# Data Mining Techniques

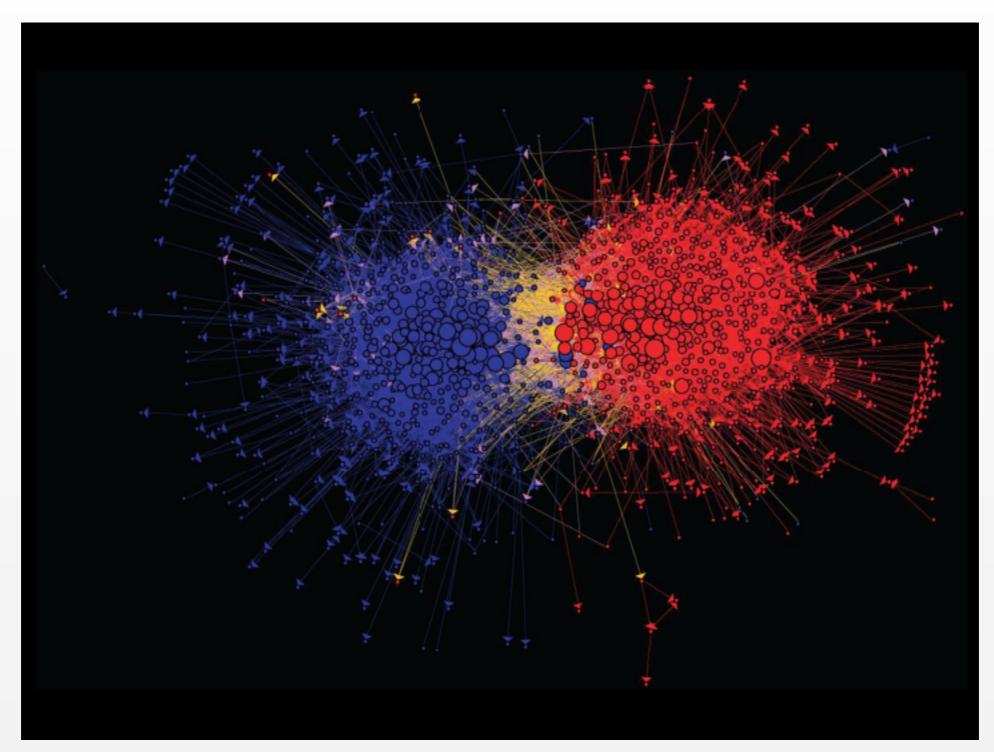
CS 6220 - Section 3 - Fall 2016

#### Lecture 17: Link Analysis

Jan-Willem van de Meent (credit: Yijun Zhao, Yi Wang, Tan et al., Leskovec et al.)



#### Graph Data: Media Networks



#### **Connections between political blogs** Polarization of the network [Adamic-Glance, 2005]

(adapted from:: Mining of Massive Datasets, <a href="http://www.mmds.org">http://www.mmds.org</a>)

#### Schedule Updates

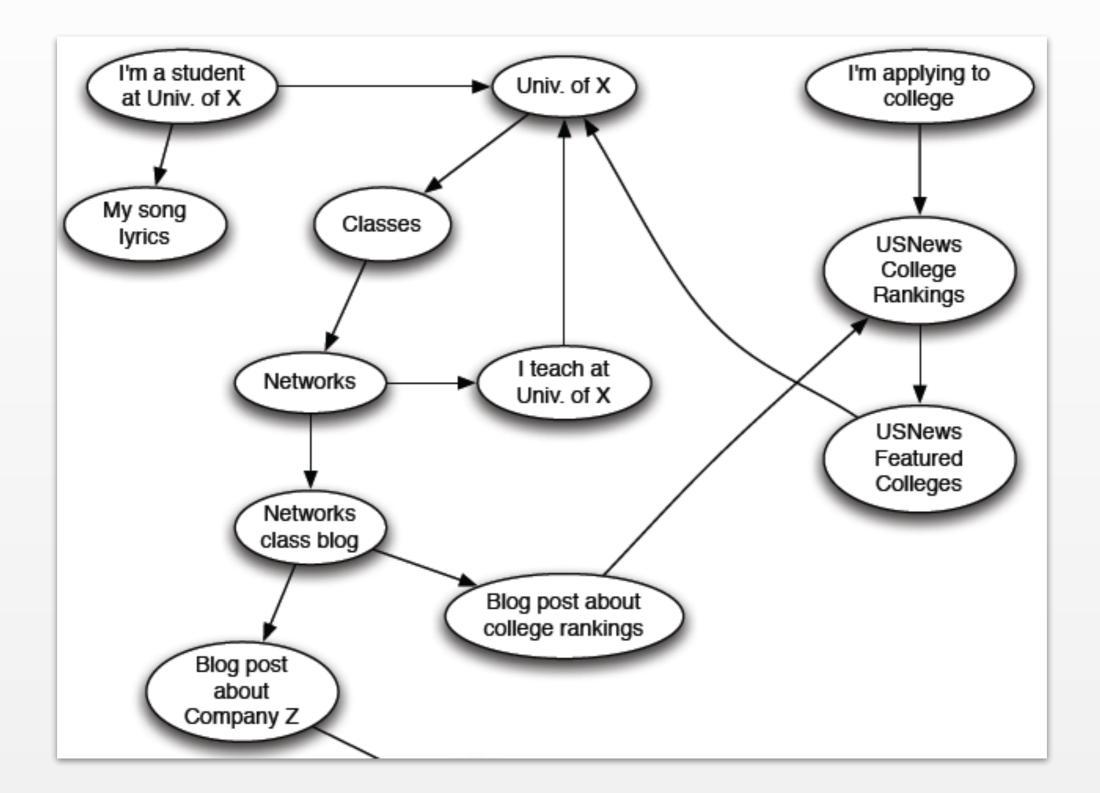
| 8  | 26 Oct | Midterm exam                                          |        |                  |                                        |
|----|--------|-------------------------------------------------------|--------|------------------|----------------------------------------|
|    | 28 Oct | Project Proposal presentations                        |        | Proposals<br>due |                                        |
| 9  | 04 Nov | Frequent Pattern Mining 1: Apriori                    |        |                  | HKP: 6; HTF: 14; Aggarwal: 4,5; TSK: 6 |
|    | 07 Nov | Frequent Pattern Mining 2: PCY, FP-Growth             |        |                  | HKP: 6; HTF: 14; Aggarwal: 4,5; TSK: 6 |
| 10 | 09 Nov | Link Analysis: Page-rank, Trust-rank                  |        |                  | LRU: 5; Aggarwal: 18.4                 |
|    | 11 Nov | (Veteran's Day)                                       | #3 due |                  |                                        |
| 11 | 16 Nov | Time Series: Hidden Markov Models                     |        |                  | Bishop: 13.1-2; HKP: 13.1.1            |
|    | 18 Nov | Community Detection: Betweenness, Spectral Clustering | #4 due |                  | LRU: 10                                |
| 12 | 23 Nov | (Thanksgiving Holiday)                                |        |                  |                                        |
|    | 25 Nov | (Thanksgiving Holiday)                                |        |                  |                                        |
| 13 | 30 Nov | Bonus Topic: Deep Learning                            |        |                  |                                        |
|    | 02 Dec | Project Presentations                                 |        |                  |                                        |
| 14 | 07 Dec | (Review)                                              |        |                  |                                        |
|    | 09 Dec | (Review)                                              |        | Reports          |                                        |
|    |        |                                                       |        | due              |                                        |
| 15 | 14 Dec | Final Exam                                            |        |                  |                                        |
| 16 | 19 Dec | (Final grades posted)                                 |        |                  |                                        |

# Web search before PageRank



- Human-curated (e.g. Yahoo, Looksmart)
  - Hand-written descriptions
  - Wait time for inclusion
- Text-search (e.g. WebCrawler, Lycos)
  - Prone to term-spam

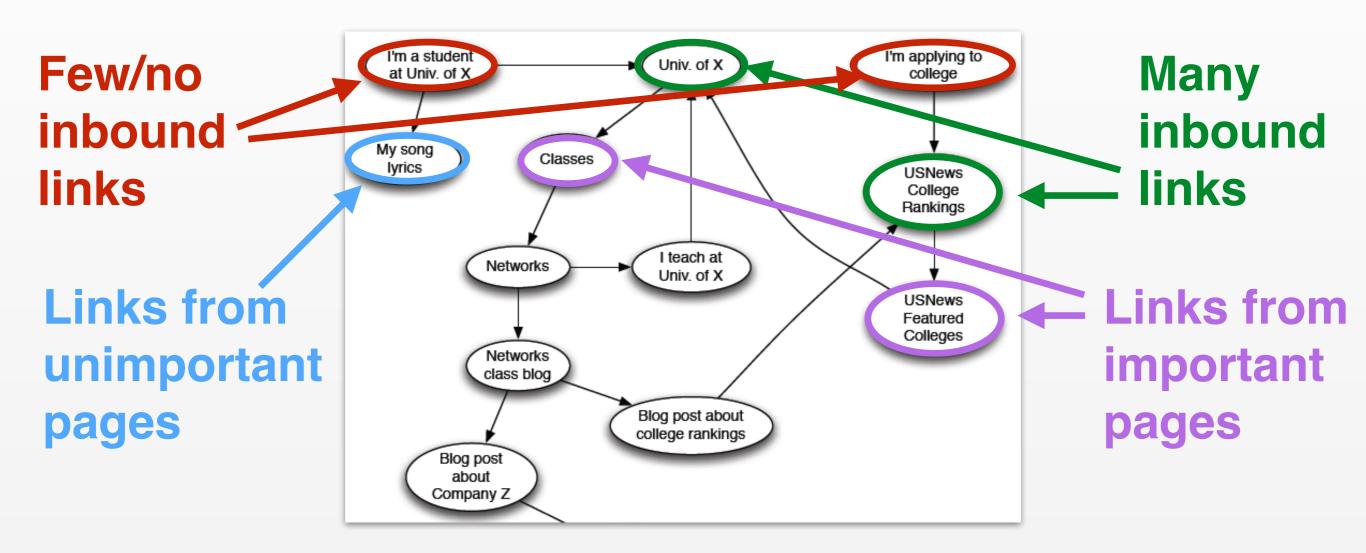
#### Web as a Directed Graph



(adapted from:: Mining of Massive Datasets, <a href="http://www.mmds.org">http://www.mmds.org</a>)

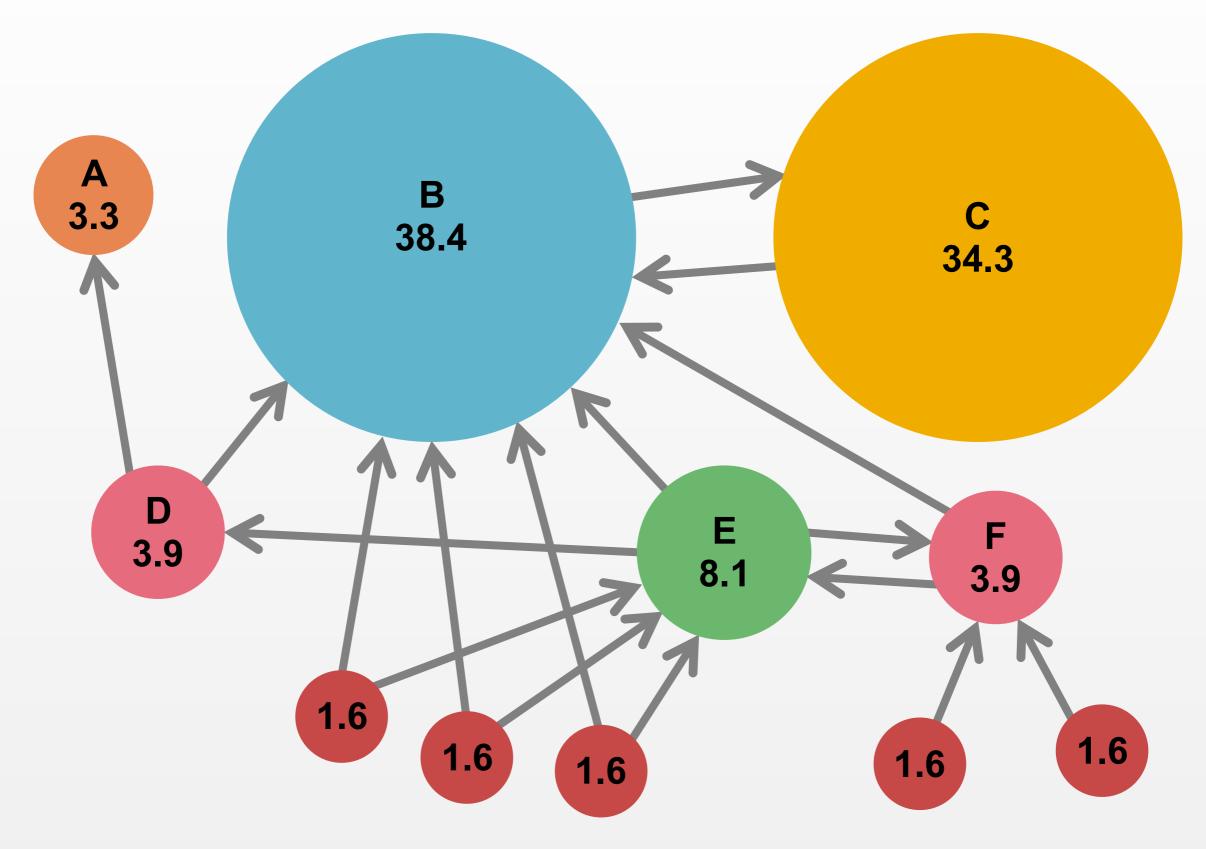
#### PageRank: Links as Votes

Not all pages are equally important

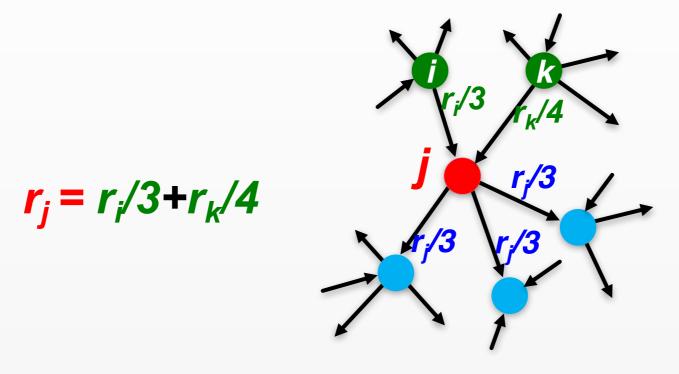


- Pages with more inbound links are more important
- Inbound links from important pages carry more weight

#### Example: PageRank Scores

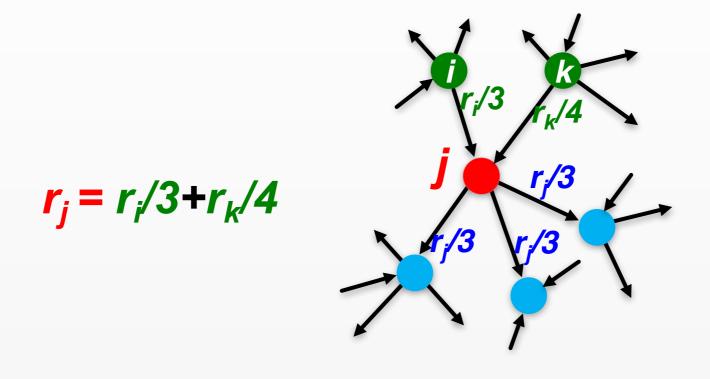


# Simple Recursive Formulation



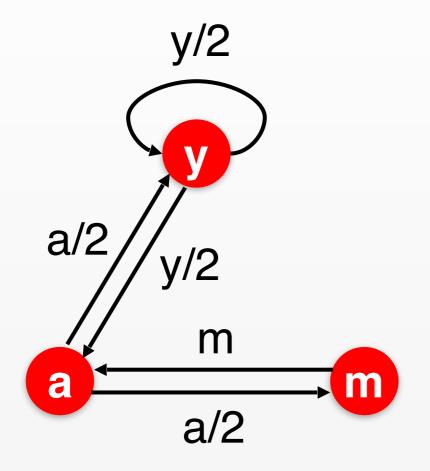
- A link's vote is proportional to the importance of its source page
- If page *j* with importance *r<sub>j</sub>* has *n* out-links, each link gets *r<sub>j</sub>* / *n* votes
- Page *j*'s own importance is the sum of the votes on its in-links

#### Equivalent Formulation: Random Surfer



- At time t a surfer is on some page i
- At time *t+1* the surfer follows a link to a new page at random
- Define rank r<sub>i</sub> as fraction of time spent on page i

#### PageRank: The "Flow" Model

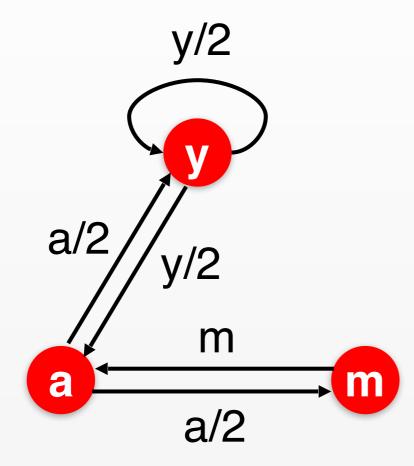


$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

"Flow" equations:  $r_y = r_y/2 + r_a/2$   $r_a = r_y/2 + r_m$  $r_m = r_a/2$ 

- 3 equations, 3 unknowns
- Impose constraint:  $r_y + r_a + r_m = 1$
- Solution:  $r_y = 2/5$ ,  $r_a = 2/5$ ,  $r_m = 1/5$

#### PageRank: The "Flow" Model



 $r_j = \sum_{i=1}^{j} \frac{r_i}{d_i}$ 

"Flow" equations:  $r_y = r_y/2 + r_a/2$   $r_a = r_y/2 + r_m$  $r_m = r_a/2$ 

 $\boldsymbol{r} = \boldsymbol{M} \cdot \boldsymbol{r} \qquad \begin{bmatrix} r_y \\ r_a \\ r_m \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 1 \\ 0 & \frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} r_y \\ r_a \\ r_m \end{bmatrix}$ 

Matrix *M* is stochastic (i.e. columns sum to one)

### PageRank: Eigenvector Problem

- PageRank: Solve for eigenvector r = M rwith eigenvalue  $\lambda = 1$
- Eigenvector with  $\lambda = 1$  is guaranteed to exist since *M* is a stochastic matrix (i.e. if a = M b then  $\Sigma a_i = \Sigma b_i$ )
- Problem: There are billions of pages on the internet. How do we solve for eigenvector with order 10<sup>10</sup> elements?

### PageRank: Power Iteration

Model for random Surfer:

- At time t = 0 pick a page at random
- At each subsequent time *t* follow an outgoing link at random

Probabilistic interpretation:

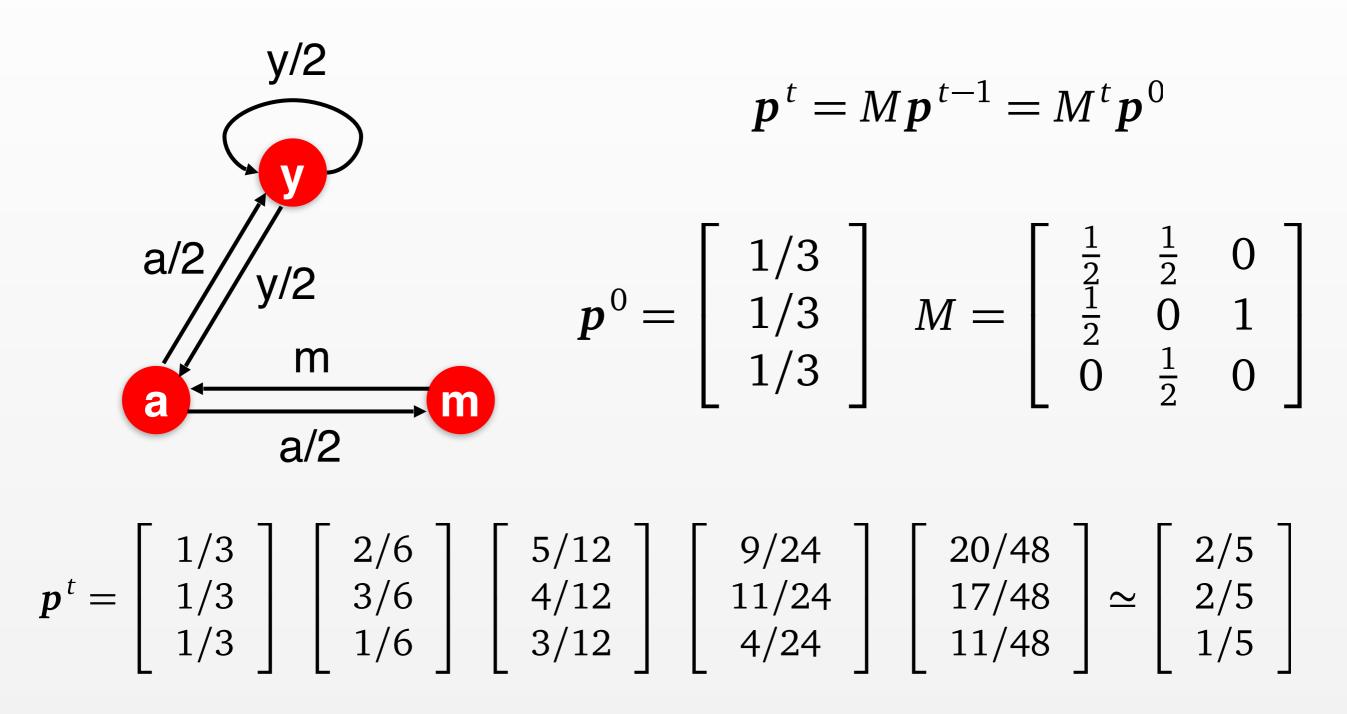
$$p(z_0 = i) = 1/N$$

$$p(z_t = i | z_{t-1} = j) = M_{ij}$$

$$p(z_t = i) = \sum_j p(z_t = i, z_{t-1} = j)$$

$$= \sum_j M_{ij} p(z_{t-1} = j)$$

#### PageRank: Power Iteration



 $p^t$  converges to r. Iterate until  $|p^t - p^{t-1}| < \varepsilon$ 

# Aside: Ergodicity

- PageRank is assumes a random walk model for individual surfers
- Equivalent assumption: flow model in which equal fractions of surfers follow each link at every time
- *Ergodicity:* The equilibrium of the flow model is the same as the asymptotic distribution for an individual random walk

$$r = Mr$$
  $p^{t} = Mp^{t-1}$   $\lim_{t \to \infty} p^{t} = r$ 

# Aside: Ergodicity

- PageRank is assumes a random walk model for individual surfers
- Equivalent assumption: flow model in which equal fractions of surfers follow each link at every time
- *Ergodicity:* The equilibrium of the flow model is the same as the asymptotic distribution for an individual random walk

$$p(z_t = i) = \sum_j M_{ij} p(z_{t-1} = j)$$
$$\lim_{T \to \infty} \mathbb{E}\left[\frac{1}{T} \sum_{t=1}^T I[z_t = i]\right] = r_i$$

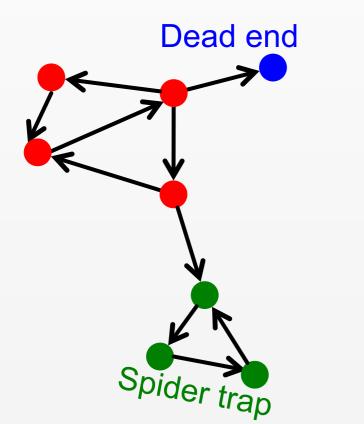
# Aside: Ergodicity

- PageRank is assumes a random walk model for individual surfers
- Equivalent assumption: flow model in which equal fractions of surfers follow each link at every time
- *Ergodicity:* The equilibrium of the flow model is the same as the asymptotic distribution for an individual random walk

Averaging over individuals is equivalent to averaging single individual over time

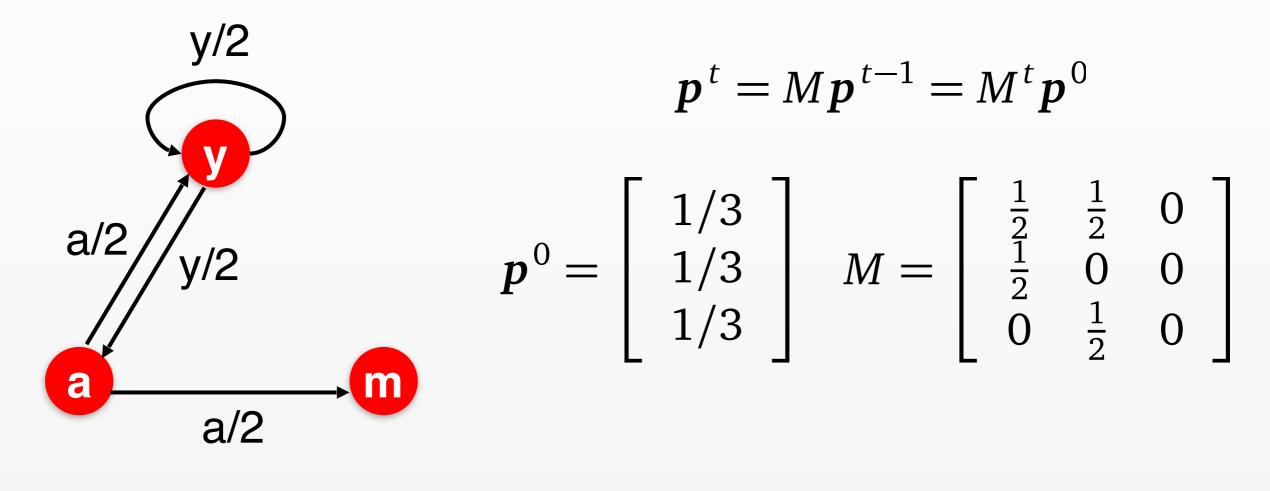
# PageRank: Problems





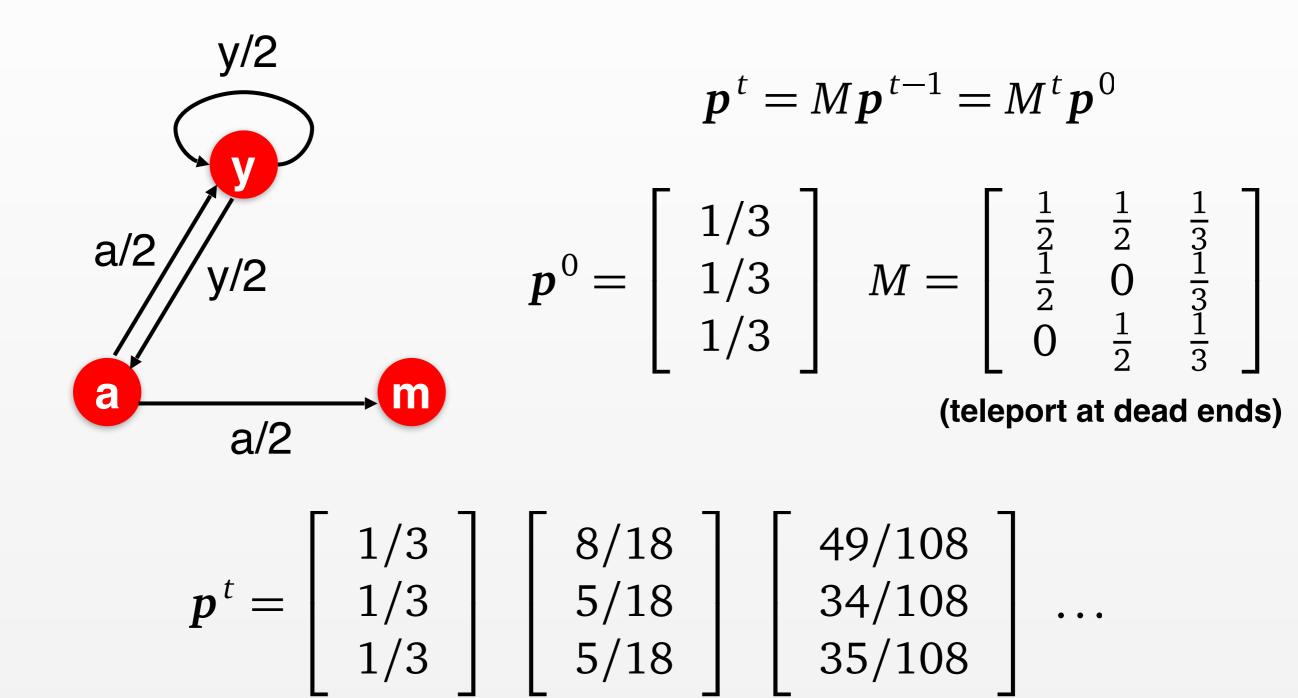
- Nodes with no outgoing links.
- Where do surfers go next?
- 2. Spider Traps
  - Subgraph with no outgoing links to wider graph
  - Surfers are "trapped" with no way out.

#### Power Iteration: Dead Ends



$$\boldsymbol{p}^{t} = \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix} \begin{bmatrix} 2/6 \\ 1/6 \\ 1/6 \end{bmatrix} \begin{bmatrix} 3/12 \\ 1/12 \\ 1/12 \end{bmatrix} \dots \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
  
Probability not conserved

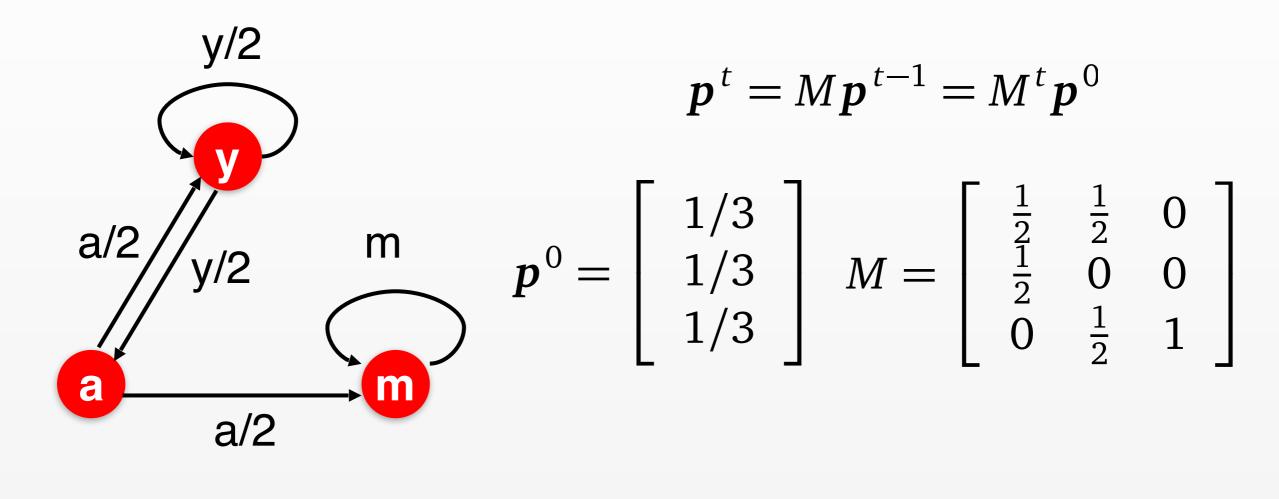
#### Power Iteration: Dead Ends



Fixes "probability sink" issue

(adapted from:: Mining of Massive Datasets, <a href="http://www.mmds.org">http://www.mmds.org</a>)

#### Power Iteration: Spider Traps



 $\boldsymbol{p}^{t} = \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix} \begin{bmatrix} 2/6 \\ 1/6 \\ 3/6 \end{bmatrix} \begin{bmatrix} 3/12 \\ 2/12 \\ 7/12 \end{bmatrix} \begin{bmatrix} 5/24 \\ 3/24 \\ 16/24 \end{bmatrix} \dots \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ 

Probability accumulates in traps (surfers get stuck)

### Solution: Random Teleports

Model for teleporting random surfer:

- At time t = 0 pick a page at random
- At each subsequent time *t* 
  - With probability  $\beta$  follow an outgoing link at random
  - With probability  $1-\beta$  teleport to a new initial location at random

PageRank Equation [Page & Brin 1998]

$$r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

#### Power Iteration: Teleports

$$p^{t} = \beta M p^{t-1} + (1-\beta)p^{0} = \tilde{M}p^{t-1}$$
$$\tilde{M} = \beta M + (1-\beta) \begin{bmatrix} -p_{1}^{0} & -\\ & \cdots \\ -p_{N}^{0} & - \end{bmatrix}$$
(can use power iteration as normal)

a

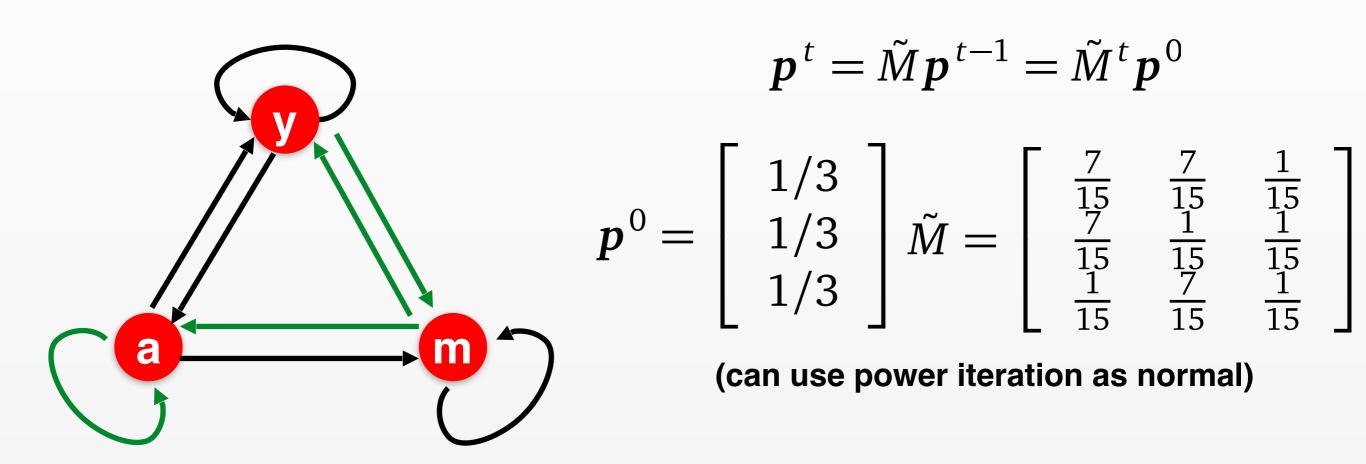
#### Power Iteration: Teleports

$$p^{t} = \beta M p^{t-1} + (1-\beta)p^{0} = \tilde{M} p^{t-1}$$
$$\tilde{M} = \beta M + (1-\beta) \begin{bmatrix} - p_{1}^{0} & - \\ & \ddots & \\ - & p_{N}^{0} & - \end{bmatrix}$$
(can use power iteration as normal)

$$\tilde{M} = 4/5 \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0\\ \frac{1}{2} & 0 & 0\\ 0 & \frac{1}{2} & 1 \end{bmatrix} + 1/5 \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3}\\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3}\\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{7}{15} & \frac{7}{15} & \frac{1}{15}\\ \frac{7}{15} & \frac{1}{15} & \frac{1}{15}\\ \frac{1}{15} & \frac{7}{15} & \frac{1}{15} \end{bmatrix}$$

a

#### Power Iteration: Teleports



$$\boldsymbol{p}^{t} = \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix} \begin{bmatrix} 0.33 \\ 0.20 \\ 0.46 \end{bmatrix} \begin{bmatrix} 0.24 \\ 0.20 \\ 0.56 \end{bmatrix} \dots \begin{bmatrix} 7/33 \\ 5/33 \\ 21/33 \end{bmatrix}$$

# Computing PageRank $p^{t} = \beta M p^{t} + \frac{1 - \beta}{N}$

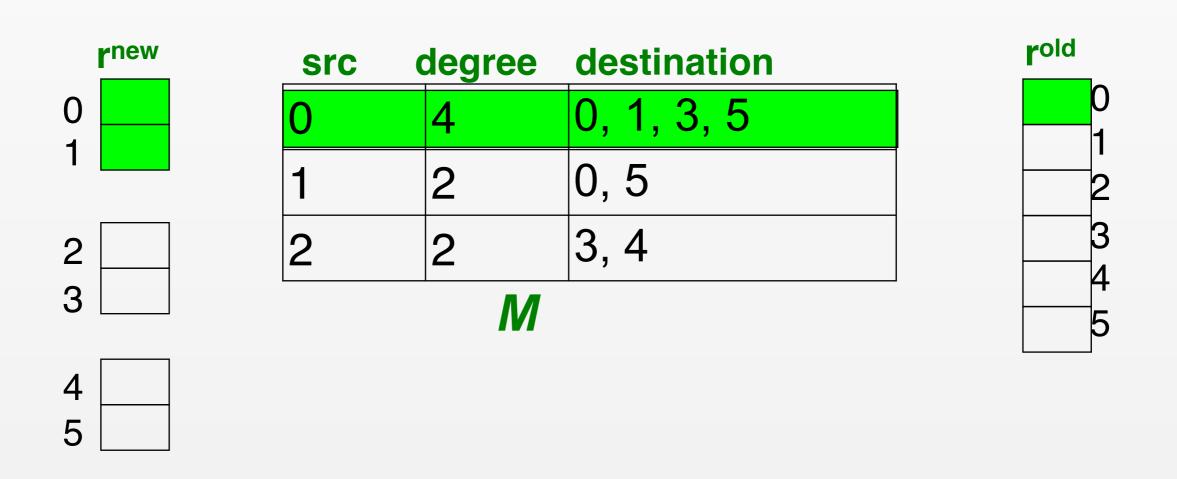
- *M* is sparse only store nonzero entries
  - Space proportional roughly to number of links
  - Say 10N, or 4\*10\*1 billion = 40GB
  - Still won't fit in memory, but will fit on disk

| source<br>node | degree | destination nodes     |
|----------------|--------|-----------------------|
| 0              | 3      | 1, 5, 7               |
| 1              | 5      | 17, 64, 113, 117, 245 |
| 2              | 2      | 13, 23                |

(adapted from:: Mining of Massive Datasets, <a href="http://www.mmds.org">http://www.mmds.org</a>)

# Block-based Update Algorithm

- Break rnew into k blocks that fit in memory
- Scan M and rold once for each block



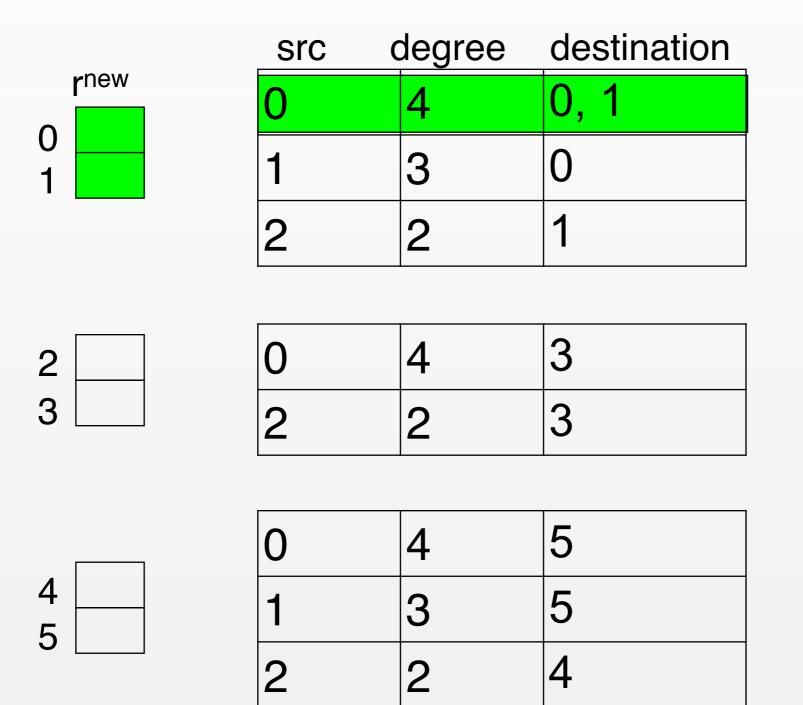
# Block-Stripe Update Algorithm

Break M into stripes: Each stripe contains only destination nodes in the corresponding block of rnew

rold

В

5



# First Spammers: Term Spam

- How do you make your page appear to be about movies?
  - (1) Add the word movie 1,000 times to your page
  - Set text color to the background color, so only search engines would see it
  - (2) Or, run the query "movie" on your target search engine
  - See what page came first in the listings
  - Copy it into your page, make it "invisible"
- These and similar techniques are term spam

#### Google's Solution to Term Spam

- Believe what people say about you, rather than what you say about yourself
  - Use words in the anchor text (words that appear underlined to represent the link) and its surrounding text
- PageRank as a tool to measure the "importance" of Web pages

#### Google vs. Spammers: Round 2!

- Once Google became the dominant search engine, spammers began to work out ways to fool Google
- Spam farms were developed to concentrate PageRank on a single page
- Link spam:
  - Creating link structures that boost PageRank of a particular page



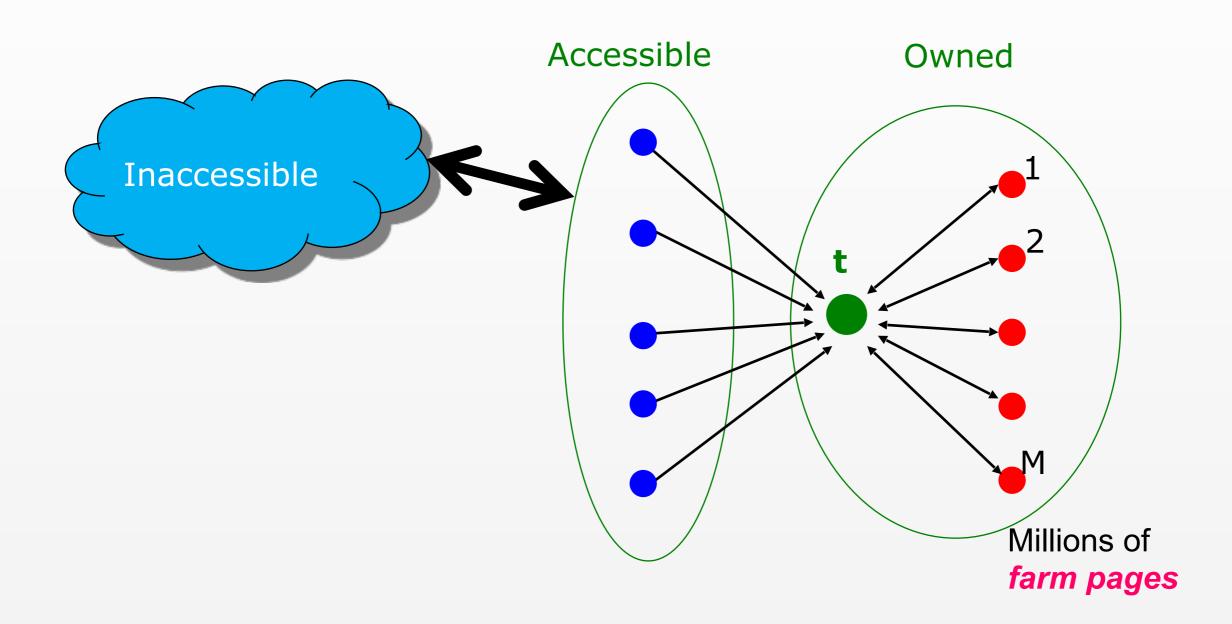
# Link Spamming

- Three kinds of web pages from a spammer's point of view
  - Inaccessible pages
  - Accessible pages
    - e.g., blog comments pages
    - spammer can post links to his pages
  - Owned pages
    - Completely controlled by spammer
    - May span multiple domain names

### Link Farms

- Spammer's goal:
  - Maximize the PageRank of target page t
- Technique:
  - Get as many links from accessible pages as possible to target page t
  - Construct "link farm" to get PageRank multiplier effect

#### Link Farms



# One of the most common and effective organizations for a link farm

#### PageRank: Extensions

$$\boldsymbol{p}^{t} = \beta M \boldsymbol{p}^{t-1} + (1-\beta)\boldsymbol{p}^{0} = \tilde{M} \boldsymbol{p}^{t-1}$$

- *Topic-specific PageRank*:
  - Restrict teleportation to some set *S* of pages related to a specific topic
  - Set  $p^{0_i} = 1/|S|$  if  $i \in S$ ,  $p^{0_i} = 0$  otherwise
- Trust Propagation
  - Use set S of trusted pages for teleport set