
Data Mining Techniques
CS 6220 - Section 3 - Fall 2016

Lecture 21: Review
Jan-Willem van de Meent



Schedule



Topics for Exam

Pre-Midterm  
• Probability 
• Information Theory 
• Linear Regression 
• Classification 
• Clustering

Post-Midterm
• Topic Models 
• Dimensionality Reduction 
• Recommender Systems 
• Association Rules 
• Link Analysis 
• Time Series 
• Social Networks



Post-Midterm Topics



Topic Models

	•	Bag of words representations of documents 
	•	Multinomial mixture models 
	•	Latent Dirichlet Allocation 
	 ◦	Generative model 
	 ◦	Expectation Maximization (PLSA/PLSI) 
	 ◦	Variational inference (high level) 
	•	Perplexity 
	•	Extensions (high level) 
	 ◦	Dynamic Topic Models 
	 ◦	Supervised LDA 
	 ◦	Ideal Point Topic Models



Dimensionality Reduction

Principal Component Analysis 
	◦	Interpretation as minimization of reconstruction error 
	◦	Interpretation as maximization of captured variance 
	◦	Interpretation as EM in generative model 
	◦	Computation using eigenvalue decomposition 
	◦	Computation using SVD 
	◦	Applications (high-level) 
	 ▪	Eigenfaces 
	 ▪	Latent Semantic Analysis 
	 ▪	Relationship to LDA 
	 ▪	Multi-task learning 
	◦	Kernel PCA 
	 ▪	Direct method vs modular method



Dimensionality Reduction

	•	Canonical Correlation Analysis 
	 ◦	Objective 
	 ◦	Relationship to PCA 
	 ◦	Regularized CCA 
	 ▪	Motivation 
	 ▪	Objective 
	•	Singular Value Decomposition 
	 ◦	Definition 
	 ◦	Complexity 
	 ◦	Relationship to PCA 
	•	Random Projections 
	 ◦	Johnson-Lindenstrauss Lemma



Dimensionality Reduction

	•	Stochastic Neighbor Embeddings 
	 ◦	Similarity definition in original space 
	 ◦	Similarity definition in lower dimensional space 
	 ◦	Definition of objective in terms of KL divergence 
	 ◦	Gradient of objective



Recommender Systems

	•	Motivation: The long tail of product popularity 
	•	Content-based filtering 
	 ◦	Formulation as a regression problem 
	 ◦	User and item bias 
	 ◦	Temporal effects 
	•	Matrix Factorization 
	 ◦	Formulation of recommender systems  

as matrix factorization 
	 ◦	Solution through alternating least squares 
	 ◦	Solution through stochastic gradient descent 



Recommender Systems

	•	Collaborative filtering 
	 ◦	(user, user) vs (item, item) similarity 
	 ▪	pro’s and cons of each approach 
	 ◦	Parzen-window CF 
	 ◦	Similarity measures 
	 ▪	Pearson correlation coefficient 
	 ▪	Regularization for small support 
	 ▪	Regularization for small neigborhood 
	 ▪	Jaccard similarity 
	 ▪	Regularization 
	 ▪	Observed/expected ratio 
	 ▪	Regularization



Association Rules

	•	Problem formulation and examples 
	 ◦	Customer purchasing 
	 ◦	Plagiarism detection 
	•	Frequent Itemset 
	 ◦	Definition of (fractional) support 
	•	Association Rules 
	 ◦	Confidence 
	 ◦	Measures of interest 
	 ▪	Added value 
	 ▪	Mutual information



Association Rules

	•	A-priori 
	 ◦	Base principle 
	 ◦	Algorithm 
	 ◦	Self-joining and pruning of candidate sets 
	 ◦	Maximal vs closed itemsets 
	 ◦	Hash tree implementation for subset matching 
	 ◦	I/O and memory limited steps 
	 ◦	PCY method for reducing candidate sets 
	•	FP-Growth 
	 ◦	FP-tree construction 
	 ◦	Pattern mining using conditional FP-trees 
	•	Performance of A-priori vs FP-growth



Aside: PCY vs PFP (parallel FP-Growth)

I notice that Spark MLib ships PFP as its main algorithm and I notice you benchmark against 
this as well. That said I can imagine there are might be different regimes where these 
algorithms are applicable. For example I notice you look at large numbers of transactions 
(order 10^7) but relatively small numbers of frequent items (10^3-10^4). The MMDS guys 
seem to emphasize  the case where you cannot hold counts for all candidate pairs in memory, 
which presumably means numbers of items of order (10^5-10^6). Is it the case that once you 
are doing this at Walmart or Amazon scale, you in practice have to switch to PCY-variants?

Hi Jan,

This is a good question.

In my opinion, it is not true that if you have million of items then you need to use PCY-variants.
FP-Growth and its many of variants are most likely going to perform better anyway, because 
available implementations have been seriously optimized. They are not really creating and 
storing pairs of candidates anyway, so that’s not really the problem.

Hope this helps,

Matteo

I asked an actual expert 

Matteo 
Riondato



Link Analysis
	 ◦	Recursive formulation 
	 ▪	Interpretation of links as weighted votes 
	 ▪	Interpretation as equilibrium condition  

in population model for surfers  
(inflow equal to outflow) 

	 ▪	Interpretation as visit frequency of random surfer 
	 ◦	Probabilistic model 
	 ◦	Stochastic matrices 
	 ◦	Power iteration 
	 ◦	Dead ends (and fix) 
	 ◦	Spider traps (and fix) 
	 ◦	PageRank Equation 
	 ▪	Extension to topic-specific page-rank 
	 ▪	Extension to TrustRank



Times Series

	•	Time series smoothing 
	 ◦	Moving average 
	 ◦	Exponential 
	•	Definition of a stationary time series 
	•	Autocorrelation 
	•	AR(p), MA(q), ARMA(p,q) and ARIMA(p,d,q) models 
	•	Hidden Markov Models 
	 ◦	Relationship of dynamics to  

random surfer in page rank 
	 ◦	Relatinoship to mixture models 
	 ◦	Forward-backward algorithm (see notes)



Social Networks

	•	Centrality measures 
	 ◦	Betweenness 
	 ◦	Closeness 
	 ◦	Degree 
	•	Girvan-Newman algorithm for clustering 
	 ◦	Calculating betweenness 
	 ◦	Selecting number of clusters using the modularity



Social Networks
	•	Spectral clustering 
	 ◦	Graph cuts 
	 ◦	Normalized cuts 
	 ◦	Laplacian Matrix 
	 ▪	Definition in terms of Adjacency and Degree matrix 
	 ▪	Properties of eigenvectors 
	 ▪	Eigenvalues are >= 0 
	 ▪	First eigenvector 
	 ▪	Eigenvalue is 0 
	 ▪	Eigenvector is [1 … 1]^T 
	 ▪	Second eigenvector (Fiedler vector) 
	 ▪	Elements sum to 0 
	 ▪	Eigenvalue is normalized sum  

of squared edge distances 
	 ◦	Use of first eigenvector to find normalized cut



Pre-Midterm Topics



Conjugate Distributions

686 B. PROBABILITY DISTRIBUTIONS

Beta

This is a distribution over a continuous variable µ ∈ [0, 1], which is often used to
represent the probability for some binary event. It is governed by two parameters a
and b that are constrained by a > 0 and b > 0 to ensure that the distribution can be
normalized.

Beta(µ|a, b) =
Γ(a + b)
Γ(a)Γ(b)

µa−1(1 − µ)b−1 (B.6)

E[µ] =
a

a + b
(B.7)

var[µ] =
ab

(a + b)2(a + b + 1)
(B.8)

mode[µ] =
a − 1

a + b − 2
. (B.9)

The beta is the conjugate prior for the Bernoulli distribution, for which a and b can
be interpreted as the effective prior number of observations of x = 1 and x = 0,
respectively. Its density is finite if a ! 1 and b ! 1, otherwise there is a singularity
at µ = 0 and/or µ = 1. For a = b = 1, it reduces to a uniform distribution. The beta
distribution is a special case of the K-state Dirichlet distribution for K = 2.

Binomial

The binomial distribution gives the probability of observing m occurrences of x = 1
in a set of N samples from a Bernoulli distribution, where the probability of observ-
ing x = 1 is µ ∈ [0, 1].

Bin(m|N, µ) =
(

N

m

)
µm(1 − µ)N−m (B.10)

E[m] = Nµ (B.11)
var[m] = Nµ(1 − µ) (B.12)

mode[m] = ⌊(N + 1)µ⌋ (B.13)

where ⌊(N + 1)µ⌋ denotes the largest integer that is less than or equal to (N + 1)µ,
and the quantity (

N

m

)
=

N !
m!(N − m)!

(B.14)

denotes the number of ways of choosing m objects out of a total of N identical
objects. Here m!, pronounced ‘factorial m’, denotes the product m × (m − 1) ×
. . . ,×2 × 1. The particular case of the binomial distribution for N = 1 is known as
the Bernoulli distribution, and for large N the binomial distribution is approximately
Gaussian. The conjugate prior for µ is the beta distribution.

Binomial: Probability of m heads in N  flips 

Beta: Probability for bias μ

686 B. PROBABILITY DISTRIBUTIONS

Beta

This is a distribution over a continuous variable µ ∈ [0, 1], which is often used to
represent the probability for some binary event. It is governed by two parameters a
and b that are constrained by a > 0 and b > 0 to ensure that the distribution can be
normalized.

Beta(µ|a, b) =
Γ(a + b)
Γ(a)Γ(b)

µa−1(1 − µ)b−1 (B.6)

E[µ] =
a

a + b
(B.7)

var[µ] =
ab

(a + b)2(a + b + 1)
(B.8)

mode[µ] =
a − 1

a + b − 2
. (B.9)

The beta is the conjugate prior for the Bernoulli distribution, for which a and b can
be interpreted as the effective prior number of observations of x = 1 and x = 0,
respectively. Its density is finite if a ! 1 and b ! 1, otherwise there is a singularity
at µ = 0 and/or µ = 1. For a = b = 1, it reduces to a uniform distribution. The beta
distribution is a special case of the K-state Dirichlet distribution for K = 2.

Binomial

The binomial distribution gives the probability of observing m occurrences of x = 1
in a set of N samples from a Bernoulli distribution, where the probability of observ-
ing x = 1 is µ ∈ [0, 1].

Bin(m|N, µ) =
(

N

m

)
µm(1 − µ)N−m (B.10)

E[m] = Nµ (B.11)
var[m] = Nµ(1 − µ) (B.12)

mode[m] = ⌊(N + 1)µ⌋ (B.13)

where ⌊(N + 1)µ⌋ denotes the largest integer that is less than or equal to (N + 1)µ,
and the quantity (

N

m

)
=

N !
m!(N − m)!

(B.14)

denotes the number of ways of choosing m objects out of a total of N identical
objects. Here m!, pronounced ‘factorial m’, denotes the product m × (m − 1) ×
. . . ,×2 × 1. The particular case of the binomial distribution for N = 1 is known as
the Bernoulli distribution, and for large N the binomial distribution is approximately
Gaussian. The conjugate prior for µ is the beta distribution.

686 B. PROBABILITY DISTRIBUTIONS

Beta

This is a distribution over a continuous variable µ ∈ [0, 1], which is often used to
represent the probability for some binary event. It is governed by two parameters a
and b that are constrained by a > 0 and b > 0 to ensure that the distribution can be
normalized.

Beta(µ|a, b) =
Γ(a + b)
Γ(a)Γ(b)

µa−1(1 − µ)b−1 (B.6)

E[µ] =
a

a + b
(B.7)

var[µ] =
ab

(a + b)2(a + b + 1)
(B.8)

mode[µ] =
a − 1

a + b − 2
. (B.9)

The beta is the conjugate prior for the Bernoulli distribution, for which a and b can
be interpreted as the effective prior number of observations of x = 1 and x = 0,
respectively. Its density is finite if a ! 1 and b ! 1, otherwise there is a singularity
at µ = 0 and/or µ = 1. For a = b = 1, it reduces to a uniform distribution. The beta
distribution is a special case of the K-state Dirichlet distribution for K = 2.

Binomial

The binomial distribution gives the probability of observing m occurrences of x = 1
in a set of N samples from a Bernoulli distribution, where the probability of observ-
ing x = 1 is µ ∈ [0, 1].

Bin(m|N, µ) =
(

N

m

)
µm(1 − µ)N−m (B.10)

E[m] = Nµ (B.11)
var[m] = Nµ(1 − µ) (B.12)

mode[m] = ⌊(N + 1)µ⌋ (B.13)

where ⌊(N + 1)µ⌋ denotes the largest integer that is less than or equal to (N + 1)µ,
and the quantity (

N

m

)
=

N !
m!(N − m)!

(B.14)

denotes the number of ways of choosing m objects out of a total of N identical
objects. Here m!, pronounced ‘factorial m’, denotes the product m × (m − 1) ×
. . . ,×2 × 1. The particular case of the binomial distribution for N = 1 is known as
the Bernoulli distribution, and for large N the binomial distribution is approximately
Gaussian. The conjugate prior for µ is the beta distribution.



Conjugate Distributions
Posterior probability for μ given flips



Information Theoretic Measures
KL Divergence

Mutual Information

Perplexity

Entropy

Perplexity (of a model)

Per(p) = 2

�
P

x

p(x) log

2

p(x)

Per(q) = 2

PN
n=1

log

2

q(yn)

ˆp(y) =
1

N

PN
n=1

I[yn = y]

H(ˆp, q) = �
P

y ˆp(y) log q(y)

Per(q) = eH(ˆp,q)



Loss Functions

squared loss:

1

2

(w>x � y)2 y 2R Linear Regression

zero-one:

1

4

(Sign(w>x )� y)2 y 2{�1,+1} Perceptron

logistic loss: log

�
1+ exp(�yw

>
x )
�

y 2{�1,+1} Logistic Regression

hinge loss: max{0, 1� yw

>
x} y 2{�1,+1} Soft SVMs

squared loss:

1

2

(w>x � y)2 y 2R Linear Regression

zero-one:

1

4

(Sign(w>x )� y)2 y 2{�1,+1} Perceptron

logistic loss: log

�
1+ exp(�yw

>
x )
�

y 2{�1,+1} Logistic Regression

hinge loss: max{0, 1� yw

>
x} y 2{�1,+1} Soft SVMs

squared loss:

1

2

(w>x � y)2 y 2R Linear Regression

zero-one:

1

4

(Sign(w>x )� y)2 y 2{�1,+1} Perceptron

logistic loss: log

�
1+ exp(�yw

>
x )
�

y 2{�1,+1} Logistic Regression

hinge loss: max{0, 1� yw

>
x} y 2{�1,+1} Soft SVMs



Bias-Variance Trade-Off

Variance of what exactly?

Bias-Variance Trade-o↵

Often: low bias ) high variance
low variance ) high bias

Trade-o↵:

 

Yijun Zhao Linear Regression

Error on test set



Bias-Variance Trade-Off

E
y

[(y � f(x))2|x] = E
y

[(y � y + y � f(x))2|x]
= E

y

[(y � y)2|x] + E
y

[(y � f(x))2|x]
+2E

y

[(y � y)(y � f(x))|x]
= E

y

[(y � y)2|x] + E
y

[(y � f(x))2|x]
+2(y � f(x))E

y

[(y � y)|x]
= E

y

[(y � y)2|x] + E
y

[(y � f(x))2|x]

Where the last step follow from the definition of y. Note that f does not effect the first
term. Hence, the best choice of f is that which minimizes the second term, which is at
f(x) = y = E

y

[y|x].
To complete the argument, note that:

E
x,y

[(y � f(x))2] = E
x

[E
y

[(y � f(x))2|x]]

and we have found the minima of the inside term.
Alternatively, we might be interested in absolute loss:

E
x,y

[|y � f(x)|]

For this loss, one can show that best predictor is the conditional median, i.e.

f(x) = Median x|y

One should keep in mind what is trying to be predicted under a certain loss function.

3 Bias - Variance Tradeoff

Let us consider some learning algorithm and its expected prediction error:

E
x,y,T

[(y � f

T

(x))2]

Here, f

T

is the hypothesis returned by the algorithm on training set T . Note that this
function is random, where the randomness comes from the randomness in the training
set.
Let us define, the mean prediction of the algorithm at point x to be:

f(x) = E
T

[f
T

(x)]

We can now decompose the error, at a fixed x, as follows:

2

Assume classifier predicts expected value for y 

Squared loss of a classifier

= Ey[(y � ȳ)2|x] + (ȳ � f(x))2

f(x) = Ey[y|x] = ȳ



Bias-Variance Trade-Off

T = {(xi
, y

i)|i = 1, . . . , n}

fT = argmin
f

NX

i=1

L(yi, f(xi))

f̄(x) = ET [fT (x)]

ȳ = Ey[y]

T = {(xi
, y

i)|i = 1, . . . , n}

fT = argmin
f

NX

i=1

L(yi, f(xi))

f̄(x) = ET [fT (x)]

ȳ = Ey[y]

T = {(xi
, y

i)|i = 1, . . . , n}

fT = argmin
f

NX

i=1

L(yi, f(xi))

f̄(x) = ET [fT (x)]

ȳ = Ey[y]

Training Data Classifier/Regressor

Expected value for y 

T = {(xi
, y

i)|i = 1, . . . , n}

fT = argmin
f

NX

i=1

L(yi, f(xi))

f̄(x) = ET [fT (x)]

ȳ = Ey[y|x]

Expected prediction 

Ey,T [(y � fT (x))
2|x] = Ey[(y � ȳ)2|x]

+ Ey,T [(f̄(x)� fT (x))
2|x]

+ Ey[(ȳ � f̄(x))2|x]
= vary(y|x) + varT (f(x)) + bias(fT (x))2

Bias-Variance Decomposition 



Bagging and Boosting

F

bag
T

(x) =
1
B

BX

b=1

f

T

b

(x) F

boost(x) =
1

B

BX

b=1

↵
b

f

w

b

(x)

Bagging Boosting

• Sample B datasets Tb   
at random with replacement  
from the full data T 

• Train on classifiers  
independently on each  
dataset and average results 

• Decreases variance  
(i.e. overfitting) does not  
affect bias (i.e. accuracy).

• Sequential training 
• Assign higher weight  

to previously misclassified 
data points 

• Combines weighted weak  
learners (high bias) into  
a strong learner (low bias) 

• Also some reduction of  
variance (in later iterations)


