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Time Series Data
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Time Series Data



Time Series Data

• Time series forecasting is fundamentally hard 
• Rare events often play a big role in changing trends 
• Impossible to know how events will affects trends  

(and often when such events will occur)



Time Series Data

• In some cases there are clear trends  
(here: seasonal effects + growth)

source: https://am241.wordpress.com/tag/time-series/ 

https://am241.wordpress.com/tag/time-series/
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(a) Moving average smoothing (b) Exponential smoothing

Figure 14.1: Various smoothing methods applied to IBM stock price from September 5, 2013
to September 4, 2014

Exponential Smoothing

In exponential smoothing, the smoothed value y′
i is defined as a linear combination of

the current value yi, and the previously smoothed value y′
i−1. The smoothing parameter

α ∈ (0, 1) is used for this purpose.

y′
i = α · yi + (1 − α) · y′

i−1 (14.2)

The value of y′
0 is typically set to the first point in the series. When the value of α is 1,

there are no smoothing effects, and the smoothed series is the same as the original series.
When the value of α is 0, the entire series becomes smoothed to the constant value of
y′
0. The approach is referred to as exponential smoothing because the value of y′

i can be
expressed as an exponentially decayed sum of the series values. By recursively substituting
the aforementioned equation into itself, the following can be shown:

y′
i = (1 − α)i · y′

0 + α ·
i∑

j=1

yj · (1 − α)i−j . (14.3)

The choice of α regulates the decay factor. Unlike moving averages, exponential smoothing
provides more importance to recent data points. Data points are not lost at the beginning
of the series, and the impact of the lag is reduced for the same level of smoothing. Examples
of moving average and exponential smoothing are illustrated in Fig. 14.1a, b, respectively.
It is evident that exponential smoothing does not lose any points at the beginning of the
series and generally provides slightly better smoothing for lower lag.

14.2.3 Normalization

Time series typically need to be normalized, especially when multiple series are analyzed
simultaneously. For example, one series might measure temperature, whereas another might
measure pressure. Because these values are measured on different scales, they cannot be
compared meaningfully. Therefore, two normalization methods are commonly used to adjust
for such variations.
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Figure 14.3: Impact of different operations on stationary and non-stationary series

Time series can be either stationary or nonstationary. A stationary stochastic process
is one whose parameters, such as the mean and variance, do not change with time. A
nonstationary process is one whose parameters change with time. Some kinds of time series
such as white noise are stationary. White noise is the strongest form of stationarity with
zero mean, constant variance, and zero covariance between series values separated by a fixed
lag. On the other hand, consider the case, where the behavioral attribute corresponds to
the price level of an industrial commodity such as crude oil. This is typically nonstationary
because the average price level may increase over time as a result of inflation. In fact,
most time series in real applications are nonstationary. A stationary series will usually be
characterized as a noisy series with a level trend, constant variance, and zero covariance
between different series values. For example, in Fig. 14.3a, both the series are nonstationary
because the average values increase with time. On the other hand, in Fig. 14.3b, the dashed
curve is stationary because the trends do not change significantly with time. A strictly
stationary time series is defined as follows:

Definition 14.3.1 (Strictly Stationary Time Series) A strictly stationary time series
is one in which the probabilistic distribution of the values in any time interval [a, b] is
identical to that in the shifted interval [a + h, b + h] for any value of the time shift h.

In other words, all multivariate distributions of subsets of variables must match with
their shifted counterparts. The window-based statistical parameters of a stationary time
series can be estimated in a meaningful way because the parameters do not vary over dif-
ferent time windows. In such cases, the estimated statistical parameters are good predictors
of future behavior. On the other hand, the current mean, variances, and statistical correla-
tions of the series are not necessarily good predictors of future behavior in regression-based
forecasting models for nonstationary series. Therefore, it is often advantageous to convert
nonstationary series to stationary ones before forecasting analysis. After the forecasting has
been performed on the stationary series, the predicted values are transformed back to the
original representation, using the inverse transformation. The strict stationarity concept of
Definition 14.3.1 is, however, too restrictive to be meaningfully used in real applications.
For example, it is difficult even to determine whether or not a time series is strictly station-
ary from a single instance because one must comprehensively characterize all multivariate
distributions of subsets of variables.
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Time series can be either stationary or nonstationary. A stationary stochastic process
is one whose parameters, such as the mean and variance, do not change with time. A
nonstationary process is one whose parameters change with time. Some kinds of time series
such as white noise are stationary. White noise is the strongest form of stationarity with
zero mean, constant variance, and zero covariance between series values separated by a fixed
lag. On the other hand, consider the case, where the behavioral attribute corresponds to
the price level of an industrial commodity such as crude oil. This is typically nonstationary
because the average price level may increase over time as a result of inflation. In fact,
most time series in real applications are nonstationary. A stationary series will usually be
characterized as a noisy series with a level trend, constant variance, and zero covariance
between different series values. For example, in Fig. 14.3a, both the series are nonstationary
because the average values increase with time. On the other hand, in Fig. 14.3b, the dashed
curve is stationary because the trends do not change significantly with time. A strictly
stationary time series is defined as follows:

Definition 14.3.1 (Strictly Stationary Time Series) A strictly stationary time series
is one in which the probabilistic distribution of the values in any time interval [a, b] is
identical to that in the shifted interval [a + h, b + h] for any value of the time shift h.

In other words, all multivariate distributions of subsets of variables must match with
their shifted counterparts. The window-based statistical parameters of a stationary time
series can be estimated in a meaningful way because the parameters do not vary over dif-
ferent time windows. In such cases, the estimated statistical parameters are good predictors
of future behavior. On the other hand, the current mean, variances, and statistical correla-
tions of the series are not necessarily good predictors of future behavior in regression-based
forecasting models for nonstationary series. Therefore, it is often advantageous to convert
nonstationary series to stationary ones before forecasting analysis. After the forecasting has
been performed on the stationary series, the predicted values are transformed back to the
original representation, using the inverse transformation. The strict stationarity concept of
Definition 14.3.1 is, however, too restrictive to be meaningfully used in real applications.
For example, it is difficult even to determine whether or not a time series is strictly station-
ary from a single instance because one must comprehensively characterize all multivariate
distributions of subsets of variables.

E[✏t] = 0yt = c+ ✏t
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Figure 14.4: Autocorrelation plots for various series

Eq. 14.15, it is also possible to select coefficients with specific lag values. In particular, lag
values with high absolute autocorrelation in the autocorrelation plot may be selected. Such
an approach is also helpful for forecasting periodic series.

Each timestamp in the past history of the time series data creates a linear equation
between the time series variables. A set of linear equations between the coefficients can be
created by using the value at each timestamp in the training data, along with its imme-
diately preceding window of length p. When the number of timestamps available is much
larger than p, this is an over-determined system of equations, which is infeasible. Therefore,
any (infeasible) solution will have an error associated with it. The coefficients a1, . . . ap, c
can be approximated with least-squares regression, to minimize the square-error of the over-
determined system (cf. Sect. 11.5 of Chap. 11). Note that the model can be used effectively
for forecasting future values, only if the key properties of the time series, such as the mean,
variance, and autocorrelation do not change significantly with time. Many off-the-shelf com-
mercial solvers are available for these models. The effectiveness of the forecasting model may
be quantified by using the noise level in the estimated coefficients. Specifically, the R2-value,
which is also referred to as the coefficient of determination, measures the ratio of the white
noise to the series variance:

R2 = 1 − Meant(ϵ2t )

Variancet(yt)
(14.16)

The coefficient of determination quantifies the fraction of variability in the series that is
explained by the regression, as opposed to random noise. It is therefore desirable for this
coefficient to be as close to 1 as possible.

14.3.2 Autoregressive Moving Average Models

While autocorrelation is a useful predictive property of time series, it does not always
explain all the variations. In fact, the unexpected component of the variations (shocks),
does impact future values of the time series. This component can be captured with the use
of a moving average model (MA). The autoregressive model can therefore be made more
robust by combining it with an MA. Before discussing the autoregressive moving average
model (ARMA), the MA will be introduced.

IBM Stock Price Sine Wave
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it may be useful to apply the logarithm function to the time series values, before the
differencing operation. An example is provided in Fig. 14.3a, where the variation in inflation
is illustrated with time. It is evident that the differencing operation does not help in making
the series stationary. In Fig. 14.3b, the logarithm function is applied to the series before
the differencing operation. In this case, the series becomes stationary after the differencing
operation.

In the following, a number of univariate time series forecasting models will be discussed.
These models work effectively under different assumptions on the time series patterns. Some
of these models assume a stationary time series, whereas others do not.

14.3.1 Autoregressive Models

Univariate time series contain a single variable that is predicted using autocorrelations.
Autocorrelations represent the correlations between adjacently located timestamps in a
series. Typically, the behavioral attribute values at adjacently located timestamps are pos-
itively correlated. The autocorrelations in a time series are defined with respect to a par-
ticular value of the lag L. Thus, for a time series y1, . . . yn, the autocorrelation at lag L is
defined as the Pearson coefficient of correlation between yt and yt+L.

Autocorrelation(L) =
Covariancet(yt, yt+L)

Variancet(yt)
. (14.14)

The autocorrelation always lies in the range [−1, 1], although the value is almost always
positive for very small values of L, and gradually drops off with increasing lag L. The
positive correlation is a result of the fact that adjacent values of most time series are very
similar, though the similarity drops off with increasing distance. High (absolute) values of
the autocorrelation imply that the value at a given position in the series can be predicted
as a function of the values in the immediately preceding window. This is, in fact, the key
property that enables the use of the autoregressive model. For example, the variation in
autocorrelation with lag for the IBM stock example (Fig. 14.1) is illustrated in Fig. 14.4a.
Such a figure is referred to as the autocorrelation plot and is used commonly in AR models.
While the autocorrelation is usually positive and falls off with lag, the precise behavior
is highly application-specific. For periodic series, the autocorrelation may be periodic and
negative at certain lag intervals. An example of the autocorrelations for a periodic sine wave
is illustrated in Fig. 14.4b.

In the autoregressive model, the value of yt at time t is defined as a linear combination
of the values in the immediately preceding window of length p.

yt =
p∑

i=1

ai · yt−i + c + ϵt (14.15)

A model that uses the preceding window of length p is referred to as an AR(p) model.
The values of the regression coefficients a1 . . . ap, c need to be learned from the training
data. The larger the value of p, the greater the lag that one is willing to incorporate in
the autocorrelations. The choice of p should be guided by the level of autocorrelation of
Eq. 14.14. Because the autocorrelation often reduces with increasing values of the lag L,
a value of p should be selected, so that the autocorrelation at lag L = p is small. In
such cases, increasing the window of regression further may not help the accuracy of the
modeling process, and may sometimes result in overfitting. Typically, the autocorrelation
plot (Fig. 14.4) is used to identify the window. Instead of using a window of coefficients in
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The moving average model predicts subsequent series values on the basis of the past
history of deviations from predicted values. A deviation from a predicted value can be
viewed as white noise, or a shock. This model is best used in scenarios where the behavioral
attribute value at a timestamp is dependent on the history of shocks in the time series,
rather than the actual series values. The moving average model is defined as follows:

yt =
q∑

i=1

bi · ϵt−i + c + ϵt

The aforementioned model is also referred to as MA(q). The parameter c is the mean of
the time series. The values of b1 . . . bq are the coefficients that need to be learned from the
data. The moving average model is quite different from the autoregressive model, in that it
relates the current value to the mean of the series and the previous history of deviations from
forecasts, rather than the actual values. Here the values of ϵt are assumed to be white noise
error terms that are uncorrelated with one another. A problem here is that the error terms
ϵt are not part of observed data, but also need to be derived from the forecasting model.
This circularity implies that the system of equations is inherently nonlinear when expressed
purely in terms of the coefficients and the observed values yi. Typically, iterative nonlinear
fitting procedures are used instead of the linear least-squares approach to determine a
solution to the moving average model. It is rare that the series values can be predicted
in terms of only the shocks, and not the autocorrelations. Autocorrelations are extremely
important in time series analysis because of the inherent temporal continuity of time series
data. At the same time, the history of shocks do impact the future values of the series.
Therefore, neither the autoregressive nor the moving average model can fully capture all
the correlations needed for forecasting in isolation.

A more general model may be obtained by combining the power of both the autoregres-
sive model and the moving average model. The idea is to learn the appropriate impact of
both the autocorrelations and the shocks in predicting time series values. The two models
can be combined with p autoregressive terms and q moving average terms. This model is
referred to as the ARMA model. In this case, the relationships between the different terms
may be expressed as follows:

yt =
p∑

i=1

ai · yt−i +
q∑

i=1

bi · ϵt−i + c + ϵt

The aforementioned model is the ARMA(p, q) model. A key question here is about the
choice of the parameters p and q in these models. If the values of p and q are set to be too
small, then the model will not fit the data well. On the other hand if the values of p and q
are set to be too large, then the model is likely to overfit the data. In general, it is advisable
to select the values of p and q as small as possible, so that the model fits the data well. As in
the previous case, autoregressive moving average models are best used with stationary data.

In many cases, nonstationary data can be addressed by combining differencing with the
autoregressive moving average model. This results in the autoregressive integrated moving
average model (ARIMA). In principle, differences of any order may be used, although first-
and second-order differences are most commonly used. Consider the case where the first
order differenced value y′

t is used. Then, the ARIMA model can be expressed as follows:

y′
t =

p∑

i=1

ai · y′
t−i +

q∑

i=1

bi · ϵt−i + c + ϵt

14.3. TIME SERIES FORECASTING 469

The moving average model predicts subsequent series values on the basis of the past
history of deviations from predicted values. A deviation from a predicted value can be
viewed as white noise, or a shock. This model is best used in scenarios where the behavioral
attribute value at a timestamp is dependent on the history of shocks in the time series,
rather than the actual series values. The moving average model is defined as follows:

yt =
q∑

i=1

bi · ϵt−i + c + ϵt

The aforementioned model is also referred to as MA(q). The parameter c is the mean of
the time series. The values of b1 . . . bq are the coefficients that need to be learned from the
data. The moving average model is quite different from the autoregressive model, in that it
relates the current value to the mean of the series and the previous history of deviations from
forecasts, rather than the actual values. Here the values of ϵt are assumed to be white noise
error terms that are uncorrelated with one another. A problem here is that the error terms
ϵt are not part of observed data, but also need to be derived from the forecasting model.
This circularity implies that the system of equations is inherently nonlinear when expressed
purely in terms of the coefficients and the observed values yi. Typically, iterative nonlinear
fitting procedures are used instead of the linear least-squares approach to determine a
solution to the moving average model. It is rare that the series values can be predicted
in terms of only the shocks, and not the autocorrelations. Autocorrelations are extremely
important in time series analysis because of the inherent temporal continuity of time series
data. At the same time, the history of shocks do impact the future values of the series.
Therefore, neither the autoregressive nor the moving average model can fully capture all
the correlations needed for forecasting in isolation.

A more general model may be obtained by combining the power of both the autoregres-
sive model and the moving average model. The idea is to learn the appropriate impact of
both the autocorrelations and the shocks in predicting time series values. The two models
can be combined with p autoregressive terms and q moving average terms. This model is
referred to as the ARMA model. In this case, the relationships between the different terms
may be expressed as follows:

yt =
p∑

i=1

ai · yt−i +
q∑

i=1

bi · ϵt−i + c + ϵt

The aforementioned model is the ARMA(p, q) model. A key question here is about the
choice of the parameters p and q in these models. If the values of p and q are set to be too
small, then the model will not fit the data well. On the other hand if the values of p and q
are set to be too large, then the model is likely to overfit the data. In general, it is advisable
to select the values of p and q as small as possible, so that the model fits the data well. As in
the previous case, autoregressive moving average models are best used with stationary data.

In many cases, nonstationary data can be addressed by combining differencing with the
autoregressive moving average model. This results in the autoregressive integrated moving
average model (ARIMA). In principle, differences of any order may be used, although first-
and second-order differences are most commonly used. Consider the case where the first
order differenced value y′

t is used. Then, the ARIMA model can be expressed as follows:

y′
t =

p∑

i=1

ai · y′
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Moving-Average: MA(q)

Autoregressive moving-average: ARMA(p,q)

Autoregressive integrated moving-average: ARIMA(p,d,q)

Autoregressive: AR(p)

Do least-squares regression to estimate a,b,c

yt =
pX

i=1

aiyt�i + c+ ✏t

y(d)t =
pX

i=1

aiy
(d)
t�i +

qX

i=1

bi✏t�i + c+ ✏t



ARIMA on Airline Data

source: http://www.statsref.com/HTML/index.html?arima.html 

(p,d,q) = (0,1,12)

http://www.statsref.com/HTML/index.html?arima.html
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Time Series with Distinct States



Can we use a  Gaussian Mixture Model?
Time Series Histogram

MixturePosterior on states



Time Series Histogram

MixturePosterior on states

Can we use a  Gaussian Mixture Model?



Estimate from GMM

Hidden Markov Models
Estimate from HMM

• Idea: Mixture model + Markov chain for states 
• Can model correlation between subsequent states  

(more likely to be in same state than different state)  



Reminder: Random Surfers in PageRank
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(adapted from:: Mining of Massive Datasets, http://www.mmds.org)

Model for random Surfer:  
• At time t = 0 pick a page at random 
• At each subsequent time t follow an 

outgoing link at random

http://www.mmds.org
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Hidden Markov Models
Gaussian Mixture

zn ⇠ Discrete(⇡)

xn|zn = k ⇠ Normal(µk,�k)

Gaussian HMM

z1 ⇠ Discrete(⇡)

zt+1|zt = k ⇠ Discrete(Ak)

xt|zt = k ⇠ Normal(µk,�k)

A = M>



Review: Gaussian Mixtures

zn ⇠ Discrete(⇡)

xn|zn = k ⇠ Normal(µk,�k)

Expectation Maximization

�

i
tk = p(zt = k |xt,✓

i�1)

=
p(xt, zt = k |✓i�1)

P
l p(xt, zt = l |✓i�1)

1. Update cluster probabilities

2. Update parameters

N i
k =

PT
t=1 �

i
tk

µ

i
k = 1

Ni
k

PT
t=1 �

i
tkxt

�

i
k =

⇣
1
Ni

k

PT
t=1 �

i
tk(x

i
t � µ

i
k)

2
⌘1/2

⇡

i
k = N

i
k/N



Forward-backward Algorithm
Expectation step for HMM

z1 ⇠ Discrete(⇡)

zt+1|zt = k ⇠ Discrete(Ak)

xt|zt = k ⇠ Normal(µk,�k)

↵t,l := p(x1:t, zt)

=
X

k

p(xt|µl,�l)Akl↵t�1,k

�t,k := p(xt+1:T | zt)

=
X

l

�t+1,l p(xt+1|µl,�l)Akl

�t,k = p(zt = k |x1:T ,✓)

=
p(x1:t, zt)p(xt+1:T |zt)

p(x1:T )

/ ↵t,k�t,k



Other Examples for HMMs
Handwritten Digits

• State 1: Sweeping arc 
• State 2: Horizontal line

13.2. Hidden Markov Models 615

Figure 13.11 Top row: examples of on-line handwritten
digits. Bottom row: synthetic digits sam-
pled generatively from a left-to-right hid-
den Markov model that has been trained
on a data set of 45 handwritten digits.

One of the most powerful properties of hidden Markov models is their ability to
exhibit some degree of invariance to local warping (compression and stretching) of
the time axis. To understand this, consider the way in which the digit ‘2’ is written
in the on-line handwritten digits example. A typical digit comprises two distinct
sections joined at a cusp. The first part of the digit, which starts at the top left, has a
sweeping arc down to the cusp or loop at the bottom left, followed by a second more-
or-less straight sweep ending at the bottom right. Natural variations in writing style
will cause the relative sizes of the two sections to vary, and hence the location of the
cusp or loop within the temporal sequence will vary. From a generative perspective
such variations can be accommodated by the hidden Markov model through changes
in the number of transitions to the same state versus the number of transitions to the
successive state. Note, however, that if a digit ‘2’ is written in the reverse order, that
is, starting at the bottom right and ending at the top left, then even though the pen tip
coordinates may be identical to an example from the training set, the probability of
the observations under the model will be extremely small. In the speech recognition
context, warping of the time axis is associated with natural variations in the speed of
speech, and again the hidden Markov model can accommodate such a distortion and
not penalize it too heavily.

13.2.1 Maximum likelihood for the HMM
If we have observed a data set X = {x1, . . . ,xN}, we can determine the param-

eters of an HMM using maximum likelihood. The likelihood function is obtained
from the joint distribution (13.10) by marginalizing over the latent variables

p(X|θ) =
∑

Z

p(X,Z|θ). (13.11)

Because the joint distribution p(X,Z|θ) does not factorize over n (in contrast to the
mixture distribution considered in Chapter 9), we cannot simply treat each of the
summations over zn independently. Nor can we perform the summations explicitly
because there are N variables to be summed over, each of which has K states, re-
sulting in a total of KN terms. Thus the number of terms in the summation grows

RNA splicing

• State 1: Exon (relevant) 
• State 2: Splice site 
• State 3: Intron (ignored)


