Data Mining Techniques

CS 6220 - Section 3 - Fall 2016

Lecture 15: Association Rules

Jan-Willem van de Meent (credit: Yijun Zhao, Tan et al., Leskovec et al.)

Association Rule Discovery

Market-basket model:

- Goal: Identify items that are bought together by sufficiently many customers
- Approach: Process the sales data to find dependencies among items
-A classic rule:
- If someone buys diaper and milk, then he/she is likely to buy beer
- Don't be surprised if you find six-packs next to diapers!

The Market-Basket Model

- A large set of items
- e.g., things sold in a supermarket
- A large set of baskets
- Each basket is a small subset of items
- e.g., the things one customer buys on one day

Input:

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Output:

Rules Discovered:
\{Milk\} --> \{Coke\}
\{Diaper, Milk\} --> \{Beer\}

- Want to discover association rules
- People who bought $\{x, y, z\}$ tend to buy $\{v, w\}$

Applications - (1)

- Items = products; Baskets = sets of products someone bought in one trip to the store
- Real market baskets: Chain stores keep TBs of data about what customers buy together
- Tells how typical customers navigate stores, lets them position tempting items
- Suggests tie-in "tricks", e.g., run sale on diapers + raise the price of beer
- Need the rule to occur frequently, or no $\$ \$$'s
- Amazon's people who bought X also bought Y

Applications - (2)

- Baskets = sentences; Items = documents containing those sentences
- Items that appear together too often could represent plagiarism
- Notice items do not have to be "in" baskets
- Baskets = patients; Items = drugs \& side-effects
- Has been used to detect combinations of drugs that result in particular side-effects
- But requires extension: Absence of an item needs to be observed as well as presence

More generally

- A general many-to-many mapping (association) between two kinds of things
" But we ask about connections among "items", not "baskets"
- For example:
- Finding communities in graphs (e.g., Twitter)

Frequent Itemsets

- Simplest question: Find sets of items that appear together "frequently" in baskets
- Support for itemset \boldsymbol{I} : Number of baskets containing all items in \boldsymbol{I}
- (Often expressed as a fraction of the total number of baskets)
- Given a support threshold s,

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Support of then sets of items that appear $\{$ Beer, Bread $\}=2$ in at least \boldsymbol{s} baskets are called frequent itemsets

Example: Frequent Itemsets

Items $=\{$ milk, coke, pepsi, beer, juice $\}$
\square Support threshold $=3$ baskets

$$
\begin{array}{ll}
B_{1}=\{m, c, b\} & B_{2}=\{m, p, j\} \\
B_{3}=\{m, b\} & B_{4}=\{c, j\} \\
B_{5}=\{m, c, b\} & B_{6}=\{m, c, b, j\} \\
B_{7}=\{c, b, j\} & B_{8}=\{b, c\}
\end{array}
$$

- Frequent itemsets:
$\{m\}: 5,\{c\}: 6,\{b\}: 6,\{j\}: 4,\{m, b\}: 4$, $\{m, c\}: 3,\{c, b\}: 5,\{c, j\}: 3,\{m, c, b\}: 3$

Association Rules

- If-then rules about the contents of baskets
${ }^{-}\left\{\boldsymbol{i}_{1}, \boldsymbol{i}_{2}, \ldots, \boldsymbol{i}_{k}\right\} \rightarrow \boldsymbol{j}$ means: "if a basket contains all of $\boldsymbol{i}_{\boldsymbol{l}}, \ldots, \boldsymbol{i}_{\boldsymbol{k}}$ then it is likely to contain \boldsymbol{j} "
- In practice there are many rules, want to find significant/interesting ones!
- Confidence of this association rule is the probability of \boldsymbol{j} given $\boldsymbol{I}=\left\{\boldsymbol{i}_{1}, \ldots, \boldsymbol{i}_{\boldsymbol{k}}\right\}$

$$
\operatorname{conf}(I \rightarrow j)=\frac{\operatorname{support}(I \cup j)}{\operatorname{support}(I)}
$$

Interesting Association Rules

- Not all high-confidence rules are interesting
- The rule $\boldsymbol{X} \rightarrow$ milk may have high confidence because milk is just purchased very often (independent of \boldsymbol{X})
- Interest of an association rule $\boldsymbol{I} \rightarrow \boldsymbol{j}$: difference between its confidence and the fraction of baskets that contain \boldsymbol{j}

$$
\operatorname{Interest}(I \rightarrow j)=\operatorname{conf}(I \rightarrow j)-\operatorname{Pr}[j]
$$

- Interesting rules are those with high positive or negative interest values (usually above 0.5)

Example: Confidence and Interest

$$
\begin{array}{ll}
B_{1}=\{m, c, b\} & B_{2}=\{m, p, j\} \\
B_{3}=\{m, b\} & B_{4}=\{c, j\} \\
B_{5}=\{m, c, b\} & B_{6}=\{m, c, b, j\} \\
B_{7}=\{c, b, j\} & B_{8}=\{b, c\}
\end{array}
$$

- Association rule: $\{m\} \rightarrow$ b
- Confidence = 4/5
- Interest $=4 / 5-6 / 8=1 / 20$
- Item bappears in 6/8 of the baskets
- Rule is not very interesting!

Many measures of interest

Measure (Symbol)	Definition
Goodman-Kruskal (λ)	$\left(\sum_{j} \max _{k} f_{j k}-\max _{k} f_{+k}\right) /\left(N-\max _{k} f_{+k}\right)$
Mutual Information (M)	$\left(\sum_{i} \sum_{j} \frac{f_{i j}}{N} \log \frac{N f_{i j}}{f_{i+} f_{+j}}\right) /\left(-\sum_{i} \frac{f_{i+}}{N} \log \frac{f_{i+}}{N}\right)$
J-Measure (J)	$\frac{f_{11}}{N} \log \frac{N f_{11}}{f_{1+} f_{+1}}+\frac{f_{10}}{N} \log \frac{N f_{10}}{f_{1+} f_{+0}}$
Gini index (G)	$\left.\frac{f_{1+}}{N} \times\left(\frac{f_{11}}{f_{1+}}\right)^{2}+\left(\frac{f_{10}}{f_{1+}}\right)^{2}\right]-\left(\frac{f_{+1}}{N}\right)^{2}$
	$+\frac{f_{0+}}{N} \times\left[\left(\frac{f_{01}}{f_{0+}}\right)^{2}+\left(\frac{f_{00}}{f_{0+}}\right)^{2}\right]-\left(\frac{f_{+0}}{N}\right)^{2}$
Laplace (L)	$\left(f_{11}+1\right) /\left(f_{1+}+2\right)$
Conviction (V)	$\left(f_{1+} f_{+0}\right) /\left(N f_{10}\right)$
Certainty factor (F)	$\left(\frac{f_{11}}{f_{1+}}-\frac{f_{+1}}{N}\right) /\left(1-\frac{f_{+1}}{N}\right)$
Added Value $(A V)$	$\frac{f_{11}}{f_{1+}-\frac{f_{+1}}{N}}$

Finding Association Rules

- Problem: Find all association rules with support $\geq s$ and confidence $\geq c$
- Note: Support of an association rule is the support of the set of items on the left side
- Hard part: Finding the frequent itemsets!
= If $\left\{\boldsymbol{i}_{1}, \boldsymbol{i}_{2}, \ldots, \boldsymbol{i}_{k}\right\} \rightarrow \boldsymbol{j}$ has high support and confidence, then both $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ and $\left\{i_{1}, i_{2}, \ldots, i_{k}, j\right\}$ will be "frequent"

$$
\operatorname{conf}(I \rightarrow j)=\frac{\operatorname{support}(I \cup j)}{\operatorname{support}(I)}
$$

Mining Association Rules

- Step 1: Find all frequent itemsets \boldsymbol{I}
- (we will explain this next)
- Step 2: Rule generation
- For every subset \boldsymbol{A} of \boldsymbol{I}, generate a rule $\boldsymbol{A} \rightarrow \boldsymbol{I} \backslash \boldsymbol{A}$
- Since \boldsymbol{I} is frequent, \boldsymbol{A} is also frequent
- Variant 1: Single pass to compute the rule confidence
- confidence $(\boldsymbol{A}, \boldsymbol{B} \rightarrow \boldsymbol{C}, \boldsymbol{D})=\operatorname{support}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathrm{D}) / \operatorname{support}(\mathbf{A}, \mathbf{B})$
- Variant 2 :
- Observation: If $A, B, C \rightarrow D$ is below confidence, so is $A, B \rightarrow C, D$
- Can generate "bigger" rules from smaller ones!
- Output the rules above the confidence threshold

Example: Mining Association Rules

$$
\begin{array}{ll}
B_{1}=\{m, c, b\} & B_{2}=\{m, p, j\} \\
B_{3}=\{m, b\} & B_{4}=\{c, j\} \\
B_{5}=\{m, c, b\} & B_{6}=\{m, c, b, j\} \\
B_{7}=\{c, b, j\} & B_{8}=\{b, c\}
\end{array}
$$

- Support threshold $\boldsymbol{s}=\mathbf{3}$, confidence $\boldsymbol{c}=\mathbf{0} .75$
- 1) Frequent itemsets:
- $\{b, m\}: 4\{c, m\}: 3\{b, c\}: 5\{c, j\}: 3\{m, c, b\}: 3$
-2) Generate rules:
- b $\rightarrow m: c=4 / 6 \quad b \rightarrow c: c=5 / 6$
$b, c \rightarrow m: c=3 / 5$
- $\mathrm{m} \rightarrow \mathrm{b}: c=4 / 5$
... $\mathrm{b}, \mathrm{m} \rightarrow \mathrm{c}: \boldsymbol{c}=3 / 4$ $b \rightarrow c, m: c=3 / 6$

Finding Frequent Item Sets

Given k products, how many possible item sets are there?

Finding Frequent Item Sets

Answer: 2^{k} - 1 -> Cannot enumerate all possible sets

Observation: A-priori Principle

Subsets of a frequent item set are also frequent

Corollary: Pruning of Candidates

If we know that a subset is not frequent, then we can ignore all its supersets

A-priori Algorithm

Algorithm 6.1 Frequent itemset generation of the Apriori algorithm.
1: $k=1$.
2: $F_{k}=\{i \mid i \in I \wedge \sigma(\{i\}) \geq N \times$ minsup $\}$. \quad \{Find all frequent 1-itemsets $\}$
: repeat
4: $\quad k=k+1$.
5: $\quad C_{k}=\operatorname{apriori-gen}\left(F_{k-1}\right) . \quad$ \{Generate candidate itemsets\}
6: for each transaction $t \in T$ do
7: $\quad C_{t}=\operatorname{subset}\left(C_{k}, t\right) . \quad$ \{Identify all candidates that belong to $\left.t\right\}$
8: \quad for each candidate itemset $c \in C_{t}$ do
9: $\quad \sigma(c)=\sigma(c)+1 . \quad$ \{Increment support count $\}$
10: end for
11: end for
12: $\quad F_{k}=\left\{c \mid c \in C_{k} \wedge \sigma(c) \geq N \times\right.$ minsup $\} . \quad$ \{Extract the frequent k-itemsets $\}$
13: until $F_{k}=\emptyset$
14: Result $=\bigcup F_{k}$.

Generating Candidates C_{k}

1. Self-joining: Find pairs of sets in L_{k-1} that differ by one element
2. Pruning: Remove all candidates with infrequent subsets

Example: Generating Candidates C_{k}

$$
\begin{array}{ll}
B_{1}=\{m, c, b\} & B_{2}=\{m, p, j\} \\
B_{3}=\{m, b\} & B_{4}=\{c, j\} \\
B_{5}=\{m, c, b\} & B_{6}=\{m, c, b, j\} \\
B_{7}=\{c, b, j\} & B_{8}=\{b, c\}
\end{array}
$$

- Frequent itemsets of size 2: $\{m, b\}: 4,\{m, c\}: 3,\{c, b\}: 5,\{c, j\}: 3$
- Self-joining: \{m,b,c\}, \{b,c,j\}
- Pruning:
(b,c,j) since fb,j) not frequent

Compacting the Output

- To reduce the number of rules we can post-process them and only output:
- Maximal frequent itemsets:

No immediate superset is frequent

- Gives more pruning
- Closed itemsets:

No immediate superset has same count (> 0)

- Stores not only frequent information, but exact counts

Example: Maximal vs Closed

$$
\begin{array}{ll}
B_{1}=\{m, c, b\} & B_{2}=\{m, p, j\} \\
B_{3}=\{m, b\} & B_{4}=\{c, j\} \\
B_{5}=\{m, c, b\} & B_{6}=\{m, c, b, j\} \\
B_{7}=\{c, b, j\} & B_{8}=\{b, c\}
\end{array}
$$

Frequent itemsets:
$\{m\}: 5,\{c\}: 6,\{b\}: 6,\{j\}: 4$, $\{m, c\}: 3,\{m, b\}: 4,\{c, b\}: 5,\{c, j\}: 3$, \{m,c,b\}:3

Closed
Maximal

Example: Maximal vs Closed

Hash Tree for Itemsets

Suppose you have 15 candidate itemsets of length 3:
\{1 4 5\}, \{1 2 4\}, \{4 5 7\}, \{1 2 5\}, \{4 5 8\}, \{1 5 9\}, \{1 3 6\}, \{2 3 4\}, \{5 6 7\}, \{ 34 5\}, $\{35$ 6\}, \{3 5 7\}, $\{68$ 9\}, $\{367\}$, $\{36$ 8\}

You need:

- Hash function
- Max leaf size: max number of itemsets stored in a leaf node (if number of candidate itemsets exceeds max leaf size, split the node)

Hash Tree for Itemsets

Hash on

 1, 4 or 7
Hash Function

Candidate Hash Tree

Hash Tree for Itemsets

Hash Function
Candidate Hash Tree

Hash on
2, 5 or 8

Hash Tree for Itemsets

Hash Function

Candidate Hash Tree

Hash on 3, 6 or 9

Subset Matching

Given a transaction t , what are the possible subsets of size 3 ?

Transaction, t

Subset Operation

Subset Operation

Subset Operation

