Data Mining Techniques

CS 6220 - Section 3 - Fall 2016

Lecture 13

Jan-Willem van de Meent (credit: David Lopez-Paz, David

Duvenaud, Laurens van der Maaten)

Homework

- Homework 3 is out today (due 4 Nov)
- Homework 1 has been graded (we will grade Homework 2 a little faster)
- Regrading policy
- Step 1: E-mail TAs to resolve simple problems (e.g. code not running).
- Step 2: E-mail instructor to request regrading.
- We will regrade the entire problem set. The final grade can be lower than before.

Review: PCA

Data

$$
\mathbf{X}=\left(\begin{array}{ccc}
\mid & \cdots & \mid \\
\mathbf{x}_{1} & \cdots \cdots & \mathbf{x}_{n} \\
\mid & & \mid
\end{array}\right) \in \mathbb{R}^{d \times n}
$$

Change of basis

$$
\begin{aligned}
\mathbf{z} & =\mathbf{U}^{\top} \mathbf{x} \\
\mathbf{z} & =\left(z_{1}, \ldots, z_{n}\right)^{\top} \\
z_{j} & =\mathbf{u}_{j}^{\top} \mathbf{x}
\end{aligned}
$$

Orthonormal Basis

$$
\mathbf{U}=\left(\begin{array}{cc}
\mid & \mid \\
\mathbf{u}_{1} \cdot & \mid \\
\mid & \mathbf{u}_{n}
\end{array}\right) \in \mathbb{R}^{d \times n}
$$

Inverse Change of basis

$$
\mathbf{x}=\mathbf{U} \mathbf{z}=\sum_{j=1}^{n} z_{j} \mathbf{u}_{j}
$$

Review: PCA

Data

$$
\mathbf{X}=\left(\begin{array}{ccc}
\mid & \cdots & \mid \\
\mathbf{x}_{1} & \cdots & \cdots \\
\mid & & \mathbf{x}_{n}
\end{array}\right) \in \mathbb{R}^{d \times n}
$$

Eigenvectors of Covariance

$$
\begin{gathered}
\mathbf{C}=\frac{1}{n} \sum_{j=1}^{n} \mathbf{x}_{j} \mathbf{x}_{j}^{\top}=\frac{1}{n} \mathbf{X} \mathbf{X}^{\top} \\
\mathbf{C u}_{j}=\lambda_{j} \mathbf{u}_{j}
\end{gathered}
$$

Orthonormal Basis

$$
\mathbf{U}=\left(\begin{array}{cc}
\mid & \mid \\
\mathbf{u}_{1} & \cdot \\
\mid & \mathbf{u}_{n}
\end{array}\right) \in \mathbb{R}^{d \times n}
$$

Eigen-decomposition

$$
\begin{gathered}
\boldsymbol{C}=\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{\top} \\
\boldsymbol{\Lambda}=\left(\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \cdots & \\
& & & \lambda_{n}
\end{array}\right)
\end{gathered}
$$

Review: PCA

Data

$$
\mathbf{X}=\left(\begin{array}{ccc}
\mid & \cdots & \mid \\
\mathbf{x}_{1} & \cdots & \cdots \\
\mid & \mathbf{x}_{n}
\end{array}\right) \in \mathbb{R}^{d \times n}
$$

Eigenvectors of Covariance

$$
\begin{gathered}
\mathbf{C}=\frac{1}{n} \sum_{j=1}^{n} \mathbf{x}_{j} \mathbf{x}_{j}^{\top}=\frac{1}{n} \mathbf{X} \mathbf{X}^{\top} \\
\mathbf{C u}_{j}=\lambda_{j} \mathbf{u}_{j}
\end{gathered}
$$

Orthonormal Basis

$$
\mathbf{U}=\left(\begin{array}{cc}
\mid & \mid \\
\mathbf{u}_{1} \cdot \cdots & \mathbf{u}_{n} \\
\mid & \mid
\end{array}\right) \in \mathbb{R}^{d \times n}
$$

Eigen-decomposition

$$
\begin{gathered}
\boldsymbol{C}=\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{\top} \\
\boldsymbol{\Lambda}=\left(\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \cdots & \\
& & & \lambda_{n}
\end{array}\right)
\end{gathered}
$$

Claim: Eigenvectors of a symmetric matrix are orthogonal

$\rightarrow \cap \operatorname{Rin}^{\circ}$

For any real matrix A and any vectors \mathbf{x} and \mathbf{y}, we have

$$
\langle A \mathbf{x}, \mathbf{y}\rangle=\left\langle\mathbf{x}, A^{T} \mathbf{y}\right\rangle .
$$

Now assume that A is symmetric, and \mathbf{x} and \mathbf{y} are eigenvectors of A corresponding to distinct eigenvalues λ and μ. Then

$$
\lambda\langle\mathbf{x}, \mathbf{y}\rangle=\langle\lambda \mathbf{x}, \mathbf{y}\rangle=\langle A \mathbf{x}, \mathbf{y}\rangle=\left\langle\mathbf{x}, A^{T} \mathbf{y}\right\rangle=\langle\mathbf{x}, A \mathbf{y}\rangle=\langle\mathbf{x}, \mu \mathbf{y}\rangle=\mu\langle\mathbf{x}, \mathbf{y}\rangle .
$$

Therefore, $(\lambda-\mu)\langle\mathbf{x}, \mathbf{y}\rangle=0$. Since $\lambda-\mu \neq 0$, then $\langle\mathbf{x}, \mathbf{y}\rangle=0$, i.e., $\mathbf{x} \perp \mathbf{y}$.
Now find an orthonormal basis for each eigenspace; since the eigenspaces are mutually orthogonal, these vectors together give an orthonormal subset of \mathbb{R}^{n}. Finally, since symmetric matrices are diagonalizable, this set will be a basis (just count dimensions). The result you want now follows.
share cite improve this answer

(from stack exchange)

Review: PCA

Data

$$
\mathbf{X}=\left(\begin{array}{ccc}
\mid & \cdots & \mid \\
\mathbf{x}_{1} & \cdots & \cdots \\
\mid & \mathbf{x}_{n}
\end{array}\right) \in \mathbb{R}^{d \times n}
$$

Eigenvectors of Covariance

$$
\begin{gathered}
\mathbf{C}=\frac{1}{n} \sum_{j=1}^{n} \mathbf{x}_{j} \mathbf{x}_{j}^{\top}=\frac{1}{n} \mathbf{X} \mathbf{X}^{\top} \\
\mathbf{C u}_{j}=\lambda_{j} \mathbf{u}_{j}
\end{gathered}
$$

Orthonormal Basis

$$
\mathbf{U}=\left(\begin{array}{cc}
\mid & \mid \\
\mathbf{u}_{1} \cdot \cdots & \mathbf{u}_{n} \\
\mid & \mid
\end{array}\right) \in \mathbb{R}^{d \times n}
$$

Eigen-decomposition

$$
\begin{gathered}
\boldsymbol{C}=\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{\top} \\
\boldsymbol{\Lambda}=\left(\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \cdots & \\
& & & \lambda_{n}
\end{array}\right)
\end{gathered}
$$

Claim: Eigenvectors of a symmetric matrix are orthogonal

Review: PCA

Data

$$
\mathbf{X}=\left(\begin{array}{ccc}
\mid & \cdots & \mid \\
\mathbf{x}_{1} & \cdots & \cdots \\
\mid & \mathbf{x}_{n}
\end{array}\right) \in \mathbb{R}^{d \times n}
$$

Eigenvectors of Covariance

$$
\begin{gathered}
\mathbf{C}=\frac{1}{n} \sum_{j=1}^{n} \mathbf{x}_{j} \mathbf{x}_{j}^{\top}=\frac{1}{n} \mathbf{X} \mathbf{X}^{\top} \\
\mathbf{C u}_{j}=\lambda_{j} \mathbf{u}_{j}
\end{gathered}
$$

Truncated Basis

$$
\mathbf{U}=\left(\begin{array}{cc}
\mid & \mid \\
\mathbf{u}_{1} & \cdot \\
\mid & \mathbf{u}_{k} \\
\mid & \mid
\end{array}\right) \in \mathbb{R}^{d \times k}
$$

Truncated decomposition

$$
\begin{gathered}
\boldsymbol{C} \simeq \boldsymbol{U} \boldsymbol{\Lambda}^{(k)} \boldsymbol{U}^{\top} \\
\boldsymbol{\Lambda}^{(k)}=\left(\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \cdots & \\
& & & \lambda_{k}
\end{array}\right)
\end{gathered}
$$

Review: PCA

Data

$$
\mathbf{X}=\left(\begin{array}{ccc}
\mid & \cdots & \mid \\
\mathbf{x}_{1} & \cdots \cdots & \mathbf{x}_{n} \\
\mid & & \mid
\end{array}\right) \in \mathbb{R}^{d \times n}
$$

Projection / Encoding

$$
\mathbf{z}=\mathrm{U}^{\top} \mathbf{x}
$$

Truncated Basis

$$
\mathbf{U}=\left(\begin{array}{cc}
\mid & \mid \\
\mathbf{u}_{1} & \cdot \\
\mid & \mathbf{u}_{k} \\
\mid & \mid
\end{array}\right) \in \mathbb{R}^{d \times k}
$$

Reconstruction / Decoding
$\tilde{\mathrm{x}}=\mathrm{Uz}$

Review: PCA

Top 2 components

Bottom 2 components

Data: three varieties of wheat: Kama, Rosa, Canadian
Attributes: Area, Perimeter, Compactness, Length of Kernel, Width of Kernel, Asymmetry Coefficient, Length of Groove

PCA: Complexity

Data

$$
\mathbf{X}=\left(\begin{array}{ccc}
\mid & \cdots & \mid \\
\mathbf{x}_{1} & \cdots & \cdots \\
\mid & \mathbf{x}_{n}
\end{array}\right) \in \mathbb{R}^{d \times n}
$$

Truncated Basis

$$
\mathbf{U}=\left(\begin{array}{cc}
\mid & \mid \\
\mathbf{u}_{1} & \cdot \\
\mid & \mathbf{u}_{k} \\
\mid & \mid
\end{array}\right) \in \mathbb{R}^{d \times k}
$$

Using eigen-value decomposition

- Computation of covariance $\mathbf{C}: O\left(n d^{2}\right)$
- Eigen-value decomposition: $O\left(d^{3}\right)$
- Total complexity: $O\left(n d^{2}+d^{3}\right)$

PCA: Complexity

Data

$$
\mathbf{X}=\left(\begin{array}{ccc}
\mid & \cdots & \mid \\
\mathrm{x}_{1} & \cdots & \cdots \\
\mid & \mathrm{x}_{n}
\end{array}\right) \in \mathbb{R}^{d \times n}
$$

Truncated Basis

$$
\mathbf{U}=\left(\begin{array}{cc}
\mid & \mid \\
\mathbf{u}_{1} & \cdot \\
\mid & \mathbf{u}_{k} \\
\mid & \mid
\end{array}\right) \in \mathbb{R}^{d \times k}
$$

Using singular-value decomposition

- Full decomposition: $O\left(\min \left\{n d^{2}, n^{2} d\right\}\right)$
- Rank-k decomposition: O(kdnlog(n)) (with power method)

Singular Value Decomposition

Idea: Decompose a $\mathrm{d} x \mathrm{~d}$ matrix M into

1. Change of basis V (unitary matrix)
2. A scaling Σ
(diagonal matrix)
3. Change of basis U (unitary matrix)

$$
\begin{aligned}
& M=\begin{array}{llll}
\mathbf{U} & \boldsymbol{\Sigma} & \mathbf{V}^{*}
\end{array} \\
& {\left[\begin{array}{rr}
1 & -1 \\
2 & 2
\end{array}\right]=\left[\begin{array}{cc}
0 & -i \\
1 & 0
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{rr}
-1 & -1 \\
i & -i
\end{array}\right]}
\end{aligned}
$$

Singular Value Decomposition

$$
M=U \cdot \Sigma \cdot V^{*}
$$

$$
\mathbf{X}=\mathbf{U}_{d \times d} \Sigma_{d \times n} \mathbf{V}_{n \times n}^{\top}
$$

Idea: Decompose the d x n matrix X into

1. A $n \times n$ basis V (unitary matrix)
2. Adxn matrix Σ
(diagonal projection)
3. A dxd basis U
(unitary matrix)

Random Projections

Borrowing from:
David Lopez-Paz
\& David Duvenaud

Random Projections

Fast, efficient and \mathcal{F} distance-preserving dimensionality reduction!

This result is formalized in the Johnson-Lindenstrauss Lemma

Johnson-Lindenstrauss Lemma

For any $0<\epsilon<1 / 2$ and any integer $m>4$, let $k=\frac{20 \log m}{\epsilon^{2}}$. Then, for any set V of m points in $\mathbb{R}^{N} \exists f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{k}$ s.t. $\forall \boldsymbol{u}, \boldsymbol{v} \in V$:

$$
(1-\epsilon)\|\boldsymbol{u}-\boldsymbol{v}\|^{2} \leq\|f(\boldsymbol{u})-f(\boldsymbol{v})\|^{2} \leq(1+\epsilon)\|\boldsymbol{u}-\boldsymbol{v}\|^{2} .
$$

The proof is a great example of Erdös' probabilistic method (1947).

Paul Erdös 1913-1996

Joram Lindenstrauss 1936-2012

William B. Johnson 1944-

Johnson-Lindenstrauss Lemma

For any $0<\epsilon<1 / 2$ and any integer $m>4$, let $k=\frac{20 \log m}{\epsilon^{2}}$. Then, for any set V of m points in $\mathbb{R}^{N} \exists f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{k}$ s.t. $\forall \boldsymbol{u}, \boldsymbol{v} \in V$:

$$
(1-\epsilon)\|\boldsymbol{u}-\boldsymbol{v}\|^{2} \leq\|f(\boldsymbol{u})-f(\boldsymbol{v})\|^{2} \leq(1+\epsilon)\|\boldsymbol{u}-\boldsymbol{v}\|^{2} .
$$

Holds when f is linear function with random coefficients

$$
f=\frac{1}{\sqrt{k}} \boldsymbol{A}, \boldsymbol{A} \in \mathbb{R}^{k \times N}, k<N \text { and } A_{i j} \sim \mathcal{N}(0,1)
$$

Example: 20-newsgroups data

Data: 20-newsgroups, from 100.000 features to 300 (0.3\%)

Example: 20-newsgroups data

Data: 20-newsgroups, from 100.000 features to 1.000 (1\%)

Example: 20-newsgroups data

Data: 20-newsgroups, from 100.000 features to $10.000(10 \%)$

Pairwise squared distances in original space

Example: 20-newsgroups data

Data: 20-newsgroups, from 100.000 features to 10.000 (10\%)

Conclusion: RP preserves distances like PCA, but faster than PCA number of dimensions is vey large

Stochastic Neighbor Embeddings

Borrowing from:
Laurens van der Maaten
(Delft -> Facebook AI)

Manifold Learning

Idea: Perform a non-linear dimensionality reduction in a manner that preserves proximity (but not distances)

Manifold Learning

Visualizing data using t-SNE

[PDF] jmlr.org
L Maaten, \underline{G} Hinton - Journal of Machine Learning Research, 2008 - jmlr.org
Abstract We present a new technique called" t -SNE" that visualizes high-dimensional data by giving each datapoint a location in a two or three-dimensional map. The technique is a variation of Stochastic Neighbor Embedding (Hinton and Roweis, 2002) that is much ...
Cited by 1771 Related articles All 35 versions Cite Save

PCA on MNIST Digits

Swiss Roll

Euclidean distance is not always a good notion of proximity

Non-linear Projection

High Dim

Low Dim

Bad projection: relative position to neighbors changes

Non-linear Projection

High Dim

Low Dim

Intuition: Want to preserve local neighborhood

Stochastic Neighbor Embedding

High Dim

Similarity in high dimension

$$
p_{j \mid i}=\frac{\exp \left(-\left\|x_{i}-x_{j}\right\|^{2} / 2 \sigma_{i}^{2}\right)}{\sum_{k \neq i} \exp \left(-\left\|x_{i}-x_{k}\right\|^{2} / 2 \sigma_{i}^{2}\right)}
$$

Low Dim

Similarity in low dimension

$$
q_{j \mid i}=\frac{\exp \left(-\left\|y_{i}-y_{j}\right\|^{2}\right)}{\sum_{k \neq i} \exp \left(-\left\|y_{i}-y_{k}\right\|^{2}\right)}
$$

Stochastic Neighbor Embedding

- Similarity of datapoints in High Dimension

$$
p_{j \mid i}=\frac{\exp \left(-\left\|x_{i}-x_{j}\right\|^{2} / 2 \sigma_{i}^{2}\right)}{\sum_{k \neq i} \exp \left(-\left\|x_{i}-x_{k}\right\|^{2} / 2 \sigma_{i}^{2}\right)}
$$

- Similarity of datapoints in Low Dimension

$$
q_{j \mid i}=\frac{\exp \left(-\left\|y_{i}-y_{j}\right\|^{2}\right)}{\sum_{k \neq i} \exp \left(-\left\|y_{i}-y_{k}\right\|^{2}\right)}
$$

- Cost function

$$
C=\sum_{i} K L\left(P_{i} \| Q_{i}\right)=\sum_{i} \sum_{j} p_{j \mid i} \log \frac{p_{j \mid i}}{q_{j \mid i}}
$$

Idea: Optimize y_{i} via gradient descent on C

Stochastic Neighbor Embedding

- Similarity of datapoints in High Dimension

$$
p_{j \mid i}=\frac{\exp \left(-\left\|x_{i}-x_{j}\right\|^{2} / 2 \sigma_{i}^{2}\right)}{\sum_{k \neq i} \exp \left(-\left\|x_{i}-x_{k}\right\|^{2} / 2 \sigma_{i}^{2}\right)}
$$

- Similarity of datapoints in Low Dimension

$$
q_{j \mid i}=\frac{\exp \left(-\left\|y_{i}-y_{j}\right\|^{2}\right)}{\sum_{k \neq i} \exp \left(-\left\|y_{i}-y_{k}\right\|^{2}\right)}
$$

- Cost function

$$
C=\sum_{i} K L\left(P_{i} \| Q_{i}\right)=\sum_{i} \sum_{j} p_{j \mid i} \log \frac{p_{j \mid i}}{q_{j \mid i}}
$$

Idea: Optimize y_{i} via gradient descent on C

Stochastic Neighbor Embedding

Gradient has a surprisingly simple form

$$
\frac{\partial C}{\partial y_{i}}=\sum_{j \neq i}\left(p_{j \mid i}-q_{j \mid i}+p_{i \mid j}-q_{i \mid j}\right)\left(y_{i}-y_{j}\right)
$$

The gradient update with momentum term is given by

$$
Y^{(t)}=Y^{(t-1)}+\eta \frac{\partial C}{\partial y_{i}}+\beta(t)\left(Y^{(t-1)}-Y^{(t-2)}\right)
$$

Stochastic Neighbor Embedding

Gradient has a surprisingly simple form

$$
\frac{\partial C}{\partial y_{i}}=\sum_{j \neq i}\left(p_{j \mid i}-q_{j \mid i}+p_{i \mid j}-q_{i \mid j}\right)\left(y_{i}-y_{j}\right)
$$

The gradient update with momentum term is given by

$$
Y^{(t)}=Y^{(t-1)}+\eta \frac{\partial C}{\partial y_{i}}+\beta(t)\left(Y^{(t-1)}-Y^{(t-2)}\right)
$$

Problem: p_{jli} is not equal to p_{ilj}

Symmetric SNE

- Minimize a single KL divergence between a joint probability distribution

$$
C=K L(P \| Q)=\sum_{i} \sum_{j \neq i} p_{i j} \log \frac{p_{i j}}{q_{i j}}
$$

- The obvious way to redefine the pairwise similarities is

$$
\begin{aligned}
p_{i j} & =\frac{\exp \left(-\left\|x_{i}-x_{j}\right\|^{2} / 2 \sigma^{2}\right)}{\sum_{k \neq l} \exp \left(-\left\|x_{l}-x_{k}\right\|^{2} / 2 \sigma^{2}\right)} \\
q_{i j} & =\frac{\exp \left(-\left\|y_{i}-y_{j}\right\|^{2}\right)}{\sum_{k \neq 1} \exp \left(-\left\|y_{l}-y_{k}\right\|^{2}\right)}
\end{aligned}
$$

Symmetric SNE

- Minimize a single KL divergence between a joint probability distribution

$$
C=K L(P \| Q)=\sum_{i} \sum_{j \neq i} p_{i j} \log \frac{p_{i j}}{q_{i j}}
$$

- The obvious way to redefine the pairwise similarities is

$$
\begin{gathered}
p_{i j}=\frac{\exp \left(-\left\|x_{i}-x_{j}\right\|^{2} / 2 \sigma^{2}\right)}{\sum_{k \neq l} \exp \left(-\left\|x_{l}-x_{k}\right\|^{2} / 2 \sigma^{2}\right)} \\
q_{i j}=\frac{\exp \left(-\left\|y_{i}-y_{j}\right\|^{2}\right)}{\sum_{k \neq 1} \exp \left(-\left\|y_{l}-y_{k}\right\|^{2}\right)}
\end{gathered}
$$

Problem: How should we choose σ ?

Choosing the bandwidth

$$
p_{i j}=\frac{\exp \left(-\left\|x_{i}-x_{j}\right\|^{2} / 2 \sigma^{2}\right)}{\sum_{k \neq 1} \exp \left(-\left\|x_{l}-x_{k}\right\|^{2} / 2 \sigma^{2}\right)}
$$

Bad σ. Neighborhood is not local in manifold

Choosing the bandwidth

$$
p_{i j}=\frac{\exp \left(-\left\|x_{i}-x_{j}\right\|^{2} / 2 \sigma^{2}\right)}{\sum_{k \neq 1} \exp \left(-\left\|x_{I}-x_{k}\right\|^{2} / 2 \sigma^{2}\right)}
$$

Good σ : Neighborhood contains 5-50 points

Choosing the bandwidth

$$
p_{i j}=\frac{\exp \left(-\left\|x_{i}-x_{j}\right\|^{2} / 2 \sigma^{2}\right)}{\sum_{k \neq 1} \exp \left(-\left\|x_{l}-x_{k}\right\|^{2} / 2 \sigma^{2}\right)}
$$

Problem: optimal σ may vary if density not uniform

Choosing the bandwidth

$$
p_{i j}=\frac{p_{j \mid i}+p_{i \mid j}}{2 N} \quad p_{j \mid i}=\frac{\exp \left(-\left\|x_{i}-x_{j}\right\|^{2} / 2 \sigma_{i}^{2}\right)}{\sum_{k \neq i} \exp \left(-\left\|x_{i}-x_{k}\right\|^{2} / 2 \sigma_{i}^{2}\right)}
$$

Solution: Define σ_{i} per point.

Choosing the bandwidth

$$
p_{i j}=\frac{p_{j \mid i}+p_{i \mid j}}{2 N} \quad p_{j \mid i}=\frac{\exp \left(-\left\|x_{i}-x_{j}\right\|^{2} / 2 \sigma_{i}^{2}\right)}{\sum_{k \neq i} \exp \left(-\left\|x_{i}-x_{k}\right\|^{2} / 2 \sigma_{i}^{2}\right)}
$$

Solution: Define σ_{i} per point.

Choosing the bandwidth

$$
p_{i j}=\frac{p_{j \mid i}+p_{i \mid j}}{2 N} \quad p_{j \mid i}=\frac{\exp \left(-\left\|x_{i}-x_{j}\right\|^{2} / 2 \sigma_{i}^{2}\right)}{\sum_{k \neq i} \exp \left(-\left\|x_{i}-x_{k}\right\|^{2} / 2 \sigma_{i}^{2}\right)}
$$

Solution: Define σ_{i} per point.

Choosing the bandwidth

$$
\operatorname{Perp}\left(\mathbf{p}_{j \mid i}\right)=\exp H\left(\mathbf{p}_{j \mid i}\right)=\exp ^{-\sum_{j} \mathbf{p}_{j \mid i} \log \mathbf{p}_{j \mid i}}
$$

Set σ_{i} to ensure constant perplexity

t-SNE: SNE with a t-Distribution

Similarity in High Dimension

$$
p_{i j}=\frac{\exp \left(-\left\|x_{i}-x_{j}\right\|^{2} / 2 \sigma^{2}\right)}{\sum_{k \neq 1} \exp \left(-\left\|x_{l}-x_{k}\right\|^{2} / 2 \sigma^{2}\right)}
$$

Similarity in Low Dimension

$$
q_{i j}=\frac{\left(1+\left\|y_{i}-y_{j}\right\|^{2}\right)^{-1}}{\sum_{k \neq l}\left(1+\left\|y_{k}-y_{l}\right\|^{2}\right)^{-1}}
$$

Gradient

$$
\frac{\partial C}{\partial y_{i}}=4 \sum_{j \neq i}\left(p_{i j}-q_{i j}\right)\left(1+\left\|y_{i}-y_{j}\right\|^{2}\right)^{-1}\left(y_{i}-y_{j}\right)
$$

t-SNE: SNE with a t-Distribution

Similarity in High Dimension

$$
p_{i j}=\frac{\exp \left(-\left\|x_{i}-x_{j}\right\|^{2} / 2 \sigma^{2}\right)}{\sum_{k \neq 1} \exp \left(-\left\|x_{l}-x_{k}\right\|^{2} / 2 \sigma^{2}\right)}
$$

Similarity in Low Dimension

$$
q_{i j}=\frac{\left(1+\left\|y_{i}-y_{j}\right\|^{2}\right)^{-1}}{\sum_{k \neq l}\left(1+\left\|y_{k}-y_{l}\right\|^{2}\right)^{-1}}
$$

Gradient

$$
\frac{\partial C}{\partial y_{i}}=4 \sum_{j \neq i}\left(p_{i j}-q_{i j}\right)\left(1+\left\|y_{i}-y_{j}\right\|^{2}\right)^{-1}\left(y_{i}-y_{j}\right)
$$

Symmetric SNE

- Minimize a single KL divergence between a joint probability distribution

$$
C=K L(P \| Q)=\sum_{i} \sum_{j \neq i} p_{i j} \log \frac{p_{i j}}{q_{i j}}
$$

- The obvious way to redefine the pairwise similarities is

$$
\begin{gathered}
p_{i j}=\frac{\exp \left(-\left\|x_{i}-x_{j}\right\|^{2} / 2 \sigma^{2}\right)}{\sum_{k \neq l} \exp \left(-\left\|x_{l}-x_{k}\right\|^{2} / 2 \sigma^{2}\right)} \\
q_{i j}=\frac{\exp \left(-\left\|y_{i}-y_{j}\right\|^{2}\right)}{\sum_{k \neq 1} \exp \left(-\left\|y_{l}-y_{k}\right\|^{2}\right)}
\end{gathered}
$$

Problem: How should we choose σ ?

PCA on MNIST Digits

t-SNE on MNIST Digits

t-SNE on MNIST Digits

t-SNE on Olivetti Faces

t-SNE on Olivetti Faces

t-SNE on Olivetti Faces

t-SNE on ImageNet

t-SNE on ImageNet

t-SNE on ImageNet

Next lecture: Recommender Systems

	$\frac{5 m s}{x i m s}$				3	
1	2			4	5	2.94*
2	5		4			1
			5		2	2.48*
		1		5		4
			4			2
	4	5		1		1.12*
$\operatorname{sim}(\mathrm{i}, \mathrm{j})$	-1	1	0.86	1	NA	

