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Lecture 10
Jan-Willem van de Meent 
(credit: Yijun Zhao, Chris Bishop, 
 Andrew Moore, Hastie et al.)



Evaluation of 
Clustering



Clusters in Random Data
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Cluster Validity 

O For supervised classification we have a variety of 
measures to evaluate how good our model is

– Accuracy, precision, recall

O For cluster analysis, the analogous question is how to 
evaluate the “goodness” of the resulting clusters?

O But “clusters are in the eye of the beholder”! 

O Then why do we want to evaluate them?
– To avoid finding patterns in noise
– To compare clustering algorithms
– To compare two sets of clusters
– To compare two clusters
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Clusters found in Random Data
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Clustering Criteria
• External Quality Criteria

• Precision-Recall Measure 
• Mutual Information 

• Internal Quality Criteria  
Measure compactness of clusters 
• Sum of Squared Error (SSE) 
• Scatter Criteria



Mutual Information (External)



Mutual Information (External)

Uncorrelated Variables



Mutual Information (External)

Uncorrelated Variables



Perfectly Correlated Variables

Mutual Information (External)



Mutual Information (External)

Perfectly Correlated Variables
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Perfectly Correlated Variables
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Perfectly Correlated Variables



Mutual Information (External)

Perfectly Correlated Variables



Mutual Information (External)

yn: True class label for example n 
 zn: Clustering label for example n



Mutual Information (External)

yn: True class label for example n 
 zn: Clustering label for example n



Mutual Information (External)



Mutual Information (External)

What happens to I(Y;Z) if we swap cluster labels?



Mutual Information (External)

What happens to I(Y;Z) if we swap cluster labels?



Mutual Information (External)

Mutual Information is invariant under label permutations



Scatter Criteria (Internal)Scatter Criteria (Internal)

Let x = (x1, . . . , xd)T

C1, . . . ,CK be a clustering of {x1, . . . , xN}
Define

Size of each cluster:

Ni = |Ci | i = 1, 2, . . . ,K

Mean for each cluster:

µi =
1
Ni

P
x2Ci

x i = 1, 2, . . . ,K

Total mean :

µ = 1
N

NP
i=1

xi OR µ = 1
N

KP
i=1

Niµi
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Scatter Criteria (Internal)

Scatter matrix for the i

th cluster:

Si =
P
x2Ci

(x� µi)(x� µi)T (outer product)

Within cluster scatter matrix :

SW =
KP
i=1

Si

Between cluster scatter matrix :

SB =
KP
i=1

Ni(µi �µ)(µi �µ)T (outer product)
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Scatter Criteria (Internal)



Scatter Criteria (Internal)Scatter Criteria (Internal)

The trace criteria: sum of the diagonal
elements of a matrix

A good partition of the data should have:

Low tr(SW ): similar to minimizing SSE

High tr(SB)

High
tr(S

B

)
tr(S

W

)
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Mixture Models



QDA: Gaussian Classification
Generative Model

4.2 Linear Regression of an Indicator Matrix 103
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FIGURE 4.1. The left plot shows some data from three classes, with linear
decision boundaries found by linear discriminant analysis. The right plot shows
quadratic decision boundaries. These were obtained by finding linear boundaries
in the five-dimensional space X1, X2, X1X2, X

2
1 , X

2
2 . Linear inequalities in this

space are quadratic inequalities in the original space.

mation h(X) where h : IRp !→ IRq with q > p, and will be explored in later
chapters.

4.2 Linear Regression of an Indicator Matrix

Here each of the response categories are coded via an indicator variable.
Thus if G has K classes, there will be K such indicators Yk, k = 1, . . . ,K,
with Yk = 1 if G = k else 0. These are collected together in a vector
Y = (Y1, . . . , YK), and the N training instances of these form an N × K
indicator response matrix Y. Y is a matrix of 0’s and 1’s, with each row
having a single 1. We fit a linear regression model to each of the columns
of Y simultaneously, and the fit is given by

Ŷ = X(XTX)−1XTY. (4.3)

Chapter 3 has more details on linear regression. Note that we have a coeffi-
cient vector for each response column yk, and hence a (p+1)×K coefficient
matrix B̂ = (XTX)−1XTY. Here X is the model matrix with p+1 columns
corresponding to the p inputs, and a leading column of 1’s for the intercept.

A new observation with input x is classified as follows:

• compute the fitted output f̂(x)T = (1, xT )B̂, a K vector;

• identify the largest component and classify accordingly:

Ĝ(x) = argmaxk∈G f̂k(x). (4.4)

Classify using posterior

(for n = 1, …, N)



Generative Model

4.2 Linear Regression of an Indicator Matrix 103
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FIGURE 4.1. The left plot shows some data from three classes, with linear
decision boundaries found by linear discriminant analysis. The right plot shows
quadratic decision boundaries. These were obtained by finding linear boundaries
in the five-dimensional space X1, X2, X1X2, X

2
1 , X

2
2 . Linear inequalities in this

space are quadratic inequalities in the original space.

mation h(X) where h : IRp !→ IRq with q > p, and will be explored in later
chapters.

4.2 Linear Regression of an Indicator Matrix

Here each of the response categories are coded via an indicator variable.
Thus if G has K classes, there will be K such indicators Yk, k = 1, . . . ,K,
with Yk = 1 if G = k else 0. These are collected together in a vector
Y = (Y1, . . . , YK), and the N training instances of these form an N × K
indicator response matrix Y. Y is a matrix of 0’s and 1’s, with each row
having a single 1. We fit a linear regression model to each of the columns
of Y simultaneously, and the fit is given by

Ŷ = X(XTX)−1XTY. (4.3)

Chapter 3 has more details on linear regression. Note that we have a coeffi-
cient vector for each response column yk, and hence a (p+1)×K coefficient
matrix B̂ = (XTX)−1XTY. Here X is the model matrix with p+1 columns
corresponding to the p inputs, and a leading column of 1’s for the intercept.

A new observation with input x is classified as follows:

• compute the fitted output f̂(x)T = (1, xT )B̂, a K vector;

• identify the largest component and classify accordingly:

Ĝ(x) = argmaxk∈G f̂k(x). (4.4)

Joint Probability

Classify using posterior

QDA: Gaussian Classification
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FIGURE 4.1. The left plot shows some data from three classes, with linear
decision boundaries found by linear discriminant analysis. The right plot shows
quadratic decision boundaries. These were obtained by finding linear boundaries
in the five-dimensional space X1, X2, X1X2, X

2
1 , X

2
2 . Linear inequalities in this

space are quadratic inequalities in the original space.

mation h(X) where h : IRp !→ IRq with q > p, and will be explored in later
chapters.

4.2 Linear Regression of an Indicator Matrix

Here each of the response categories are coded via an indicator variable.
Thus if G has K classes, there will be K such indicators Yk, k = 1, . . . ,K,
with Yk = 1 if G = k else 0. These are collected together in a vector
Y = (Y1, . . . , YK), and the N training instances of these form an N × K
indicator response matrix Y. Y is a matrix of 0’s and 1’s, with each row
having a single 1. We fit a linear regression model to each of the columns
of Y simultaneously, and the fit is given by

Ŷ = X(XTX)−1XTY. (4.3)

Chapter 3 has more details on linear regression. Note that we have a coeffi-
cient vector for each response column yk, and hence a (p+1)×K coefficient
matrix B̂ = (XTX)−1XTY. Here X is the model matrix with p+1 columns
corresponding to the p inputs, and a leading column of 1’s for the intercept.

A new observation with input x is classified as follows:

• compute the fitted output f̂(x)T = (1, xT )B̂, a K vector;

• identify the largest component and classify accordingly:

Ĝ(x) = argmaxk∈G f̂k(x). (4.4)

Joint Probability

Classify using posterior

QDA: Gaussian Classification
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FIGURE 4.1. The left plot shows some data from three classes, with linear
decision boundaries found by linear discriminant analysis. The right plot shows
quadratic decision boundaries. These were obtained by finding linear boundaries
in the five-dimensional space X1, X2, X1X2, X

2
1 , X

2
2 . Linear inequalities in this

space are quadratic inequalities in the original space.

mation h(X) where h : IRp !→ IRq with q > p, and will be explored in later
chapters.

4.2 Linear Regression of an Indicator Matrix

Here each of the response categories are coded via an indicator variable.
Thus if G has K classes, there will be K such indicators Yk, k = 1, . . . ,K,
with Yk = 1 if G = k else 0. These are collected together in a vector
Y = (Y1, . . . , YK), and the N training instances of these form an N × K
indicator response matrix Y. Y is a matrix of 0’s and 1’s, with each row
having a single 1. We fit a linear regression model to each of the columns
of Y simultaneously, and the fit is given by

Ŷ = X(XTX)−1XTY. (4.3)

Chapter 3 has more details on linear regression. Note that we have a coeffi-
cient vector for each response column yk, and hence a (p+1)×K coefficient
matrix B̂ = (XTX)−1XTY. Here X is the model matrix with p+1 columns
corresponding to the p inputs, and a leading column of 1’s for the intercept.

A new observation with input x is classified as follows:

• compute the fitted output f̂(x)T = (1, xT )B̂, a K vector;

• identify the largest component and classify accordingly:

Ĝ(x) = argmaxk∈G f̂k(x). (4.4)

Joint Probability

Classify using posterior / joint

QDA: Gaussian Classification
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FIGURE 4.1. The left plot shows some data from three classes, with linear
decision boundaries found by linear discriminant analysis. The right plot shows
quadratic decision boundaries. These were obtained by finding linear boundaries
in the five-dimensional space X1, X2, X1X2, X

2
1 , X

2
2 . Linear inequalities in this

space are quadratic inequalities in the original space.

mation h(X) where h : IRp !→ IRq with q > p, and will be explored in later
chapters.

4.2 Linear Regression of an Indicator Matrix

Here each of the response categories are coded via an indicator variable.
Thus if G has K classes, there will be K such indicators Yk, k = 1, . . . ,K,
with Yk = 1 if G = k else 0. These are collected together in a vector
Y = (Y1, . . . , YK), and the N training instances of these form an N × K
indicator response matrix Y. Y is a matrix of 0’s and 1’s, with each row
having a single 1. We fit a linear regression model to each of the columns
of Y simultaneously, and the fit is given by

Ŷ = X(XTX)−1XTY. (4.3)

Chapter 3 has more details on linear regression. Note that we have a coeffi-
cient vector for each response column yk, and hence a (p+1)×K coefficient
matrix B̂ = (XTX)−1XTY. Here X is the model matrix with p+1 columns
corresponding to the p inputs, and a leading column of 1’s for the intercept.

A new observation with input x is classified as follows:

• compute the fitted output f̂(x)T = (1, xT )B̂, a K vector;

• identify the largest component and classify accordingly:

Ĝ(x) = argmaxk∈G f̂k(x). (4.4)

Use maximum likelihood params

Classify using posterior / joint

QDA: Gaussian Classification
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FIGURE 4.1. The left plot shows some data from three classes, with linear
decision boundaries found by linear discriminant analysis. The right plot shows
quadratic decision boundaries. These were obtained by finding linear boundaries
in the five-dimensional space X1, X2, X1X2, X

2
1 , X

2
2 . Linear inequalities in this

space are quadratic inequalities in the original space.

mation h(X) where h : IRp !→ IRq with q > p, and will be explored in later
chapters.

4.2 Linear Regression of an Indicator Matrix

Here each of the response categories are coded via an indicator variable.
Thus if G has K classes, there will be K such indicators Yk, k = 1, . . . ,K,
with Yk = 1 if G = k else 0. These are collected together in a vector
Y = (Y1, . . . , YK), and the N training instances of these form an N × K
indicator response matrix Y. Y is a matrix of 0’s and 1’s, with each row
having a single 1. We fit a linear regression model to each of the columns
of Y simultaneously, and the fit is given by

Ŷ = X(XTX)−1XTY. (4.3)

Chapter 3 has more details on linear regression. Note that we have a coeffi-
cient vector for each response column yk, and hence a (p+1)×K coefficient
matrix B̂ = (XTX)−1XTY. Here X is the model matrix with p+1 columns
corresponding to the p inputs, and a leading column of 1’s for the intercept.

A new observation with input x is classified as follows:

• compute the fitted output f̂(x)T = (1, xT )B̂, a K vector;

• identify the largest component and classify accordingly:

Ĝ(x) = argmaxk∈G f̂k(x). (4.4)

Classify using posterior / joint

QDA: Gaussian Classification
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Algorithm

Initialize parameters to  

Repeat until convergence 

1. Update cluster assignments 

2. Update parameters 

Gaussian Clustering

How can we deal with overlapping clusters in a better way?
Idea: Perform soft clustering using weighted assignments
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Gaussian Clustering



Posterior weights

Parameter Estimates

Gaussian Soft Clustering
Generative Model



Gaussian Soft Clustering
Posterior weights

Parameter Estimates

Generative Model



Gaussian Mixture Model
Generative Model

Expectation Maximization 
(sketch)

Initialize θ  

Repeat until convergence 

1. Expectation Step 

    “calculate γ from θ” 

2. Maximization Step 

    “calculate θ from γ”
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Solve for zero 
gradient to find  
maximum

Maximum Likelihood Estimation 



Unsupervised (e.g. GMM)

Supervised (e.g. QDA)

Solve for zero 
gradient to find  
maximum

Not so easy here,  
because of sum  
inside logarithm

Maximum Likelihood Estimation 
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Intermezzo: KL Divergence
KL Divergence

Properties
• KL(q || p) ≥ 0 
• If KL(q || p) = 0, then q = p 
• KL(q || p) ≠ KL(p || q)



Intermezzo: Information Theory
KL Divergence

28 ENTROPY, RELATIVE ENTROPY, AND MUTUAL INFORMATION

Theorem 2.6.3 (Information inequality) Let p(x), q(x), x ∈ X, be
two probability mass functions. Then

D(p||q) ≥ 0 (2.82)

with equality if and only if p(x) = q(x) for all x.

Proof: Let A = {x : p(x) > 0} be the support set of p(x). Then

−D(p||q) = −
∑

x∈A

p(x) log
p(x)

q(x)
(2.83)

=
∑

x∈A

p(x) log
q(x)

p(x)
(2.84)

≤ log
∑

x∈A

p(x)
q(x)

p(x)
(2.85)

= log
∑

x∈A

q(x) (2.86)

≤ log
∑

x∈X
q(x) (2.87)

= log 1 (2.88)

= 0, (2.89)

where (2.85) follows from Jensen’s inequality. Since log t is a strictly
concave function of t , we have equality in (2.85) if and only if q(x)/p(x)
is constant everywhere [i.e., q(x) = cp(x) for all x]. Thus,

∑
x∈A q(x) =

c
∑

x∈A p(x) = c. We have equality in (2.87) only if
∑

x∈A q(x) =
∑

x∈X
q(x) = 1, which implies that c = 1. Hence, we have D(p||q) = 0 if and
only if p(x) = q(x) for all x. !

Corollary (Nonnegativity of mutual information) For any two random
variables, X, Y ,

I (X;Y) ≥ 0, (2.90)

with equality if and only if X and Y are independent.

Proof: I (X;Y) = D(p(x, y)||p(x)p(y)) ≥ 0, with equality if and only
if p(x, y) = p(x)p(y) (i.e., X and Y are independent). !

Properties
• KL(q || p) ≥ 0 
• If KL(q || p) = 0, then q = p 
• KL(q || p) ≠ KL(p || q)

Proof
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Figure 9.11 Illustration of the decomposition given
by (9.70), which holds for any choice
of distribution q(Z). Because the
Kullback-Leibler divergence satisfies
KL(q∥p) ! 0, we see that the quan-
tity L(q, θ) is a lower bound on the log
likelihood function ln p(X|θ).

ln p(X|θ)L(q, θ)

KL(q||p)

carefully the forms of the expressions (9.71) and (9.72), and in particular noting that
they differ in sign and also that L(q, θ) contains the joint distribution of X and Z
while KL(q∥p) contains the conditional distribution of Z given X. To verify the
decomposition (9.70), we first make use of the product rule of probability to giveExercise 9.24

ln p(X,Z|θ) = ln p(Z|X, θ) + ln p(X|θ) (9.73)

which we then substitute into the expression for L(q, θ). This gives rise to two terms,
one of which cancels KL(q∥p) while the other gives the required log likelihood
ln p(X|θ) after noting that q(Z) is a normalized distribution that sums to 1.

From (9.72), we see that KL(q∥p) is the Kullback-Leibler divergence between
q(Z) and the posterior distribution p(Z|X, θ). Recall that the Kullback-Leibler di-
vergence satisfies KL(q∥p) ! 0, with equality if, and only if, q(Z) = p(Z|X, θ). ItSection 1.6.1
therefore follows from (9.70) that L(q, θ) " ln p(X|θ), in other words that L(q, θ)
is a lower bound on ln p(X|θ). The decomposition (9.70) is illustrated in Fig-
ure 9.11.

The EM algorithm is a two-stage iterative optimization technique for finding
maximum likelihood solutions. We can use the decomposition (9.70) to define the
EM algorithm and to demonstrate that it does indeed maximize the log likelihood.
Suppose that the current value of the parameter vector is θold. In the E step, the
lower bound L(q, θold) is maximized with respect to q(Z) while holding θold fixed.
The solution to this maximization problem is easily seen by noting that the value
of ln p(X|θold) does not depend on q(Z) and so the largest value of L(q, θold) will
occur when the Kullback-Leibler divergence vanishes, in other words when q(Z) is
equal to the posterior distribution p(Z|X, θold). In this case, the lower bound will
equal the log likelihood, as illustrated in Figure 9.12.

In the subsequent M step, the distribution q(Z) is held fixed and the lower bound
L(q, θ) is maximized with respect to θ to give some new value θnew. This will
cause the lower bound L to increase (unless it is already at a maximum), which will
necessarily cause the corresponding log likelihood function to increase. Because the
distribution q is determined using the old parameter values rather than the new values
and is held fixed during the M step, it will not equal the new posterior distribution
p(Z|X, θnew), and hence there will be a nonzero KL divergence. The increase in the
log likelihood function is therefore greater than the increase in the lower bound, as

1. Lower bound is sum over log, not log of sum
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lower bound L(q, θold) is maximized with respect to q(Z) while holding θold fixed.
The solution to this maximization problem is easily seen by noting that the value
of ln p(X|θold) does not depend on q(Z) and so the largest value of L(q, θold) will
occur when the Kullback-Leibler divergence vanishes, in other words when q(Z) is
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equal the log likelihood, as illustrated in Figure 9.12.

In the subsequent M step, the distribution q(Z) is held fixed and the lower bound
L(q, θ) is maximized with respect to θ to give some new value θnew. This will
cause the lower bound L to increase (unless it is already at a maximum), which will
necessarily cause the corresponding log likelihood function to increase. Because the
distribution q is determined using the old parameter values rather than the new values
and is held fixed during the M step, it will not equal the new posterior distribution
p(Z|X, θnew), and hence there will be a nonzero KL divergence. The increase in the
log likelihood function is therefore greater than the increase in the lower bound, as

2. Bound is tight when q(z) = p(z | X, θ)

Generalized EM



E-step: maximize with respect to q(z)
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452 9. MIXTURE MODELS AND EM

Figure 9.12 Illustration of the E step of
the EM algorithm. The q
distribution is set equal to
the posterior distribution for
the current parameter val-
ues θold, causing the lower
bound to move up to the
same value as the log like-
lihood function, with the KL
divergence vanishing. ln p(X|θold)L(q, θold)

KL(q||p) = 0

shown in Figure 9.13. If we substitute q(Z) = p(Z|X, θold) into (9.71), we see that,
after the E step, the lower bound takes the form

L(q, θ) =
∑

Z

p(Z|X, θold) ln p(X,Z|θ) −
∑

Z

p(Z|X, θold) ln p(Z|X, θold)

= Q(θ, θold) + const (9.74)

where the constant is simply the negative entropy of the q distribution and is there-
fore independent of θ. Thus in the M step, the quantity that is being maximized is the
expectation of the complete-data log likelihood, as we saw earlier in the case of mix-
tures of Gaussians. Note that the variable θ over which we are optimizing appears
only inside the logarithm. If the joint distribution p(Z,X|θ) comprises a member of
the exponential family, or a product of such members, then we see that the logarithm
will cancel the exponential and lead to an M step that will be typically much simpler
than the maximization of the corresponding incomplete-data log likelihood function
p(X|θ).

The operation of the EM algorithm can also be viewed in the space of parame-
ters, as illustrated schematically in Figure 9.14. Here the red curve depicts the (in-

Figure 9.13 Illustration of the M step of the EM
algorithm. The distribution q(Z)
is held fixed and the lower bound
L(q, θ) is maximized with respect
to the parameter vector θ to give
a revised value θnew. Because the
KL divergence is nonnegative, this
causes the log likelihood ln p(X|θ)
to increase by at least as much as
the lower bound does.

ln p(X|θnew)L(q, θnew)

KL(q||p)

7 7
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M-step: maximize with respect to θ
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Gaussian Mixture Model
Generative Model Expectation Maximization

Initialize θ  

Repeat until convergence 

1. Expectation Step 

    

2. Maximization Step 
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Figure 9.5 Example of 500 points drawn from the mixture of 3 Gaussians shown in Figure 2.23. (a) Samples
from the joint distribution p(z)p(x|z) in which the three states of z, corresponding to the three components of the
mixture, are depicted in red, green, and blue, and (b) the corresponding samples from the marginal distribution
p(x), which is obtained by simply ignoring the values of z and just plotting the x values. The data set in (a) is
said to be complete, whereas that in (b) is incomplete. (c) The same samples in which the colours represent the
value of the responsibilities γ(znk) associated with data point xn, obtained by plotting the corresponding point
using proportions of red, blue, and green ink given by γ(znk) for k = 1, 2, 3, respectively

matrix X in which the nth row is given by xT
n . Similarly, the corresponding latent

variables will be denoted by an N × K matrix Z with rows zT
n . If we assume that

the data points are drawn independently from the distribution, then we can express
the Gaussian mixture model for this i.i.d. data set using the graphical representation
shown in Figure 9.6. From (9.7) the log of the likelihood function is given by

ln p(X|π, µ,Σ) =
N∑

n=1

ln

{
K∑

k=1

πkN (xn|µk,Σk)

}
. (9.14)

Before discussing how to maximize this function, it is worth emphasizing that
there is a significant problem associated with the maximum likelihood framework
applied to Gaussian mixture models, due to the presence of singularities. For sim-
plicity, consider a Gaussian mixture whose components have covariance matrices
given by Σk = σ2

kI, where I is the unit matrix, although the conclusions will hold
for general covariance matrices. Suppose that one of the components of the mixture
model, let us say the jth component, has its mean µj exactly equal to one of the data

Figure 9.6 Graphical representation of a Gaussian mixture model
for a set of N i.i.d. data points {xn}, with corresponding
latent points {zn}, where n = 1, . . . , N .

xn

zn

N

µ Σ

π

+ Works with overlapping clusters 
+ Works with clusters of different densities 
+ Same complexity as K-means
- Can get stuck in local maximum  
- Need to set number of components

GMM Advantages / Disadvantages
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- Can get stuck in local maximum  
- Need to set number of components



Model Selection

Need to specify two components

1. Likelihood 

2. Mixture distribution

How do we know that we have made “good” choices?



Model Selection
Cross Validation (CV)

Divide data into K folds
Alternatively train on all except k th folds, and
test on k

th fold

Yijun Zhao Linear Regression

Strategy 1: Cross-validation

Split data in to K folds.  

For each fold k 

• Perform EM to learn θ from  
training set Xtrain 

• Calculate test set likelihood  
p(Xtest | θ)



Model Selection
Strategy 2: Model Evidence

Define a prior p(θ) and evaluate  
the marginal likelihood

484 10. APPROXIMATE INFERENCE

Figure 10.7 Plot of the variational lower bound
L versus the number K of com-
ponents in the Gaussian mixture
model, for the Old Faithful data,
showing a distinct peak at K =
2 components. For each value
of K, the model is trained from
100 different random starts, and
the results shown as ‘+’ symbols
plotted with small random hori-
zontal perturbations so that they
can be distinguished. Note that
some solutions find suboptimal
local maxima, but that this hap-
pens infrequently.

K

p(D|K)

1 2 3 4 5 6

parameter values. We have seen in Figure 10.2 that if the true posterior distribution
is multimodal, variational inference based on the minimization of KL(q∥p) will tend
to approximate the distribution in the neighbourhood of one of the modes and ignore
the others. Again, because equivalent modes have equivalent predictive densities,
this is of no concern provided we are considering a model having a specific number
K of components. If, however, we wish to compare different values of K, then we
need to take account of this multimodality. A simple approximate solution is to add
a term lnK! onto the lower bound when used for model comparison and averaging.Exercise 10.22

Figure 10.7 shows a plot of the lower bound, including the multimodality fac-
tor, versus the number K of components for the Old Faithful data set. It is worth
emphasizing once again that maximum likelihood would lead to values of the likeli-
hood function that increase monotonically with K (assuming the singular solutions
have been avoided, and discounting the effects of local maxima) and so cannot be
used to determine an appropriate model complexity. By contrast, Bayesian inference
automatically makes the trade-off between model complexity and fitting the data.Section 3.4

This approach to the determination of K requires that a range of models having
different K values be trained and compared. An alternative approach to determining
a suitable value for K is to treat the mixing coefficients π as parameters and make
point estimates of their values by maximizing the lower bound (Corduneanu and
Bishop, 2001) with respect to π instead of maintaining a probability distribution
over them as in the fully Bayesian approach. This leads to the re-estimation equationExercise 10.23

πk =
1
N

N∑

n=1

rnk (10.83)

and this maximization is interleaved with the variational updates for the q distribution
over the remaining parameters. Components that provide insufficient contribution

Two families of methods 

• Variational Inference 

• Importance Sampling



Variational Inference (Sketch)
Lower bound on Log Evidence

Variational E-step

Variational M-step



Variational Inference (Sketch)
480 10. APPROXIMATE INFERENCE

Figure 10.6 Variational Bayesian
mixture of K = 6 Gaussians ap-
plied to the Old Faithful data set, in
which the ellipses denote the one
standard-deviation density contours
for each of the components, and the
density of red ink inside each ellipse
corresponds to the mean value of
the mixing coefficient for each com-
ponent. The number in the top left
of each diagram shows the num-
ber of iterations of variational infer-
ence. Components whose expected
mixing coefficient are numerically in-
distinguishable from zero are not
plotted.

0 15

60 120

the prior tightly constrains the mixing coefficients so that α0 → ∞, then E[πk] →
1/K.

In Figure 10.6, the prior over the mixing coefficients is a Dirichlet of the form
(10.39). Recall from Figure 2.5 that for α0 < 1 the prior favours solutions in which
some of the mixing coefficients are zero. Figure 10.6 was obtained using α0 = 10−3,
and resulted in two components having nonzero mixing coefficients. If instead we
choose α0 = 1 we obtain three components with nonzero mixing coefficients, and
for α = 10 all six components have nonzero mixing coefficients.

As we have seen there is a close similarity between the variational solution for
the Bayesian mixture of Gaussians and the EM algorithm for maximum likelihood.
In fact if we consider the limit N → ∞ then the Bayesian treatment converges to the
maximum likelihood EM algorithm. For anything other than very small data sets,
the dominant computational cost of the variational algorithm for Gaussian mixtures
arises from the evaluation of the responsibilities, together with the evaluation and
inversion of the weighted data covariance matrices. These computations mirror pre-
cisely those that arise in the maximum likelihood EM algorithm, and so there is little
computational overhead in using this Bayesian approach as compared to the tradi-
tional maximum likelihood one. There are, however, some substantial advantages.
First of all, the singularities that arise in maximum likelihood when a Gaussian com-
ponent ‘collapses’ onto a specific data point are absent in the Bayesian treatment.

Can use lower bound  
on evidence to select 
best model
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parameter values. We have seen in Figure 10.2 that if the true posterior distribution
is multimodal, variational inference based on the minimization of KL(q∥p) will tend
to approximate the distribution in the neighbourhood of one of the modes and ignore
the others. Again, because equivalent modes have equivalent predictive densities,
this is of no concern provided we are considering a model having a specific number
K of components. If, however, we wish to compare different values of K, then we
need to take account of this multimodality. A simple approximate solution is to add
a term lnK! onto the lower bound when used for model comparison and averaging.Exercise 10.22

Figure 10.7 shows a plot of the lower bound, including the multimodality fac-
tor, versus the number K of components for the Old Faithful data set. It is worth
emphasizing once again that maximum likelihood would lead to values of the likeli-
hood function that increase monotonically with K (assuming the singular solutions
have been avoided, and discounting the effects of local maxima) and so cannot be
used to determine an appropriate model complexity. By contrast, Bayesian inference
automatically makes the trade-off between model complexity and fitting the data.Section 3.4

This approach to the determination of K requires that a range of models having
different K values be trained and compared. An alternative approach to determining
a suitable value for K is to treat the mixing coefficients π as parameters and make
point estimates of their values by maximizing the lower bound (Corduneanu and
Bishop, 2001) with respect to π instead of maintaining a probability distribution
over them as in the fully Bayesian approach. This leads to the re-estimation equationExercise 10.23

πk =
1
N

N∑

n=1

rnk (10.83)

and this maximization is interleaved with the variational updates for the q distribution
over the remaining parameters. Components that provide insufficient contribution

Variational inference for 
often assigns zero weight 
to superfluous components


