Data Mining Techniques

CS 6220 - Section 3 - Fall 2016

Lecture 16: Association Rules

Jan-Willem van de Meent (credit: Yijun Zhao, Yi Wang, Tan et al., Leskovec et al.)

Apriori: Summary

1. Set $k=0$
2. Define C_{1} as all size 1 item sets
3. While $\boldsymbol{C}_{\boldsymbol{k}+1}$ is not empty
4. Set $k=k+1$
5. Scan DB to determine subset $L_{k} \subseteq C_{k}$ with support $\geq s$
6. Construct candidates C_{k+1} by combining sets in L_{k} that differ by 1 element

Apriori: Bottlenecks

1. Set $k=0$
2. Define C_{1} as all size 1 item sets
3. While $\boldsymbol{C}_{\boldsymbol{k}+\boldsymbol{1}}$ is not empty
4. Set $k=k+1$
5. Scan DB to determine subset $L_{k} \subseteq C_{k}$
with support $\geq s$
6. Construct candidates C_{k+1} by combining (Memory sets in L_{k} that differ by 1 element

Apriori: Main-Memory Bottleneck

- For many frequent-itemset algorithms, main-memory is the critical resource
- As we read baskets, we need to count something, e.g., occurrences of pairs of items
- The number of different things we can count is limited by main memory
- For typical market-baskets and reasonable support (e.g., 1\%), $k=2$ requires most memory
- Swapping counts in/out is a disaster (why?)

Counting Pairs in Memory

Two approaches:

- Approach 1: Count all pairs using a matrix
- Approach 2: Keep a table of triples
$[i, j, c]=$ "the count of the pair of items $\{i, j\}$ is c."
- If integers and item ids are 4 bytes, we need approximately 12 bytes for pairs with count > 0
- Plus some additional overhead for the hashtable

Note:

- Approach 1 only requires 4 bytes per pair
- Approach 2 uses 12 bytes per pair (but only for pairs with count >0)

Comparing the 2 Approaches

Triangular Matrix

Triples

Comparing the two approaches

- Approach 1: Triangular Matrix
- n = total number items
- Count pair of items $\{i, j\}$ only if $i<j$
- Keep pair counts in lexicographic order:
- $\{1,2\},\{1,3\}, \ldots,\{1, n\},\{2,3\},\{2,4\}, \ldots,\{2, n\},\{3,4\}, \ldots$
- Pair $\{i, j\}$ is at position $(i-1)(n-i / 2)+j-1$
- Total number of pairs $n(n-1) / 2$; total bytes $=2 n^{2}$
- Triangular Matrix requires 4 bytes per pair
- Approach 2 uses 12 bytes per occurring pair (but only for pairs with count > 0)
- Beats Approach 1 if less than $1 / 3$ of possible pairs actually occur

Main-Memory: Picture of Apriori

Pass 1
Pass 2

PCY (Park-Chen-Yu) Algorithm

- Observation: In pass 1 of Apriori, most memory is idle
- We store only individual item counts
- Can we reduce the number of candidates C_{2} (therefore the memory required) in pass 2?
- Pass 1 of PCY: In addition to item counts, maintain a hash table with as many buckets as fit in memory
- Keep a count for each bucket into which pairs of items are hashed
- For each bucket just keep the count, not the actual pairs that hash to the bucket!

PCY Algorithm - First Pass

FOR (each basket):
FOR (each item in the basket):
add 1 to item's count;
$\underset{\mathrm{PCY}}{\mathrm{New} \text { in }}\left[\begin{array}{l}\mathrm{FOR} \text { (each pair of items): } \\ \text { hash the pair to a bucket; } \\ \text { add } 1 \text { to the count for that bucket; }\end{array}\right.$

- Few things to note:
- Pairs of items need to be generated from the input file; they are not present in the file
- We are not just interested in the presence of a pair, but whether it is present at least s (support) times

Eliminating Candidates using Buckets

- Observation: If a bucket contains a frequent pair, then the bucket is surely frequent
- However, even without any frequent pair, a bucket can still be frequent
- So, we cannot use the hash to eliminate any member (pair) of a "frequent" bucket
- But, for a bucket with total count less than \boldsymbol{s}, none of its pairs can be frequent
- Pairs that hash to this bucket can be eliminated as candidates (even if the pair consists of 2 frequent items)
- Pass 2:

Only count pairs that hash to frequent buckets

PCY Algorithm - Between Passes

- Replace the buckets by a bit-vector:
- 1 means the bucket count exceeded s (call it a frequent bucket); 0 means it did not
- 4-byte integer counts are replaced by bits, so the bit-vector requires $1 / 32$ of memory
- Also, decide which items are frequent and list them for the second pass

PCY Algorithm - Pass 2

- Count all pairs $\{i, j\}$ that meet the conditions for being a candidate pair:

1. Both \boldsymbol{i} and \boldsymbol{j} are frequent items
2. The pair $\{i, j\}$ hashes to a bucket whose bit in the bit vector is 1 (i.e., a frequent bucket)

- Both conditions are necessary for the pair to have a chance of being frequent

PCY Algorithm - Summary

> 1. Set $k=0$
> 2. Define C_{1} as all size 1 item sets
> 3. Scan DB to construct $L_{1} \subseteq C_{1}$

> New in PCY and a hash table of pair counts Convert pair counts to bit vector and construct candidates C_{2}
> 5. While $\boldsymbol{C}_{\boldsymbol{k}+1}$ is not empty
> 6. Set $k=k+1$
> 7. Scan DB to determine subset $L_{k} \subseteq C_{k}$
> with support $\geq s$
> 8. Construct candidates C_{k+1} by combining sets in L_{k} that differ by 1 element

Main-Memory: Picture of PCY

Pass 1

Main-Memory Details

- Buckets require a few bytes each:
- Note: we do not have to count past \boldsymbol{s}
- \#buckets is O(main-memory size)
- On second pass, a table of (item, item, count) triples is essential (we cannot use triangular matrix approach, why?)
- Thus, hash table must eliminate approx. 2/3 of the candidate pairs for PCY to beat A-Priori

Refinement: Multistage Algorithm

- Limit the number of candidates to be counted
- Remember: Memory is the bottleneck
- Still need to generate all the itemsets but we only want to count/keep track of the ones that are frequent
- Key idea: After Pass 1 of PCY, rehash only those pairs that qualify for Pass 2 of PCY
- i and j are frequent, and
- \{i, j\} hashes to a frequent bucket from Pass 1
- On middle pass, fewer pairs contribute to buckets, so fewer false positives
- Requires 3 passes over the data

Main-memory: Multistage PCY

Pass 1

Count items Hash pairs $\{i, j\}$

Pass 2

Hash pairs $\{i, j\}$ into Hash2 iff: i,j are frequent, $\{i, j\}$ hashes to freq. bucket in B1

Freq. items
Bitmap 1
Bitmap 2

Counts of candidate pairs

Pass 3

Count pairs $\{i, j\}$ iff: i,j are frequent, $\{i, j\}$ hashes to freq. bucket in B1 $\{i, j\}$ hashes to freq. bucket in B2

Apriori: Bottlenecks

1. Set $k=0$
2. Define C_{1} as all size 1 item sets
3. While $\boldsymbol{C}_{\boldsymbol{k}+\boldsymbol{1}}$ is not empty
4. Set $k=k+1$
5. Scan DB to determine subset $L_{k} \subseteq C_{k}$ with support $\geq s$
6. Construct candidates C_{k+1} by combining sets in L_{k} that differ by 1 element

FP-Growth Algorithm - Overview

- Apriori requires one pass for each k (2+ on first pass for PCY variants)
- Can we find all frequent item sets in fewer passes over the data?

FP-Growth Algorithm:

- Pass 1: Count items with support $\geq \mathrm{s}$
- Sort frequent items in descending order according to count
- Pass 2: Store all frequent itemsets in a frequent pattern tree (FP-tree)
- Mine patterns from FP-Tree

FP-Tree Construction

TID $=2$

TID $=3$

TID	Items Bought	Frequent ltems
1	$\{a, b, f\}$	$\{a, b\}$
2	$\{b, g, c, d\}$	$\{b, c, d\}$
3	$\{h, a, c, d, e\}$	$\{a, c, d, e\}$
4	$\{a, d, p, e\}$	$\{a, d, e\}$
5	$\{a, b, c\}$	$\{a, b, c\}$
6	$\{a, b, q, c, d\}$	$\{a, b, c, d\}$
7	$\{a\}$	$\{a\}$
8	$\{a, m, b, c\}$	$\{a, b, c\}$
9	$\{a, b, n, d\}$	$\{a, b, d\}$
10	$\{b, c, e\}$	$\{b, c, e\}$

a: 8, b: 7, c: 6, d: 5, e: 3, $f: 1, g: 1, h: 1, m: 1, n: 1$

Mining Patterns from the FP-Tree

Step 1: Extract subtrees ending in each item

Full Tree

Subtree e

Subtree c

Subtree d

Subtree $b \quad$ Subtree a

$a: 8, b: 7, c: 6, d: 5, e: 3, f: 1, g: 1, h: 1, m: 1, n: 1$

Mining Patterns from the FP-Tree

Step 2: Construct Conditional FP-Tree for each item

Full Tree

Subtree e

Conditional e

Conditional Pattern Base for e acd: 1, ad: 1, bc: 1

Conditional Node Counts a: 2, b: $4, \mathrm{c}: 2, \mathrm{~d}: 2$

- Calculate counts for paths ending in \boldsymbol{e}
- Remove leaf nodes
- Prune nodes with count $\leq s$

Mining Patterns from the FP-Tree

Step 3: Recursively mine conditional FP-Tree for each item

Conditional e

Subtree de

Subtree ce
c:1

Conditional de

Subtree ae

Mining Patterns from the FP-Tree

Suffix	Conditional Pattern Base
e	$\mathrm{acd}: 1 ; \mathrm{ad}: 1 ; \mathrm{bc}: 1$
d	$\mathrm{abc}: 1 ; \mathrm{ab}: 1 ; \mathrm{ac}: 1 ; \mathrm{a}: 1 ; \mathrm{bc}: 1$
c	$\mathrm{ab}: 3 ; \mathrm{a}: 1 ; \mathrm{b}: 2$
b	$\mathrm{a}: 5$
a	ϕ

Suffix	Frequent Itemsets
e	$\{e\},\{d, e\},\{a, d, e\},\{c, e\},\{a, e\}$
d	$\{d\},\{c, d\},\{b, c, d\},\{a, c, d\},\{b, d\},\{a, b, d\},\{a, d\}$
c	$\{c\},\{b, c\},\{a, b, c\},\{a, c\}$
b	$\{b\},\{a, b\}$
a	$\{a\}$

Projecting Sub-trees

- "Cutting" and "pruning" trees requires that we create copies/mirrors of the subtrees
- Mining patterns requires additional memory

FP-Growth vs Apriori

Simulated data 10k baskets, 25 items on average

FP-Growth vs Apriori

File	Apriori	FP-Growth
Simple Market Basket test file	3.66 s	3.03 s
"Real" test file (1 Mb)	8.87 s	3.25 s
"Real" test file (20 Mb)	34 m	5.07 s
Whole "real" test file (86 Mb)	$4+$ hours (Never finished, crashed)	8.82 s

FP-Growth vs Apriori

Advantages of FP-Growth

- Only 2 passes over dataset
- Stores "compact" version of dataset
- No candidate generation
- Faster than A-priori

Disadvantages of FP-Growth

- The FP-Tree may not be "compact" enough to fit in memory
- Even more memory required to construct subtrees in mining phase

