CS7280
TOPICS IN STATISTICS AND DATA ANALYSIS

GARTNER HYPE CYCLE

THE END OFTHEORY?

WIRED MAGAZINE: 16.07

Science: Discoveries
The End of Theory: The Data Deluge Makes the Scientific Method Obsolete
By Chris Anderson 06.23.08

- Old science: models
- All models are wrong, but some are useful (George Box)
- New science: just data
- Do not need to know culture and conventions
- Do not need to know the underlying mechanisms
- All models are wrong, and increasingly you can succeed without them
- What is the new scientific method?
- Statistical tools will crunch the numbers and offer a new way of understanding the world
- 'There's no reason to cling to our old ways. It's time to ask: What can science learn from Google?'

The Parable of Google Flu: Traps in Big Data Analysis

David Lazer, ${ }^{1,2 *}$ Ryan Kennedy, ${ }^{1,34}$ Gary King, ${ }^{3}$ Alessandro Vespignani ${ }^{5,6,3}$

In February 2013, Google Flu Trends (GFT) made headlines but not for a reason that Google executives or the creators of the flu tracking system would have hoped. Nature reported that GFT was predicting more than double the proportion of doctor visits for influ-enza-like illness (ILI) than the Centers for Disease Control and Prevention (CDC), which bases its estimates on surveillance reports from laboratories across the United States $(1,2)$.This happened despite the fact that GFT was built to predict CDC reports. Given that GFT is often held up as an exemplary use of big data $(3,4)$, what lessons can we draw from this error?

The problems we identify are not limited to GFT. Research on whether search or social media can

GOOGLE FLUTRENDS (GFT) Center for Disease Control

- Methodology
- First version: find best matches among 50 million searchers to explain 1152 flu cases
- Later versions: improvements to eliminate other seasonal trend (e.g. basketball)
- Underwhelming results
- 2009: missed nonseasonal 2009 H1N1 influenza
- 2013: overestimated the proportion of doctor visits
- Not better than simpler predictions
- Reasons for the challenges
- Overfitting and confounding, lacks subject matter info
- Algorithm dynamics
- changes to both queries and algorithms
- Cannot easily replicate the search results, poor documentation.

GARTNER HYPE CYCLE

www.gartner.com

SPECIFIC ISSUES

- Large data hide true quantitative signal
- Large data generate spurious correlations
- Large data help mistake correlation for causation
- Large data amplify bias and confounding
'A big computer, a complex algorithm and a long time does not equal science'
- Robert Gentleman

SPECIFIC ISSUES

- Large data hide true quantitative signal
- Large data generate spurious correlations
- Large data help mistake correlation for causation
- Large data amplify bias and confounding
'A big computer, a complex algorithm and a long time does not equal science'
- Robert Gentleman

LARGE DATA HIDE SIGNAL

- A simulation study
- 100 subjects
- 2 groups
- 10 differentially abundant proteins
- Plot the first two principle components
- Expect good separation between the groups
'We are drowning in information but starved for knowledge' - John Naisbitt

200 proteins

40 proteins

1,000 proteins

Fan et al., National Science Review, 1:293, 2014

SPECIFIC ISSUES

- Large data hide true quantitative signal
- Large data generate spurious correlations
- Large data help mistake correlation for causation
- Large data amplify bias and confounding

Max correlation between the phenotype and a protein

- Repeat 1,000 times

Max correlation between the phenotype and a linear combination
of 4 proteins
With four parameters I can fit an elephant, and with five I can make him wiggle his trunk'

- John von Neumann

Fan et al., National Science Review, 1:293, 2014

Drawing an elephant with four complex parameters

Jürgen Mayer

Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr: 108, 1 Germany

Khaled Khairy

European Molecular Biology Laboratory, Meyerhofstraße. 1, 69117 Heidelberg, Ge, Jonathon Howard
Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 1 Germany
(Received 20 August 2008; accepted 5 October 2009)

$$
\begin{aligned}
& x(t)=\sum_{k=0}^{\infty}\left(A_{k}^{x} \cos (k t)+B_{k}^{x} \sin (k t)\right), \\
& y(t)=\sum_{k=0}^{\infty}\left(A_{k}^{y} \cos (k t)+B_{k}^{y} \sin (k t)\right),
\end{aligned}
$$

Table I. The five complex parameters p_{1}, \ldots, p_{5} that encode the elephant including its wiggling trunk.

Parameter	Real part	Imaginary part
$p_{1}=50-30 i$	$B_{1}^{x}=50$	$B_{1}^{y}=-30$
$p_{2}=18+8 i$	$B_{2}^{x}=18$	$B_{2}^{y}=8$
$p_{3}=12-10 i$	$A_{3}^{x}=12$	$B_{3}^{y}=-10$
$p_{4}=-14-60 i$	$A_{5}^{x}=-14$	$A_{1}^{y}=-60$
$p_{5}=40+20 i$	Wiggle coeff. $=40$	$x_{\text {eye }}=y_{\text {eye }}=20$

Fourier coordinate expansion with complex numbers as parameters

SPECIFIC ISSUES

- Large data hide true quantitative signal
- Large data generate spurious correlations
- Large data help mistake correlation for causation
- Large data amplify bias and confounding

Divorce rate in Maine
Per capita consumption of margarine

Total revenue generated by arcades
correlates with
Computer science doctorates awarded in the US

SPURIOUS CORRELATIONS ABOUND Easy to dismiss when we understand the context

- Premier medical journal
- Nobel prize is related to cognitive ability
- flavanols (organic molecules present in chocolate) are linked to cognitive ability
- Technical flows
- Nobel prize winners between 1900-2011
- Chocolate consumption after 2002
- Countries with many Nobel prizes have a high Human Development Index and high per capita income

| Home | News \& Comment | Research | Careers \& Jobs \mid Current Issue | Archive |
| :--- | :--- | :--- | :--- | :--- | Audio \& Video \mid

Papers with shorter titles get more citations

Intriguing correlation mined from 140,000 papers.
Boer Deng

SPURIOUS CORRELATIONS ABOUND Not easy to dismiss when the context is unknown

Benabou et al., Princeton University

SPURIOUS CORRELATIONS ABOUND
 Not easy to dismiss when the context is unknown

'Correlation doesn't imply causation, but it does waggle its eyebrows suggestively and gesture furtively while mouthing 'look over there'

SPECIFIC ISSUES

- Large data hide true quantitative signal
- Large data generate spurious correlations
- Large data help mistake correlation for causation
- Large data amplify bias and confounding

carat color price			
0.23	E	326	
0.21	E	326	
0.23	E	327	
0.29	I	334	
0.31	J	335	

50 diamonds

- New discovery!
- later colors cost more!

50 diamonds

Color

53,940 diamonds

- Subject matter knowledge
- later colors are cheaper
- they also weigh more
- Both color and weight affect price

53,940 diamonds

53,940 diamonds

'To call in the statistician after the experiment is done may be no more than asking him to perform a post-mortem examination: he may be able to say what the experiment died of'

- Ronald Fisher

SUMMARY

- More data \neq more information
- We should:
- state clearly the scientific question
- follow the fundamental principles of experimental design
- select methods that are appropriate for the question
- more complexity does not mean more insight!
- use problem-specific information
- Data and algorithms do not substitute thinking through the problem
'There are no routine statistical questions, only questionable statistical routines'
— D. R. Cox

