blue: 6400 proteins 

unrelated to phenotype 
● Repeat 1,000 times
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Figure 2. Illustration of spurious correlation. (a) Distribution of the maximum absolute sample correlation coefficients between X1 and {Xj}j ̸= 1.
(b) Distribution of the maximum absolute sample correlation coefficients between X1 and the closest linear projections of any four members of
{Xj}j ̸= 1 to X1. Here the dimension d is 800 and 6400, the sample size n is 60. The result is based on 1000 simulations.

where Ĉorr
(
X1, X j

)
is the sample correlation

between the variables X1 and Xj. We see that the
maximum absolute sample correlation becomes
higher as dimensionality increases.

Furthermore, we can compute the maximum
absolute multiple correlation between X1 and lin-
ear combinations of several irrelevant spurious
variables:

R̂ = max
|S|=4

max
{β j }4j=1

∣∣∣∣∣∣
Ĉorr

⎛

⎝X1,
∑

j∈S
β j X j

⎞

⎠

∣∣∣∣∣∣
. (5)

Using the same configuration as in Fig. 2 a, Fig. 2 b
plots the empirical distribution of the maximum ab-
solute sample correlation coefficient betweenX1 and∑

j ∈ Sβ jXj, where S is any size four subset of {2, . . . ,
d} and β j is the least-squares regression coefficient
of Xj when regressing X1 on {Xj}j ∈ S. Again, we see
that even thoughX1 is utterly independent ofX2, . . . ,
Xd, the correlation betweenX1 and the closest linear
combination of any four variables of {Xj}j ̸= 1 to X1
can be very high. We refer to [14] and [74] about
more theoretical results on characterizing the orders
of r̂ .

The spurious correlation has significant impact
on variable selection and may lead to false scientific
discoveries. Let XS = (X j ) j∈S be the sub-random
vector indexed by S and let Ŝ be the selected set
that has the higher spurious correlation withX1 as in
Fig. 2. For example, when n= 60 and d= 6400, we
see that X1 is practically indistinguishable from X Ŝ

for a set Ŝ with |Ŝ| = 4. If X1 represents the expres-
sion level of a gene that is responsible for a disease,
we cannot distinguish it from the other four genes in
Ŝ that have a similar predictive power although they
are scientifically irrelevant.

Besides variable selection, spurious correlation
may also lead to wrong statistical inference. We ex-
plain this by considering again the same linearmodel
as in (3). Here we would like to estimate the stan-
dard error σ of the residual, which is prominently
featured in statistical inferences of regression co-
efficients, model selection, goodness-of-fit test and
marginal regression. Let Ŝ be a set of selected vari-
ables and PŜ be the projectionmatrix on the column
space of XŜ . The standard residual variance estima-
tor, based on the selected variables, is

σ̂ 2 = yT(In − PŜ)y
n − |Ŝ|

. (6)

The estimator (6) is unbiased when the variables
are not selected by data and the model is correct.
However, the situation is completely different when
the variables are selected based on data. In particu-
lar, the authors of [14] showed that when there are
many spurious variables, σ 2 is seriously underesti-
mated, which leads further to wrong statistical infer-
ences includingmodel selection or significance tests,
and false scientific discoveries such as finding wrong
genes for molecular mechanisms.They also propose
a refitted cross-validation method to attenuate the
problem.

 by guest on D
ecem

ber 26, 2014
http://nsr.oxfordjournals.org/

D
ow

nloaded from
 

300 National Science Review, 2014, Vol. 1, No. 2 REVIEW

Figure 2. Illustration of spurious correlation. (a) Distribution of the maximum absolute sample correlation coefficients between X1 and {Xj}j ̸= 1.
(b) Distribution of the maximum absolute sample correlation coefficients between X1 and the closest linear projections of any four members of
{Xj}j ̸= 1 to X1. Here the dimension d is 800 and 6400, the sample size n is 60. The result is based on 1000 simulations.

where Ĉorr
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‘With four parameters I can fit an 
elephant, and with five I can make 
him wiggle his trunk’
— John von Neumann
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Fourier coordinate expansion with 
complex numbers as parameters



SPECIFIC ISSUES

● Large data hide true quantitative signal 

● Large data generate spurious correlations 

● Large data help mistake correlation for causation 

● Large data amplify bias and confounding
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tylervigen.com/spurious-correlations
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New England Journal of Medicine, 367:1562 (2012)

● Premier medical journal 
● Nobel prize is related to 

cognitive ability 
● flavanols (organic molecules 

present in chocolate) are linked 
to cognitive ability 

● Technical flows 
● Nobel prize winners between 

1900-2011 
● Chocolate consumption after 

2002 
● Countries with many Nobel 

prizes have a high Human 
Development Index and high per 
capita income 

A. Jogalekar, Scientific American, 2012

Easy to dismiss when we understand the context
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A. Letchford et al., Royal 
Society Publishing, 2015
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rsos.royalsocietypublishing.org
R.Soc.opensci.2:150266

................................................

Blood

mean quantile title length (%)

m
ea

n 
qu

an
til

e 
ci

ta
tio

n 
ra

nk
 (%

)

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90

Cell

Proc. Natl Acad. Sci. USA

PLoS ONE

Nature

Sci. Rep.

Science

N. Engl. J. Med.

Lancet

J. Am. Chem. Soc.

Figure 3. Journals which publish papers with shorter titles receive more citations per paper. For each year in our dataset, we rank all of
the papers in terms of the number of citations received and in terms of the length of the titles, and transform these ranks into percentiles
for a given year. For each journal, we then calculate the average quantile of the citations and of the title lengths, across papers and across
years. Here, each blue circle represents a journal, the size of each circle represents the number of papers in our sample for that journal.
Again, we find that journals that publish papers with shorter titles also tend to receive more citations per paper (Kendall’s τ = −0.19,
N = 625, p< 0.001).

length of a paper’s title bears no relation to its scientific impact [40], or that longer titles can be linked to
greater citation counts [41].

Our analysis suggests that papers with shorter titles do receive greater numbers of citations. However,
it is well known that papers published in certain journals attract more citations than papers published
in others. When citation counts are adjusted for the journal in which the paper is published, we find that
the strength of the evidence for the relationship between title length and citations received is reduced.
Our results do however reveal that journals which publish papers with shorter titles tend to receive more
citations per paper.

We propose three possible explanations for these results. One potential explanation is that high-
impact journals might restrict the length of their papers’ titles. Similarly, incremental research might
be published under longer titles in less prestigious journals. A third possible explanation is that shorter
titles may be easier to understand, enabling wider readership and increasing the influence of a paper.

Our findings provide evidence that elements of the style in which a paper is written may relate to
the number of times it is cited. Future analysis will investigate whether further stylistic attributes of the
language used in a paper can be related to the number of citations it receives.

4. Methods
We retrieve bibliometric data from Scopus (http://www.scopus.com) between 21 October 2014 and
14 November 2014. To obtain data on the 20 000 most cited papers published in each of the 7 years
from 2007 to 2013, we search for any papers that are marked by Scopus as an ‘article’ with the following
search query:

DOCTYPE(ar) AND PUBYEAR = {year},

 on August 27, 2015http://rsos.royalsocietypublishing.org/Downloaded from 
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Not easy to dismiss when the context is unknown

Benabou et al., Princeton University
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Not easy to dismiss when the context is unknown

Benabou et al., Princeton University

‘Correlation doesn’t imply causation, but it does 
waggle its eyebrows suggestively and gesture 
furtively while mouthing ‘look over there’



SPECIFIC ISSUES

● Large data hide true quantitative signal 

● Large data generate spurious correlations 

● Large data help mistake correlation for causation 

● Large data amplify bias and confounding
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● New discovery!  
◆ later colors cost more!
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EXAMPLE
● Subject matter knowledge 
◆ later colors are cheaper 
◆ they also weigh more 
◆ Both color and weight affect price
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EXAMPLE
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‘To call in the statistician after the experiment is done may be no 
more than asking him to perform a post-mortem examination: he 
may be able to say what the experiment died of ’
— Ronald Fisher



SUMMARY

● More data ≠ more information 

● We should: 
◆ state clearly the scientific question 
◆ follow the fundamental principles of experimental design 
◆ select methods that are appropriate for the question 
■ more complexity does not mean more insight! 

◆ use problem-specific information 

● Data and algorithms do not substitute thinking through 
the problem

26

‘There are no routine statistical questions, only questionable 
statistical routines’
— D. R. Cox


