
Data Mining Techniques
CS 6220 - Section 3 - Fall 2016

Lecture 16: Association Rules
Jan-Willem van de Meent
(credit: Yijun Zhao, Yi Wang,  
 Tan et al., Leskovec et al.)

Apriori: Summary

C1 L1 C2 L2 C3Fi
lte

r

Fi
lte

r

ConstructConstruct

All
items

All pairs
of items
from L1

Count
the pairs

All pairs of sets 
that differ by  
1 element

Count
the items

1. Set k = 0
2. Define C1 as all size 1 item sets
3. While Ck+1 is not empty
4. Set k = k + 1
5. Scan DB to determine subset Lk ⊆Ck 

 with support ≥ s
6. Construct candidates Ck+1 by combining  

 sets in Lk that differ by 1 element

Apriori: Bottlenecks

C1 L1 C2 L2 C3Fi
lte

r

Fi
lte

r

ConstructConstruct

All
items

All pairs
of items
from L1

Count
the pairs

All pairs of sets 
that differ by  
1 element

Count
the items

1. Set k = 0
2. Define C1 as all size 1 item sets
3. While Ck+1 is not empty
4. Set k = k + 1
5. Scan DB to determine subset Lk ⊆Ck 

 with support ≥ s
6. Construct candidates Ck+1 by combining 

 sets in Lk that differ by 1 element

(I/O limited)

(Memory  
limited)

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	http://www.mmds.org

Apriori: Main-Memory Bottleneck
For many frequent-itemset algorithms,  
main-memory is the critical resource
▪ As we read baskets, we need to count  

something, e.g., occurrences of pairs of items
▪ The number of different things we can count  

is limited by main memory
▪ For typical market-baskets and reasonable

support (e.g., 1%), k = 2 requires most memory
▪ Swapping counts in/out is a disaster (why?)

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	http://www.mmds.org

Counting Pairs in Memory
Two approaches:

Approach 1: Count all pairs using a matrix
Approach 2: Keep a table of triples  
[i, j, c] = “the count of the pair of items {i, j} is c.”
▪ If integers and item ids are 4 bytes, we need

approximately 12 bytes for pairs with count > 0
▪ Plus some additional overhead for the hashtable

Note:
Approach 1 only requires 4 bytes per pair
Approach 2 uses 12 bytes per pair  
(but only for pairs with count > 0)

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	http://www.mmds.org

Comparing the 2 Approaches

4	bytes	per	pair

Triangular Matrix Triples

12	per	
occurring	pair

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	http://www.mmds.org

Comparing the two approaches
Approach 1: Triangular Matrix
▪ n = total number items
▪ Count pair of items {i, j} only if i<j
▪ Keep pair counts in lexicographic order:
▪ {1,2}, {1,3},…, {1,n}, {2,3}, {2,4},…,{2,n}, {3,4},…
▪ Pair {i, j} is at position (i –1)(n– i/2) + j –1
▪ Total number of pairs n(n –1)/2; total bytes= 2n2
▪ Triangular Matrix requires 4 bytes per pair
Approach 2 uses 12 bytes per occurring pair  
(but only for pairs with count > 0)
▪ Beats Approach 1 if less than 1/3 of  

possible pairs actually occur

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	http://www.mmds.org

Main-Memory: Picture of Apriori

Item counts

Pass 1 Pass 2

Frequent items

M
ai

n
m

em
or

y Counts of  
pairs of frequent
items (candidate

pairs)

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	http://www.mmds.org

PCY (Park-Chen-Yu) Algorithm
Observation: In pass 1 of Apriori,  
most memory is idle
▪ We store only individual item counts
▪ Can we reduce the number of candidates C2  

(therefore the memory required) in pass 2?

Pass 1 of PCY: In addition to item counts,
maintain a hash table with as many  
buckets as fit in memory
▪ Keep a count for each bucket into which  

pairs of items are hashed
▪ For each bucket just keep the count, not the actual  

pairs that hash to the bucket!

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	http://www.mmds.org

PCY Algorithm – First Pass
 FOR (each basket):

 FOR (each item in the basket):
add 1 to item’s count;

 FOR (each pair of items):
hash the pair to a bucket;
add 1 to the count for that bucket;

Few things to note:
▪ Pairs of items need to be generated from  

the input file; they are not present in the file
▪ We are not just interested in the presence of a pair,

but whether it is present at least s (support) times

New in
PCY

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	http://www.mmds.org

Eliminating Candidates using Buckets

Observation: If a bucket contains a frequent pair,  
then the bucket is surely frequent
However, even without any frequent pair,  
a bucket can still be frequent
▪ So, we cannot use the hash to eliminate any  

member (pair) of a “frequent” bucket
But, for a bucket with total count less than s,  
none of its pairs can be frequent
▪ Pairs that hash to this bucket can be eliminated as candidates

(even if the pair consists of 2 frequent items)

Pass 2:  
Only count pairs that hash to frequent buckets

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	http://www.mmds.org

PCY Algorithm – Between Passes
Replace the buckets by a bit-vector:
▪ 1 means the bucket count exceeded s  

(call it a frequent bucket); 0 means it did not

4-byte integer counts are replaced by bits,  
so the bit-vector requires 1/32 of memory

Also, decide which items are frequent  
and list them for the second pass

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	http://www.mmds.org

PCY Algorithm – Pass 2
Count all pairs {i, j} that meet the  
conditions for being a candidate pair:

1. Both i and j are frequent items
2. The pair {i, j} hashes to a bucket whose bit in

the bit vector is 1 (i.e., a frequent bucket)

Both conditions are necessary for the  
pair to have a chance of being frequent

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	http://www.mmds.org

PCY Algorithm – Summary

1. Set k = 0
2. Define C1 as all size 1 item sets
3. Scan DB to construct L1 ⊆ C1  

and a hash table of pair counts
4. Convert pair counts to bit vector 

and construct candidates C2
5. While Ck+1 is not empty
6. Set k = k + 1
7. Scan DB to determine subset Lk ⊆Ck 

 with support ≥ s
8. Construct candidates Ck+1 by combining  

 sets in Lk that differ by 1 element

New in
PCY

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	http://www.mmds.org

Main-Memory: Picture of PCY

Hash
table

Item counts

Bitmap

Pass 1 Pass 2

Frequent items

Hash table 
for pairs 

M
ai

n
m

em
or

y

Counts of
candidate

pairs

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	http://www.mmds.org

Main-Memory Details
Buckets require a few bytes each:
▪ Note: we do not have to count past s
▪ #buckets is O(main-memory size)

On second pass, a table of (item, item,
count) triples is essential (we cannot use
triangular matrix approach, why?)
▪ Thus, hash table must eliminate approx. 2/3  

of the candidate pairs for PCY to beat A-Priori

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	http://www.mmds.org

Refinement: Multistage Algorithm
Limit the number of candidates to be counted
▪ Remember: Memory is the bottleneck
▪ Still need to generate all the itemsets but we only want

to count/keep track of the ones that are frequent
Key idea: After Pass 1 of PCY, rehash only  
those pairs that qualify for Pass 2 of PCY
▪ i and j are frequent, and
▪ {i, j} hashes to a frequent bucket from Pass 1
On middle pass, fewer pairs contribute to
buckets, so fewer false positives
Requires 3 passes over the data

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	Mining	of	Massive	Datasets,	http://www.mmds.org

Main-memory: Multistage PCY

First
hash table

Item counts

Bitmap 1 Bitmap 1

Bitmap 2

Freq. items Freq. items

Counts of
candidate
 pairs

Pass 1 Pass 2 Pass 3

Count items
Hash pairs {i,j}

Hash pairs {i,j} 
into Hash2 iff:

i,j are frequent, 
{i,j} hashes to

freq. bucket in B1

Count pairs {i,j} iff:
i,j are frequent, 
{i,j} hashes to

freq. bucket in B1
{i,j} hashes to

freq. bucket in B2

First  
hash table Second  

hash table Counts of
candidate

pairs

M
ai

n
m

em
or

y

Apriori: Bottlenecks

C1 L1 C2 L2 C3Fi
lte

r

Fi
lte

r

ConstructConstruct

All
items

All pairs
of items
from L1

Count
the pairs

All pairs of sets 
that differ by  
1 element

Count
the items

1. Set k = 0
2. Define C1 as all size 1 item sets
3. While Ck+1 is not empty
4. Set k = k + 1
5. Scan DB to determine subset Lk ⊆Ck  

 with support ≥ s
6. Construct candidates Ck+1 by combining  

 sets in Lk that differ by 1 element

(I/O limited)

(Memory 
limited)

FP-Growth Algorithm – Overview
• Apriori requires one pass for each k 

(2+ on first pass for PCY variants)
• Can we find all frequent item sets  

in fewer passes over the data?

FP-Growth Algorithm:
• Pass 1: Count items with support ≥ s
• Sort frequent items in descending  

order according to count
• Pass 2: Store all frequent itemsets  

in a frequent pattern tree (FP-tree)
• Mine patterns from FP-Tree

FP-Tree Construction

FP-tree Construction

obtain all frequent

items in descending
order according to their support counts.

TID Items Bought Frequent Items
1 {a,b,f} {a,b}
2 {b,g,c,d} {b,c,d}
3 {h, a,c,d,e} {a,c,d,e}
4 {a,d, p,e} {a,d,e}
5 {a,b,c} {a,b,c}
6 {a,b,q,c,d} {a,b,c,d}
7 {a} {a}
8 {a,m,b,c} {a,b,c}
9 {a,b,n,d} {a,b,d}
10 {b,c,e} {b,c,e}

Yijun Zhao
DATA MINING TECHNIQUES Association Rule Mining
39 / 55

364 Chapter 6 Association Analysis

{a,b}

{a}

{a,b,c}

{a,b,d}
{b,c,e}

{a,b,c}

{a,b,c,d}

{b,c,d}

{a,d,e}

{a,c,d,e}

Transaction
Data Set

1
2
3
4
5
6
7

8
9

10

TID Items

null

null
a:1 b:1

c:1

d:1

b:1

null

a:2 b:1

c:1
c:1

d:1d:1

e:1

b:1

a:1

b:1

(i) After reading TID=1

(iii) After reading TID=3

(iv) After reading TID=10

(ii) After reading TID=2

null

a:8 b:2

c:2

c:1
c:3

d:1
d:1

d:1
d:1 d:1

e:1
e:1e:1

b:5

Figure 6.24. Construction of an FP-tree.

Figure 6.24 shows a data set that contains ten transactions and five items.
The structures of the FP-tree after reading the first three transactions are also
depicted in the diagram. Each node in the tree contains the label of an item
along with a counter that shows the number of transactions mapped onto the
given path. Initially, the FP-tree contains only the root node represented by
the null symbol. The FP-tree is subsequently extended in the following way:

1. The data set is scanned once to determine the support count of each
item. Infrequent items are discarded, while the frequent items are sorted
in decreasing support counts. For the data set shown in Figure 6.24, a
is the most frequent item, followed by b, c, d, and e.

364 Chapter 6 Association Analysis

{a,b}

{a}

{a,b,c}

{a,b,d}
{b,c,e}

{a,b,c}

{a,b,c,d}

{b,c,d}

{a,d,e}

{a,c,d,e}

Transaction
Data Set

1
2
3
4
5
6
7

8
9

10

TID Items

null

null
a:1 b:1

c:1

d:1

b:1

null

a:2 b:1

c:1
c:1

d:1d:1

e:1

b:1

a:1

b:1

(i) After reading TID=1

(iii) After reading TID=3

(iv) After reading TID=10

(ii) After reading TID=2

null

a:8 b:2

c:2

c:1
c:3

d:1
d:1

d:1
d:1 d:1

e:1
e:1e:1

b:5

Figure 6.24. Construction of an FP-tree.

Figure 6.24 shows a data set that contains ten transactions and five items.
The structures of the FP-tree after reading the first three transactions are also
depicted in the diagram. Each node in the tree contains the label of an item
along with a counter that shows the number of transactions mapped onto the
given path. Initially, the FP-tree contains only the root node represented by
the null symbol. The FP-tree is subsequently extended in the following way:

1. The data set is scanned once to determine the support count of each
item. Infrequent items are discarded, while the frequent items are sorted
in decreasing support counts. For the data set shown in Figure 6.24, a
is the most frequent item, followed by b, c, d, and e.

364 Chapter 6 Association Analysis

{a,b}

{a}

{a,b,c}

{a,b,d}
{b,c,e}

{a,b,c}

{a,b,c,d}

{b,c,d}

{a,d,e}

{a,c,d,e}

Transaction
Data Set

1
2
3
4
5
6
7

8
9

10

TID Items

null

null
a:1 b:1

c:1

d:1

b:1

null

a:2 b:1

c:1
c:1

d:1d:1

e:1

b:1

a:1

b:1

(i) After reading TID=1

(iii) After reading TID=3

(iv) After reading TID=10

(ii) After reading TID=2

null

a:8 b:2

c:2

c:1
c:3

d:1
d:1

d:1
d:1 d:1

e:1
e:1e:1

b:5

Figure 6.24. Construction of an FP-tree.

Figure 6.24 shows a data set that contains ten transactions and five items.
The structures of the FP-tree after reading the first three transactions are also
depicted in the diagram. Each node in the tree contains the label of an item
along with a counter that shows the number of transactions mapped onto the
given path. Initially, the FP-tree contains only the root node represented by
the null symbol. The FP-tree is subsequently extended in the following way:

1. The data set is scanned once to determine the support count of each
item. Infrequent items are discarded, while the frequent items are sorted
in decreasing support counts. For the data set shown in Figure 6.24, a
is the most frequent item, followed by b, c, d, and e.

364 Chapter 6 Association Analysis

{a,b}

{a}

{a,b,c}

{a,b,d}
{b,c,e}

{a,b,c}

{a,b,c,d}

{b,c,d}

{a,d,e}

{a,c,d,e}

Transaction
Data Set

1
2
3
4
5
6
7

8
9

10

TID Items

null

null
a:1 b:1

c:1

d:1

b:1

null

a:2 b:1

c:1
c:1

d:1d:1

e:1

b:1

a:1

b:1

(i) After reading TID=1

(iii) After reading TID=3

(iv) After reading TID=10

(ii) After reading TID=2

null

a:8 b:2

c:2

c:1
c:3

d:1
d:1

d:1
d:1 d:1

e:1
e:1e:1

b:5

Figure 6.24. Construction of an FP-tree.

Figure 6.24 shows a data set that contains ten transactions and five items.
The structures of the FP-tree after reading the first three transactions are also
depicted in the diagram. Each node in the tree contains the label of an item
along with a counter that shows the number of transactions mapped onto the
given path. Initially, the FP-tree contains only the root node represented by
the null symbol. The FP-tree is subsequently extended in the following way:

1. The data set is scanned once to determine the support count of each
item. Infrequent items are discarded, while the frequent items are sorted
in decreasing support counts. For the data set shown in Figure 6.24, a
is the most frequent item, followed by b, c, d, and e.

TID = 1 TID = 2 TID = 3

TID = 10

a: 8, b: 7, c: 6, d: 5, e: 3,  
f: 1, g: 1, h: 1, m: 1, n: 1

Mining Patterns from the FP-Tree

Subtree e

a: 8, b: 7, c: 6, d: 5, e: 3, f: 1, g: 1, h: 1, m: 1, n: 1

6.6 FP-Growth Algorithm 367

null

null

a:8 b:2

b:2

b:2

b:5
b:5

c:1

c:1
c:3

c:2

c:2

d:1 d:1
d:1 d:1 d:1

c:3 c:2

b:2b:5

c:1
d:1

d:1

e:1 e:1e:1

null null

null

a:8 a:8

a:8

a:8

(c) Paths containing node c (d) Paths containing node b (e) Paths containing node a

(a) Paths containing node e (b) Paths containing node d

Figure 6.26. Decomposing the frequent itemset generation problem into multiple subproblems, where

each subproblem involves finding frequent itemsets ending in e, d, c, b, and a.

Table 6.6. The list of frequent itemsets ordered by their corresponding suffixes.

Suffix Frequent Itemsets
e {e}, {d,e}, {a,d,e}, {c,e},{a,e}
d {d}, {c,d}, {b,c,d}, {a,c,d}, {b,d}, {a,b,d}, {a,d}
c {c}, {b,c}, {a,b,c}, {a,c}
b {b}, {a,b}
a {a}

After finding the frequent itemsets ending in e, the algorithm proceeds to
look for frequent itemsets ending in d by processing the paths associated with
node d. The corresponding paths are shown in Figure 6.26(b). This process
continues until all the paths associated with nodes c, b, and finally a, are
processed. The paths for these items are shown in Figures 6.26(c), (d), and
(e), while their corresponding frequent itemsets are summarized in Table 6.6.

FP-growth finds all the frequent itemsets ending with a particular suffix
by employing a divide-and-conquer strategy to split the problem into smaller
subproblems. For example, suppose we are interested in finding all frequent

6.6 FP-Growth Algorithm 367

null

null

a:8 b:2

b:2

b:2

b:5
b:5

c:1

c:1
c:3

c:2

c:2

d:1 d:1
d:1 d:1 d:1

c:3 c:2

b:2b:5

c:1
d:1

d:1

e:1 e:1e:1

null null

null

a:8 a:8

a:8

a:8

(c) Paths containing node c (d) Paths containing node b (e) Paths containing node a

(a) Paths containing node e (b) Paths containing node d

Figure 6.26. Decomposing the frequent itemset generation problem into multiple subproblems, where

each subproblem involves finding frequent itemsets ending in e, d, c, b, and a.

Table 6.6. The list of frequent itemsets ordered by their corresponding suffixes.

Suffix Frequent Itemsets
e {e}, {d,e}, {a,d,e}, {c,e},{a,e}
d {d}, {c,d}, {b,c,d}, {a,c,d}, {b,d}, {a,b,d}, {a,d}
c {c}, {b,c}, {a,b,c}, {a,c}
b {b}, {a,b}
a {a}

After finding the frequent itemsets ending in e, the algorithm proceeds to
look for frequent itemsets ending in d by processing the paths associated with
node d. The corresponding paths are shown in Figure 6.26(b). This process
continues until all the paths associated with nodes c, b, and finally a, are
processed. The paths for these items are shown in Figures 6.26(c), (d), and
(e), while their corresponding frequent itemsets are summarized in Table 6.6.

FP-growth finds all the frequent itemsets ending with a particular suffix
by employing a divide-and-conquer strategy to split the problem into smaller
subproblems. For example, suppose we are interested in finding all frequent

6.6 FP-Growth Algorithm 367

null

null

a:8 b:2

b:2

b:2

b:5
b:5

c:1

c:1
c:3

c:2

c:2

d:1 d:1
d:1 d:1 d:1

c:3 c:2

b:2b:5

c:1
d:1

d:1

e:1 e:1e:1

null null

null

a:8 a:8

a:8

a:8

(c) Paths containing node c (d) Paths containing node b (e) Paths containing node a

(a) Paths containing node e (b) Paths containing node d

Figure 6.26. Decomposing the frequent itemset generation problem into multiple subproblems, where

each subproblem involves finding frequent itemsets ending in e, d, c, b, and a.

Table 6.6. The list of frequent itemsets ordered by their corresponding suffixes.

Suffix Frequent Itemsets
e {e}, {d,e}, {a,d,e}, {c,e},{a,e}
d {d}, {c,d}, {b,c,d}, {a,c,d}, {b,d}, {a,b,d}, {a,d}
c {c}, {b,c}, {a,b,c}, {a,c}
b {b}, {a,b}
a {a}

After finding the frequent itemsets ending in e, the algorithm proceeds to
look for frequent itemsets ending in d by processing the paths associated with
node d. The corresponding paths are shown in Figure 6.26(b). This process
continues until all the paths associated with nodes c, b, and finally a, are
processed. The paths for these items are shown in Figures 6.26(c), (d), and
(e), while their corresponding frequent itemsets are summarized in Table 6.6.

FP-growth finds all the frequent itemsets ending with a particular suffix
by employing a divide-and-conquer strategy to split the problem into smaller
subproblems. For example, suppose we are interested in finding all frequent

6.6 FP-Growth Algorithm 367

null

null

a:8 b:2

b:2

b:2

b:5
b:5

c:1

c:1
c:3

c:2

c:2

d:1 d:1
d:1 d:1 d:1

c:3 c:2

b:2b:5

c:1
d:1

d:1

e:1 e:1e:1

null null

null

a:8 a:8

a:8

a:8

(c) Paths containing node c (d) Paths containing node b (e) Paths containing node a

(a) Paths containing node e (b) Paths containing node d

Figure 6.26. Decomposing the frequent itemset generation problem into multiple subproblems, where

each subproblem involves finding frequent itemsets ending in e, d, c, b, and a.

Table 6.6. The list of frequent itemsets ordered by their corresponding suffixes.

Suffix Frequent Itemsets
e {e}, {d,e}, {a,d,e}, {c,e},{a,e}
d {d}, {c,d}, {b,c,d}, {a,c,d}, {b,d}, {a,b,d}, {a,d}
c {c}, {b,c}, {a,b,c}, {a,c}
b {b}, {a,b}
a {a}

After finding the frequent itemsets ending in e, the algorithm proceeds to
look for frequent itemsets ending in d by processing the paths associated with
node d. The corresponding paths are shown in Figure 6.26(b). This process
continues until all the paths associated with nodes c, b, and finally a, are
processed. The paths for these items are shown in Figures 6.26(c), (d), and
(e), while their corresponding frequent itemsets are summarized in Table 6.6.

FP-growth finds all the frequent itemsets ending with a particular suffix
by employing a divide-and-conquer strategy to split the problem into smaller
subproblems. For example, suppose we are interested in finding all frequent

6.6 FP-Growth Algorithm 367

null

null

a:8 b:2

b:2

b:2

b:5
b:5

c:1

c:1
c:3

c:2

c:2

d:1 d:1
d:1 d:1 d:1

c:3 c:2

b:2b:5

c:1
d:1

d:1

e:1 e:1e:1

null null

null

a:8 a:8

a:8

a:8

(c) Paths containing node c (d) Paths containing node b (e) Paths containing node a

(a) Paths containing node e (b) Paths containing node d

Figure 6.26. Decomposing the frequent itemset generation problem into multiple subproblems, where

each subproblem involves finding frequent itemsets ending in e, d, c, b, and a.

Table 6.6. The list of frequent itemsets ordered by their corresponding suffixes.

Suffix Frequent Itemsets
e {e}, {d,e}, {a,d,e}, {c,e},{a,e}
d {d}, {c,d}, {b,c,d}, {a,c,d}, {b,d}, {a,b,d}, {a,d}
c {c}, {b,c}, {a,b,c}, {a,c}
b {b}, {a,b}
a {a}

After finding the frequent itemsets ending in e, the algorithm proceeds to
look for frequent itemsets ending in d by processing the paths associated with
node d. The corresponding paths are shown in Figure 6.26(b). This process
continues until all the paths associated with nodes c, b, and finally a, are
processed. The paths for these items are shown in Figures 6.26(c), (d), and
(e), while their corresponding frequent itemsets are summarized in Table 6.6.

FP-growth finds all the frequent itemsets ending with a particular suffix
by employing a divide-and-conquer strategy to split the problem into smaller
subproblems. For example, suppose we are interested in finding all frequent

Subtree d

Subtree c Subtree b Subtree a

364 Chapter 6 Association Analysis

{a,b}

{a}

{a,b,c}

{a,b,d}
{b,c,e}

{a,b,c}

{a,b,c,d}

{b,c,d}

{a,d,e}

{a,c,d,e}

Transaction
Data Set

1
2
3
4
5
6
7

8
9

10

TID Items

null

null
a:1 b:1

c:1

d:1

b:1

null

a:2 b:1

c:1
c:1

d:1d:1

e:1

b:1

a:1

b:1

(i) After reading TID=1

(iii) After reading TID=3

(iv) After reading TID=10

(ii) After reading TID=2

null

a:8 b:2

c:2

c:1
c:3

d:1
d:1

d:1
d:1 d:1

e:1
e:1e:1

b:5

Figure 6.24. Construction of an FP-tree.

Figure 6.24 shows a data set that contains ten transactions and five items.
The structures of the FP-tree after reading the first three transactions are also
depicted in the diagram. Each node in the tree contains the label of an item
along with a counter that shows the number of transactions mapped onto the
given path. Initially, the FP-tree contains only the root node represented by
the null symbol. The FP-tree is subsequently extended in the following way:

1. The data set is scanned once to determine the support count of each
item. Infrequent items are discarded, while the frequent items are sorted
in decreasing support counts. For the data set shown in Figure 6.24, a
is the most frequent item, followed by b, c, d, and e.

Full Tree

Step 1: Extract subtrees ending in each item

Mining Patterns from the FP-Tree

Subtree e 6.6 FP-Growth Algorithm 367

null

null

a:8 b:2

b:2

b:2

b:5
b:5

c:1

c:1
c:3

c:2

c:2

d:1 d:1
d:1 d:1 d:1

c:3 c:2

b:2b:5

c:1
d:1

d:1

e:1 e:1e:1

null null

null

a:8 a:8

a:8

a:8

(c) Paths containing node c (d) Paths containing node b (e) Paths containing node a

(a) Paths containing node e (b) Paths containing node d

Figure 6.26. Decomposing the frequent itemset generation problem into multiple subproblems, where

each subproblem involves finding frequent itemsets ending in e, d, c, b, and a.

Table 6.6. The list of frequent itemsets ordered by their corresponding suffixes.

Suffix Frequent Itemsets
e {e}, {d,e}, {a,d,e}, {c,e},{a,e}
d {d}, {c,d}, {b,c,d}, {a,c,d}, {b,d}, {a,b,d}, {a,d}
c {c}, {b,c}, {a,b,c}, {a,c}
b {b}, {a,b}
a {a}

After finding the frequent itemsets ending in e, the algorithm proceeds to
look for frequent itemsets ending in d by processing the paths associated with
node d. The corresponding paths are shown in Figure 6.26(b). This process
continues until all the paths associated with nodes c, b, and finally a, are
processed. The paths for these items are shown in Figures 6.26(c), (d), and
(e), while their corresponding frequent itemsets are summarized in Table 6.6.

FP-growth finds all the frequent itemsets ending with a particular suffix
by employing a divide-and-conquer strategy to split the problem into smaller
subproblems. For example, suppose we are interested in finding all frequent

Conditional e

364 Chapter 6 Association Analysis

{a,b}

{a}

{a,b,c}

{a,b,d}
{b,c,e}

{a,b,c}

{a,b,c,d}

{b,c,d}

{a,d,e}

{a,c,d,e}

Transaction
Data Set

1
2
3
4
5
6
7

8
9

10

TID Items

null

null
a:1 b:1

c:1

d:1

b:1

null

a:2 b:1

c:1
c:1

d:1d:1

e:1

b:1

a:1

b:1

(i) After reading TID=1

(iii) After reading TID=3

(iv) After reading TID=10

(ii) After reading TID=2

null

a:8 b:2

c:2

c:1
c:3

d:1
d:1

d:1
d:1 d:1

e:1
e:1e:1

b:5

Figure 6.24. Construction of an FP-tree.

Figure 6.24 shows a data set that contains ten transactions and five items.
The structures of the FP-tree after reading the first three transactions are also
depicted in the diagram. Each node in the tree contains the label of an item
along with a counter that shows the number of transactions mapped onto the
given path. Initially, the FP-tree contains only the root node represented by
the null symbol. The FP-tree is subsequently extended in the following way:

1. The data set is scanned once to determine the support count of each
item. Infrequent items are discarded, while the frequent items are sorted
in decreasing support counts. For the data set shown in Figure 6.24, a
is the most frequent item, followed by b, c, d, and e.

Full Tree

Step 2: Construct Conditional FP-Tree for each item

368 Chapter 6 Association Analysis

null

a:8
a:2

a:2

a:2

b:2

c:1
c:1

c:1

c:1
c:2

d:1

d:1 d:1

d:1d:1

d:1

e:1 e:1e:1

null

null null

a:2

c:1 c:1

null

(a) Prefix paths ending in e (b) Conditional FP-tree for e

(c) Prefix paths ending in de (d) Conditional FP-tree for de

(e) Prefix paths ending in ce (f) Prefix paths ending in ae

a:2

null

Figure 6.27. Example of applying the FP-growth algorithm to find frequent itemsets ending in e.

itemsets ending in e. To do this, we must first check whether the itemset
{e} itself is frequent. If it is frequent, we consider the subproblem of finding
frequent itemsets ending in de, followed by ce, be, and ae. In turn, each
of these subproblems are further decomposed into smaller subproblems. By
merging the solutions obtained from the subproblems, all the frequent itemsets
ending in e can be found. This divide-and-conquer approach is the key strategy
employed by the FP-growth algorithm.

For a more concrete example on how to solve the subproblems, consider
the task of finding frequent itemsets ending with e.

1. The first step is to gather all the paths containing node e. These initial
paths are called prefix paths and are shown in Figure 6.27(a).

2. From the prefix paths shown in Figure 6.27(a), the support count for e is
obtained by adding the support counts associated with node e. Assuming
that the minimum support count is 2, {e} is declared a frequent itemset
because its support count is 3.

• Calculate counts for paths ending in e
• Remove leaf nodes
• Prune nodes with count ≤ s

Conditional Pattern Base for e  
acd: 1, ad: 1, bc: 1

Conditional Node Counts
a: 2, b: 1, c: 2, d: 2

Mining Patterns from the FP-Tree

Conditional e

Step 3: Recursively mine conditional FP-Tree for each item

368 Chapter 6 Association Analysis

null

a:8
a:2

a:2

a:2

b:2

c:1
c:1

c:1

c:1
c:2

d:1

d:1 d:1

d:1d:1

d:1

e:1 e:1e:1

null

null null

a:2

c:1 c:1

null

(a) Prefix paths ending in e (b) Conditional FP-tree for e

(c) Prefix paths ending in de (d) Conditional FP-tree for de

(e) Prefix paths ending in ce (f) Prefix paths ending in ae

a:2

null

Figure 6.27. Example of applying the FP-growth algorithm to find frequent itemsets ending in e.

itemsets ending in e. To do this, we must first check whether the itemset
{e} itself is frequent. If it is frequent, we consider the subproblem of finding
frequent itemsets ending in de, followed by ce, be, and ae. In turn, each
of these subproblems are further decomposed into smaller subproblems. By
merging the solutions obtained from the subproblems, all the frequent itemsets
ending in e can be found. This divide-and-conquer approach is the key strategy
employed by the FP-growth algorithm.

For a more concrete example on how to solve the subproblems, consider
the task of finding frequent itemsets ending with e.

1. The first step is to gather all the paths containing node e. These initial
paths are called prefix paths and are shown in Figure 6.27(a).

2. From the prefix paths shown in Figure 6.27(a), the support count for e is
obtained by adding the support counts associated with node e. Assuming
that the minimum support count is 2, {e} is declared a frequent itemset
because its support count is 3.

Subtree de

368 Chapter 6 Association Analysis

null

a:8
a:2

a:2

a:2

b:2

c:1
c:1

c:1

c:1
c:2

d:1

d:1 d:1

d:1d:1

d:1

e:1 e:1e:1

null

null null

a:2

c:1 c:1

null

(a) Prefix paths ending in e (b) Conditional FP-tree for e

(c) Prefix paths ending in de (d) Conditional FP-tree for de

(e) Prefix paths ending in ce (f) Prefix paths ending in ae

a:2

null

Figure 6.27. Example of applying the FP-growth algorithm to find frequent itemsets ending in e.

itemsets ending in e. To do this, we must first check whether the itemset
{e} itself is frequent. If it is frequent, we consider the subproblem of finding
frequent itemsets ending in de, followed by ce, be, and ae. In turn, each
of these subproblems are further decomposed into smaller subproblems. By
merging the solutions obtained from the subproblems, all the frequent itemsets
ending in e can be found. This divide-and-conquer approach is the key strategy
employed by the FP-growth algorithm.

For a more concrete example on how to solve the subproblems, consider
the task of finding frequent itemsets ending with e.

1. The first step is to gather all the paths containing node e. These initial
paths are called prefix paths and are shown in Figure 6.27(a).

2. From the prefix paths shown in Figure 6.27(a), the support count for e is
obtained by adding the support counts associated with node e. Assuming
that the minimum support count is 2, {e} is declared a frequent itemset
because its support count is 3.

368 Chapter 6 Association Analysis

null

a:8
a:2

a:2

a:2

b:2

c:1
c:1

c:1

c:1
c:2

d:1

d:1 d:1

d:1d:1

d:1

e:1 e:1e:1

null

null null

a:2

c:1 c:1

null

(a) Prefix paths ending in e (b) Conditional FP-tree for e

(c) Prefix paths ending in de (d) Conditional FP-tree for de

(e) Prefix paths ending in ce (f) Prefix paths ending in ae

a:2

null

Figure 6.27. Example of applying the FP-growth algorithm to find frequent itemsets ending in e.

itemsets ending in e. To do this, we must first check whether the itemset
{e} itself is frequent. If it is frequent, we consider the subproblem of finding
frequent itemsets ending in de, followed by ce, be, and ae. In turn, each
of these subproblems are further decomposed into smaller subproblems. By
merging the solutions obtained from the subproblems, all the frequent itemsets
ending in e can be found. This divide-and-conquer approach is the key strategy
employed by the FP-growth algorithm.

For a more concrete example on how to solve the subproblems, consider
the task of finding frequent itemsets ending with e.

1. The first step is to gather all the paths containing node e. These initial
paths are called prefix paths and are shown in Figure 6.27(a).

2. From the prefix paths shown in Figure 6.27(a), the support count for e is
obtained by adding the support counts associated with node e. Assuming
that the minimum support count is 2, {e} is declared a frequent itemset
because its support count is 3.

368 Chapter 6 Association Analysis

null

a:8
a:2

a:2

a:2

b:2

c:1
c:1

c:1

c:1
c:2

d:1

d:1 d:1

d:1d:1

d:1

e:1 e:1e:1

null

null null

a:2

c:1 c:1

null

(a) Prefix paths ending in e (b) Conditional FP-tree for e

(c) Prefix paths ending in de (d) Conditional FP-tree for de

(e) Prefix paths ending in ce (f) Prefix paths ending in ae

a:2

null

Figure 6.27. Example of applying the FP-growth algorithm to find frequent itemsets ending in e.

itemsets ending in e. To do this, we must first check whether the itemset
{e} itself is frequent. If it is frequent, we consider the subproblem of finding
frequent itemsets ending in de, followed by ce, be, and ae. In turn, each
of these subproblems are further decomposed into smaller subproblems. By
merging the solutions obtained from the subproblems, all the frequent itemsets
ending in e can be found. This divide-and-conquer approach is the key strategy
employed by the FP-growth algorithm.

For a more concrete example on how to solve the subproblems, consider
the task of finding frequent itemsets ending with e.

1. The first step is to gather all the paths containing node e. These initial
paths are called prefix paths and are shown in Figure 6.27(a).

2. From the prefix paths shown in Figure 6.27(a), the support count for e is
obtained by adding the support counts associated with node e. Assuming
that the minimum support count is 2, {e} is declared a frequent itemset
because its support count is 3.

368 Chapter 6 Association Analysis

null

a:8
a:2

a:2

a:2

b:2

c:1
c:1

c:1

c:1
c:2

d:1

d:1 d:1

d:1d:1

d:1

e:1 e:1e:1

null

null null

a:2

c:1 c:1

null

(a) Prefix paths ending in e (b) Conditional FP-tree for e

(c) Prefix paths ending in de (d) Conditional FP-tree for de

(e) Prefix paths ending in ce (f) Prefix paths ending in ae

a:2

null

Figure 6.27. Example of applying the FP-growth algorithm to find frequent itemsets ending in e.

itemsets ending in e. To do this, we must first check whether the itemset
{e} itself is frequent. If it is frequent, we consider the subproblem of finding
frequent itemsets ending in de, followed by ce, be, and ae. In turn, each
of these subproblems are further decomposed into smaller subproblems. By
merging the solutions obtained from the subproblems, all the frequent itemsets
ending in e can be found. This divide-and-conquer approach is the key strategy
employed by the FP-growth algorithm.

For a more concrete example on how to solve the subproblems, consider
the task of finding frequent itemsets ending with e.

1. The first step is to gather all the paths containing node e. These initial
paths are called prefix paths and are shown in Figure 6.27(a).

2. From the prefix paths shown in Figure 6.27(a), the support count for e is
obtained by adding the support counts associated with node e. Assuming
that the minimum support count is 2, {e} is declared a frequent itemset
because its support count is 3.

Conditional de

Subtree ce Subtree ae

Mining Patterns from the FP-Tree

FP-Growth Algorithm

Conditional Pattern Base for each su�x:

Su�x Conditional Pattern Base

e acd:1; ad:1; bc:1

d abc:1; ab:1; ac:1; a:1; bc:1

c ab:3; a:1; b:2

b a:5

a �

Step 3: For each Conditional Pattern Base,
construct a FP-tree and mine the subtree recursively

Yijun Zhao
DATA MINING TECHNIQUES Association Rule Mining
46 / 55

364 Chapter 6 Association Analysis

{a,b}

{a}

{a,b,c}

{a,b,d}
{b,c,e}

{a,b,c}

{a,b,c,d}

{b,c,d}

{a,d,e}

{a,c,d,e}

Transaction
Data Set

1
2
3
4
5
6
7

8
9

10

TID Items

null

null
a:1 b:1

c:1

d:1

b:1

null

a:2 b:1

c:1
c:1

d:1d:1

e:1

b:1

a:1

b:1

(i) After reading TID=1

(iii) After reading TID=3

(iv) After reading TID=10

(ii) After reading TID=2

null

a:8 b:2

c:2

c:1
c:3

d:1
d:1

d:1
d:1 d:1

e:1
e:1e:1

b:5

Figure 6.24. Construction of an FP-tree.

Figure 6.24 shows a data set that contains ten transactions and five items.
The structures of the FP-tree after reading the first three transactions are also
depicted in the diagram. Each node in the tree contains the label of an item
along with a counter that shows the number of transactions mapped onto the
given path. Initially, the FP-tree contains only the root node represented by
the null symbol. The FP-tree is subsequently extended in the following way:

1. The data set is scanned once to determine the support count of each
item. Infrequent items are discarded, while the frequent items are sorted
in decreasing support counts. For the data set shown in Figure 6.24, a
is the most frequent item, followed by b, c, d, and e.

FP-Growth Algorithm

The list of all frequent itemsets by su�xes:

Su�x Frequent Itemsets

e {e}, {d,e}, {a,d,e}, {c,e}, {a,e}

d {d}, {c,d}, {b,c,d}, {a,c,d}, {b,d}, {a,b,d}, {a,d}

c {c}, {b,c}, {a,b,c}, {a,c}

b {b}, {a,b}

a {a}

Yijun Zhao
DATA MINING TECHNIQUES Association Rule Mining
48 / 55

Projecting Sub-treesProject Sub-trees

- We cannot really “cut” or “prune” the FP-tree while listing.!
- Instead, we create a mirror when we construct conditional FP-trees.!
- More memory required than storing the FP-tree.

• “Cutting” and “pruning” trees requires that we  
create copies/mirrors of the subtrees

• Mining patterns requires additional memory  

FP-Growth vs Apriori

(from: Han, Kamber & Pei, Chapter 6)

Simulated data 10k baskets, 25 items on average

FP-Growth vs Apriori

http://singularities.com/blog/2015/08/apriori-vs-fpgrowth-for-frequent-item-set-mining

http://singularities.com/blog/2015/08/apriori-vs-fpgrowth-for-frequent-item-set-mining

FP-Growth vs Apriori
Advantages of FP-Growth
• Only 2 passes over dataset
• Stores “compact” version of dataset
• No candidate generation
• Faster than A-priori

Disadvantages of FP-Growth
• The FP-Tree may not be “compact”  

enough to fit in memory
• Even more memory required to  

construct subtrees in mining phase

