Data Mining Techniques

CS 6220 - Section 3 - Fall 2016

Lecture 10

Jan-Willem van de Meent (credit: Yijun Zhao, Chris Bishop, Andrew Moore, Hastie et al.)

Evaluation of Clustering

Clusters in Random Data

Clustering Criteria

- External Quality Criteria
- Precision-Recall Measure
- Mutual Information
- Internal Quality Criteria Measure compactness of clusters
- Sum of Squared Error (SSE)
- Scatter Criteria

Mutual Information (External)

$$
I(A ; B)=\sum_{a \in A, b \in B} p(a, b) \log \frac{p(a, b)}{p(a) p(b)}
$$

Mutual Information (External)

$$
I(A ; B)=\sum_{a \in A, b \in B} p(a, b) \log \frac{p(a, b)}{p(a) p(b)}
$$

Uncorrelated Variables

$$
p(a, b)=p(a) p(b)
$$

Mutual Information (External)

$$
I(A ; B)=\sum_{a \in A, b \in B} p(a, b) \log \frac{p(a, b)}{p(a) p(b)}
$$

Uncorrelated Variables

$$
\begin{gathered}
p(a, b)=p(a) p(b) \\
I(A ; B)=\sum_{a \in A, b \in B} p(a) p(b) \log \frac{p(a) p(b)}{p(a) p(b)}=0
\end{gathered}
$$

Mutual Information (External)

$$
I(A ; B)=\sum_{a \in A, b \in B} p(a, b) \log \frac{p(a, b)}{p(a) p(b)}
$$

Perfectly Correlated Variables

$$
p(A=a, B=b)=\delta(a, b) p(B=b)
$$

Mutual Information (External)

$$
I(A ; B)=\sum_{a \in A, b \in B} p(a, b) \log \frac{p(a, b)}{p(a) p(b)}
$$

Perfectly Correlated Variables

$$
\begin{gathered}
p(A=a, B=b)=\delta(a, b) p(B=b) \\
I(A ; B)=\sum_{a \in A, B \in B} p(A=a, B=b) \log \frac{p(A=a, B=b)}{p(A=a) p(B=b)}
\end{gathered}
$$

Mutual Information (External)

$$
I(A ; B)=\sum_{a \in A, b \in B} p(a, b) \log \frac{p(a, b)}{p(a) p(b)}
$$

Perfectly Correlated Variables

$$
p(A=a, B=b)=\delta(a, b) p(B=b)
$$

$$
I(A ; B)=\sum_{b \in B} p(B=b) \log \frac{p(B=b)}{p(A=b) p(B=b)}
$$

Mutual Information (External)

$$
I(A ; B)=\sum_{a \in A, b \in B} p(a, b) \log \frac{p(a, b)}{p(a) p(b)}
$$

Perfectly Correlated Variables

$$
\begin{aligned}
& P(A=k)=\sum_{l \in B} \delta(k, l) p(B=l)=p(B=k) \\
& I(A ; B)=\sum_{b \in B} p(B=b) \log \frac{p(B=b)}{p(A=b) p(B=b)}
\end{aligned}
$$

Mutual Information (External)

$$
I(A ; B)=\sum_{a \in A, b \in B} p(a, b) \log \frac{p(a, b)}{p(a) p(b)}
$$

Perfectly Correlated Variables

$$
\begin{aligned}
& P(A=k)=\sum_{l \in B} \delta(k, l) p(B=l)=p(B=k) \\
& I(A ; B)=\sum_{b \in B} p(B=b) \log \frac{p(B=b)}{p(B=b) p(B=b)}
\end{aligned}
$$

Mutual Information (External)

$$
I(A ; B)=\sum_{a \in A, b \in B} p(a, b) \log \frac{p(a, b)}{p(a) p(b)}
$$

Perfectly Correlated Variables

$$
\begin{gathered}
P(A=k)=\sum_{l \in B} \delta(k, l) p(B=l)=p(B=k) \\
I(A ; B)=-\sum_{b \in B} p(b) \log p(b)=H(B)
\end{gathered}
$$

Mutual Information (External)

$$
I(Y ; Z)=\sum_{y, z} p(y, z) \log \frac{p(y, z)}{p(y) p(z)}
$$

y_{n} : True class label for example n
z_{n} : Clustering label for example n

Mutual Information (External)

$$
I(Y ; Z)=\sum_{y, z} p(y, z) \log \frac{p(y, z)}{p(y) p(z)}
$$

y_{n} : True class label for example n
z_{n} : Clustering label for example n

$$
\begin{gathered}
p(Y=k)=\frac{1}{N} \sum_{n} I\left(y_{n}=k\right) \quad p(Z=l)=\frac{1}{N} \sum_{n} I\left(z_{n}=l\right) \\
p(Y=k, Z=l)=\frac{1}{N} \sum_{n} I\left(y_{n}=k \wedge z_{n}=l\right)
\end{gathered}
$$

Mutual Information (External)

$$
I(Y ; Z)=\sum_{y, z} p(y, z) \log \frac{p(y, z)}{p(y) p(z)}
$$

$p(y, z)$	1	2	3	$p(y)$
cat	0.39	0.08	0.02	0.49
dog	0.06	0.31	0.01	0.38
parrot	0.01	0.01	0.11	0.13
$p(z)$	0.46	0.40	0.14	

Mutual Information (External)

$$
I(Y ; Z)=\sum_{y, z} p(y, z) \log \frac{p(y, z)}{p(y) p(z)}
$$

$p(y, z)$	1	2	3	$p(y)$
cat	0.39	0.08	0.02	0.49
dog	0.06	0.31	0.01	0.38
parrot	0.01	0.01	0.11	0.13
$p(z)$	0.46	0.40	0.14	

What happens to $I(Y ; Z)$ if we swap cluster labels?

Mutual Information (External)

$$
I(Y ; Z)=\sum_{y, z} p(y, z) \log \frac{p(y, z)}{p(y) p(z)}
$$

$p(y, z)$	1	2	3	$p(y)$
cat	0.08	0.39	0.02	0.49
dog	0.31	0.06	0.01	0.38
parrot	0.01	0.01	0.11	0.13
$p(z)$	0.40	0.46	0.14	

What happens to $I(Y ; Z)$ if we swap cluster labels?

Mutual Information (External)

$$
I(Y ; Z)=\sum_{y, z} p(y, z) \log \frac{p(y, z)}{p(y) p(z)}
$$

$p(y, z)$	1	2	3	$p(y)$
cat	0.08	0.39	0.02	0.49
dog	0.31	0.06	0.01	0.38
parrot	0.01	0.01	0.11	0.13
$p(z)$	0.40	0.46	0.14	

Mutual Information is invariant under label permutations

Scatter Criteria (Internal)

Let $\quad \mathbf{x}=\left(x_{1}, \ldots, x_{d}\right)^{T}$
C_{1}, \ldots, C_{K} be a clustering of $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}$
Define

- Size of each cluster:

$$
N_{i}=\left|C_{i}\right| \quad i=1,2, \ldots, K
$$

- Mean for each cluster:

$$
\mu_{i}=\frac{1}{N_{i}} \sum_{x \in C_{i}} \mathbf{x} \quad i=1,2, \ldots, K
$$

- Total mean :

$$
\mu=\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i} \quad \text { OR } \quad \mu=\frac{1}{N} \sum_{i=1}^{K} N_{i} \mu_{i}
$$

Scatter Criteria (Internal)

- Scatter matrix for the $i^{\text {th }}$ cluster:

$$
S_{i}=\sum_{\mathbf{x} \in C_{i}}\left(\mathbf{x}-\mu_{i}\right)\left(\mathbf{x}-\mu_{i}\right)^{T} \quad \text { (outer product) }
$$

- Within cluster scatter matrix :

$$
S_{W}=\sum_{i=1}^{K} S_{i}
$$

- Between cluster scatter matrix :

$$
S_{B}=\sum_{i=1}^{K} N_{i}\left(\mu_{i}-\mu\right)\left(\mu_{i}-\mu\right)^{T}(\text { outer product })
$$

Scatter Criteria (Internal)

- The trace criteria: sum of the diagonal elements of a matrix
- A good partition of the data should have:
- Low $\operatorname{tr}\left(S_{W}\right)$: similar to minimizing SSE
- High $\operatorname{tr}\left(S_{B}\right)$
- High $\frac{\operatorname{tr}\left(S_{B}\right)}{\operatorname{tr}\left(S_{W}\right)}$

Mixture Models

QDA: Gaussian Classification

Classify using posterior

$$
y^{*}=\underset{k}{\operatorname{argmax}} p(y=k \mid x, \boldsymbol{\theta})
$$

Generative Model

$$
\begin{aligned}
y_{n} & \sim \operatorname{Discrete}(\boldsymbol{\pi}) \\
\boldsymbol{x}_{n} \mid y_{n}=k & \sim \mathscr{N}\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
\end{aligned}
$$

$$
(\text { for } n=1, \ldots, N)
$$

QDA: Gaussian Classification

Classify using posterior

$$
y^{*}=\underset{k}{\operatorname{argmax}} p(y=k \mid \boldsymbol{x}, \boldsymbol{\theta})
$$

Generative Model

$$
\begin{aligned}
y_{n} & \sim \operatorname{Discrete}(\pi) \\
\boldsymbol{x}_{n} \mid y_{n}=k & \sim \mathscr{N}\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
\end{aligned}
$$

Joint Probability

$$
\begin{aligned}
\boldsymbol{\theta} & :=\{\boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}\} \\
\boldsymbol{X} & :=\left(\boldsymbol{x}_{1}^{\top}, \ldots, \boldsymbol{x}_{N}^{\top}\right) \\
\boldsymbol{y} & :=\left(y_{1}, \ldots, y_{N}\right)
\end{aligned}
$$

$$
p(\boldsymbol{X}, \boldsymbol{y} \mid \boldsymbol{\theta})=p(\boldsymbol{X} \mid \boldsymbol{y}, \boldsymbol{\theta}) p(\boldsymbol{y} \mid \boldsymbol{\theta})
$$

QDA: Gaussian Classification

Classify using posterior

$$
y^{*}=\underset{k}{\operatorname{argmax}} p(y=k \mid \boldsymbol{x}, \boldsymbol{\theta})
$$

Generative Model

$$
\begin{aligned}
y_{n} & \sim \operatorname{Discrete}(\pi) \\
\boldsymbol{x}_{n} \mid y_{n}=k & \sim \mathscr{N}\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
\end{aligned}
$$

Joint Probability

$$
\begin{aligned}
& \boldsymbol{\theta}:=\{\boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}\} \\
& \boldsymbol{X}:=\left(\boldsymbol{x}_{1}^{\top}, \ldots, \boldsymbol{x}_{N}^{\top}\right) \\
& \boldsymbol{y}:=\left(y_{1}, \ldots, y_{N}\right) \\
& p(\boldsymbol{X}, \boldsymbol{y} \mid \boldsymbol{\theta})=p(\boldsymbol{X} \mid \boldsymbol{y}, \boldsymbol{\theta}) p(\boldsymbol{y} \mid \boldsymbol{\theta}) \\
& \\
& \quad=p(\boldsymbol{X} \mid \boldsymbol{y}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) p(\boldsymbol{y} \mid \boldsymbol{\pi})
\end{aligned}
$$

QDA: Gaussian Classification

Classify using posterior / joint

$$
y^{*}=\underset{k}{\operatorname{argmax}} p(y=k, x \mid \boldsymbol{\theta})
$$

Generative Model

$$
\begin{aligned}
y_{n} & \sim \operatorname{Discrete}(\boldsymbol{\pi}) \\
\boldsymbol{x}_{n} \mid y_{n}=k & \sim \mathscr{N}\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
\end{aligned}
$$

Joint Probability

$$
\begin{aligned}
& \boldsymbol{\theta}:=\{\boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}\} \\
& \boldsymbol{X}:=\left(\boldsymbol{x}_{1}^{\top}, \ldots, \boldsymbol{x}_{N}^{\top}\right) \\
& \boldsymbol{y}:=\left(y_{1}, \ldots, y_{N}\right) \\
& p(\boldsymbol{X}, \boldsymbol{y} \mid \boldsymbol{\theta})=p(\boldsymbol{X} \mid \boldsymbol{y}, \boldsymbol{\theta}) p(\boldsymbol{y} \mid \boldsymbol{\theta}) \\
& \\
& =p(\boldsymbol{X} \mid \boldsymbol{y}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) p(\boldsymbol{y} \mid \boldsymbol{\pi})
\end{aligned}
$$

QDA: Gaussian Classification

Classify using posterior / joint

$$
y^{*}=\underset{k}{\operatorname{argmax}} p\left(y=k, \boldsymbol{x} \mid \boldsymbol{\theta}^{*}\right)
$$

Generative Model

$$
\begin{aligned}
y_{n} & \sim \operatorname{Discrete}(\pi) \\
\boldsymbol{x}_{n} \mid y_{n}=k & \sim \mathscr{N}\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
\end{aligned}
$$

Use maximum likelihood params

$$
\boldsymbol{\theta}^{*}=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} p(X, \boldsymbol{y} \mid \boldsymbol{\theta})
$$

$$
\begin{aligned}
p(\boldsymbol{X}, \boldsymbol{y} \mid \boldsymbol{\theta}) & =p(\boldsymbol{X} \mid \boldsymbol{y}, \boldsymbol{\theta}) p(\boldsymbol{y} \mid \boldsymbol{\theta}) \\
& =p(\boldsymbol{X} \mid \boldsymbol{y}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) p(\boldsymbol{y} \mid \boldsymbol{\pi})
\end{aligned}
$$

QDA: Gaussian Classification

Classify using posterior / joint

$$
y^{*}=\underset{k}{\operatorname{argmax}} p\left(y=k, \boldsymbol{x} \mid \boldsymbol{\theta}^{*}\right)
$$

Generative Model

$$
\begin{aligned}
y_{n} & \sim \operatorname{Discrete}(\pi) \\
\boldsymbol{x}_{n} \mid y_{n}=k & \sim \mathscr{N}\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
\end{aligned}
$$

Maximum Likelihood Parameters

$$
\begin{aligned}
\boldsymbol{\mu}_{k}^{*} & =\frac{1}{N_{k}} \sum_{n=1}^{N} I\left[y_{n}=k\right] \boldsymbol{x}_{n} \\
\boldsymbol{\Sigma}_{k}^{*} & =\frac{1}{N_{k}} \sum_{n=1}^{N} I\left[y_{n}=k\right]\left|\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right|^{2} \\
\pi^{*} & =\left(N_{1} / N, \ldots, N_{K} / N\right) \\
N_{k} & =\sum_{n=1}^{N} I\left[y_{n}=k\right]
\end{aligned}
$$

Gaussian Clustering

Maximum posterior clustering

$$
z_{n}=\underset{k}{\operatorname{argmax}} p\left(z_{n}=k \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right)
$$

Generative Model

$$
\begin{aligned}
z_{n} & \sim \operatorname{Discrete}(\pi) \\
\boldsymbol{x}_{n} \mid z_{n}=k & \sim \mathscr{N}\left(\boldsymbol{\mu}_{k}, \Sigma_{k}\right)
\end{aligned}
$$

Gaussian Clustering

Maximum posterior clustering

$$
z_{n}=\underset{k}{\operatorname{argmax}} p\left(z_{n}=k \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right)
$$

Generative Model

$$
z_{n} \sim \operatorname{Discrete}(\pi)
$$

$$
\boldsymbol{x}_{n} \mid z_{n}=k \sim \mathscr{N}\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

Maximum Likelihood Parameters

$$
\begin{aligned}
\boldsymbol{\mu}_{k} & =\frac{1}{N_{k}} \sum_{n=1}^{N} I\left[z_{n}=k\right] \boldsymbol{x}_{n} \\
\boldsymbol{\Sigma}_{k} & =\frac{1}{N_{k}} \sum_{n=1}^{N} I\left[z_{n}=k\right]\left|\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right|^{2} \\
\pi & =\left(N_{1} / N, \ldots, N_{K} / N\right) \\
N_{k} & =\sum_{n=1}^{N} I\left[z_{n}=k\right]
\end{aligned}
$$

Gaussian Clustering

Algorithm

Initialize parameters to $\boldsymbol{\theta}^{0}$
Repeat until convergence

1. Update cluster assignments

$$
\boldsymbol{z}^{i}=\underset{z}{\operatorname{argmax}} p\left(\boldsymbol{X}, \boldsymbol{z} \mid \boldsymbol{\theta}^{i-1}\right)
$$

2. Update parameters

$$
\boldsymbol{\theta}^{i}=\underset{o}{\operatorname{argmax}} p\left(\boldsymbol{X}, \boldsymbol{z}^{i} \mid \boldsymbol{\theta}\right)
$$

Gaussian Clustering

Algorithm

Initialize parameters to $\boldsymbol{\theta}^{0}$
Repeat until convergence

1. Update cluster assignments

$$
\boldsymbol{z}^{i}=\underset{\boldsymbol{z}}{\operatorname{argmax}} p\left(\boldsymbol{X}, \boldsymbol{z} \mid \boldsymbol{\theta}^{i-1}\right)
$$

2. Update parameters

$$
\boldsymbol{\theta}^{i}=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} p\left(\boldsymbol{X}, \boldsymbol{z}^{i} \mid \boldsymbol{\theta}\right)
$$

How does this algorithm relate to K-means?

Gaussian Clustering

Algorithm

Initialize parameters to $\boldsymbol{\theta}^{0}$
Repeat until convergence

1. Update cluster assignments

$$
\boldsymbol{z}^{i}=\underset{\boldsymbol{z}}{\operatorname{argmax}} p\left(X, \boldsymbol{z} \mid \boldsymbol{\theta}^{i-1}\right)
$$

2. Update parameters

$$
\boldsymbol{\theta}^{i}=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} p\left(\boldsymbol{X}, \boldsymbol{z}^{i} \mid \boldsymbol{\theta}\right)
$$

How can we deal with overlapping clusters in a better way?

Gaussian Clustering

Algorithm

Initialize parameters to $\boldsymbol{\theta}^{0}$
Repeat until convergence

1. Update cluster assignments

$$
\boldsymbol{z}^{i}=\underset{\boldsymbol{z}}{\operatorname{argmax}} p\left(\boldsymbol{X}, \boldsymbol{z} \mid \boldsymbol{\theta}^{i-1}\right)
$$

2. Update parameters

$$
\boldsymbol{\theta}^{i}=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} p\left(X, \boldsymbol{z}^{i} \mid \boldsymbol{\theta}\right)
$$

How can we deal with overlapping clusters in a better way? Idea: Perform soft clustering using weighted assignments

Gaussian Clustering

Maximum posterior clustering

$$
z_{n}=\operatorname{argmax} p\left(z_{n}=k \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right)
$$

Generative Model

$$
z_{n} \sim \operatorname{Discrete}(\pi)
$$

$$
\boldsymbol{x}_{n} \mid z_{n}=k \sim \mathscr{N}\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

Maximum Likelihood Parameters

$$
\begin{aligned}
\mu_{k} & =\frac{1}{N_{k}} \sum_{n=1}^{N}\left[I\left[z_{n}=k\right]\right] y_{n} \\
\boldsymbol{\Sigma}_{k} & =\frac{1}{N_{k}} \sum_{n=1}^{N}\left[I\left[z_{n}=k\right]\left|y_{n}-\mu_{k}\right|^{2}\right. \\
\pi & =\left(N_{1} / N, \ldots, N_{K} / N\right) \\
N_{k} & =\sum_{n=1}^{N}\left[\left[z_{n}=k\right]\right.
\end{aligned}
$$

Gaussian Soft Clustering

Posterior weights

$$
\gamma_{n k}:=p\left(z_{n}=k \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right)
$$

Generative Model

$$
z_{n} \sim \operatorname{Discrete}(\pi)
$$

$$
\boldsymbol{x}_{n} \mid z_{n}=k \sim \mathscr{N}\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

Parameter Estimates

$$
\begin{aligned}
\boldsymbol{\mu}_{k} & =\frac{1}{N_{k}} \sum_{n=1}^{N} \gamma_{n k} x_{n} \\
\boldsymbol{\Sigma}_{k} & =\frac{1}{N_{k}} \sum_{n=1}^{N} \gamma_{n k}\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)^{\top} \\
\boldsymbol{\pi} & =\left(N_{1} / N, \ldots, N_{K} / N\right) \\
N_{k} & =\sum_{n=1}^{N} \gamma_{n k}
\end{aligned}
$$

Gaussian Soft Clustering

Posterior weights

$$
\gamma_{n k}:=p\left(z_{n}=k \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right)
$$

Generative Model

$$
z_{n} \sim \operatorname{Discrete}(\pi)
$$

$$
\boldsymbol{x}_{n} \mid z_{n}=k \sim \mathscr{N}\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

Parameter Estimates

$$
\begin{aligned}
\boldsymbol{\mu}_{k} & =\frac{1}{N_{k}} \sum_{n=1}^{N} \gamma_{n k} \boldsymbol{x}_{n} \\
\boldsymbol{\Sigma}_{k} & =\frac{1}{N_{k}} \sum_{n=1}^{N} \gamma_{n k}\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)^{\top} \\
\pi & =\left(N_{1} / N, \ldots, N_{K} / N\right) \\
N_{k} & =\sum_{n=1}^{N} \gamma_{n k}
\end{aligned}
$$

Gaussian Mixture Model

Generative Model

$$
\begin{aligned}
z_{n} & \sim \operatorname{Discrete}(\pi) \\
\boldsymbol{x}_{n} \mid z_{n}=k & \sim \mathscr{N}\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
\end{aligned}
$$

Expectation Maximization (sketch)

Initialize $\boldsymbol{\theta}$
Repeat until convergence

1. Expectation Step
"calculate \boldsymbol{y} from $\boldsymbol{\theta}$ "
2. Maximization Step
"calculate $\boldsymbol{\theta}$ from $\boldsymbol{\boldsymbol { y }}$ "

EM for Gaussian Mixtures

EM for Gaussian Mixtures

Credit: Andrew Moore

EM for Gaussian Mixtures

Credit: Andrew Moore

EM for Gaussian Mixtures

θ

Credit: Andrew Moore

EM for Gaussian Mixtures

Credit: Andrew Moore

EM for Gaussian Mixtures

Credit: Andrew Moore

EM for Gaussian Mixtures

Credit: Andrew Moore

Expectation Maximization

Maximum Likelihood Estimation

Supervised (e.g. QDA)
$\boldsymbol{\theta}^{*}=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} p(\boldsymbol{X}, \boldsymbol{y} \mid \boldsymbol{\theta})$

Unsupervised (e.g. GMM)
$\boldsymbol{\theta}^{*}=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{z} p(X, \boldsymbol{z} \mid \boldsymbol{\theta})$

Maximum Likelihood Estimation

Supervised (e.g. QDA)
$\boldsymbol{\theta}^{*}=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \log p(\boldsymbol{X}, \boldsymbol{y} \mid \boldsymbol{\theta})$

Unsupervised (e.g. GMM)
$\boldsymbol{\theta}^{*}=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \log \sum_{\boldsymbol{z}} p(\boldsymbol{X}, \boldsymbol{z} \mid \boldsymbol{\theta})$

Maximum Likelihood Estimation

Supervised (e.g. QDA)
$\boldsymbol{\theta}^{*}=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \log p(\boldsymbol{X}, \boldsymbol{y} \mid \boldsymbol{\theta})$
$=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{n=1}^{N} \log p\left(\boldsymbol{x}_{n}, y_{n} \mid \boldsymbol{\theta}\right)$
Unsupervised (e.g. GMM)
$\boldsymbol{\theta}^{*}=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \log \sum_{\boldsymbol{z}} p(\boldsymbol{X}, \boldsymbol{z} \mid \boldsymbol{\theta})$
$=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{n=1}^{N} \log \sum_{z_{n}} p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}\right)$

Maximum Likelihood Estimation

Supervised (e.g. QDA)
$\boldsymbol{\theta}^{*}=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \log p(\boldsymbol{X}, \boldsymbol{y} \mid \boldsymbol{\theta})$
$=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{n=1}^{N} \log p\left(\boldsymbol{x}_{n}, y_{n} \mid \boldsymbol{\theta}\right)$
Unsupervised (e.g. GMM)
$\boldsymbol{\theta}^{*}=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \log \sum_{z} p(\boldsymbol{X}, \boldsymbol{z} \mid \boldsymbol{\theta})$
$=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{n=1}^{N} \log \sum_{z_{n}} p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}\right)$

Maximum Likelihood Estimation

Supervised (e.g. QDA)
$\boldsymbol{\theta}^{*}=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \log p(\boldsymbol{X}, \boldsymbol{y} \mid \boldsymbol{\theta})$
$=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{n=1}^{N} \log p\left(\boldsymbol{x}_{n}, y_{n} \mid \boldsymbol{\theta}\right)$
Unsupervised (e.g. GMM)
$\boldsymbol{\theta}^{*}=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \log \sum_{z} p(\boldsymbol{X}, \boldsymbol{z} \mid \boldsymbol{\theta})$
$=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{n=1}^{N} \log \sum_{z_{n}} p\left(\boldsymbol{x}_{n}, z_{n} \mid \boldsymbol{\theta}\right)$
Solve for zero gradient to find maximum

Not so easy here, because of sum inside logarithm

Lower Bound on Log Likelihood

$$
\log p(X \mid \boldsymbol{\theta})=\sum_{\boldsymbol{z}} q(\boldsymbol{z}) \log p(X \mid \boldsymbol{\theta})
$$

Lower Bound on Log Likelihood

$\log p(X \mid \boldsymbol{\theta})=\sum_{\boldsymbol{z}} q(\boldsymbol{z}) \log p(X \mid \boldsymbol{\theta})$
(multiplication by 1)

$$
=\sum_{z} q(\boldsymbol{z}) \log \left[p(\boldsymbol{X} \mid \boldsymbol{\theta}) \frac{q(\boldsymbol{z})}{q(\boldsymbol{z})}\right]
$$

(multiplication by 1)

Lower Bound on Log Likelihood

$$
\begin{array}{rlr}
\log p(X \mid \boldsymbol{\theta}) & =\sum_{\boldsymbol{z}} q(\boldsymbol{z}) \log p(\boldsymbol{X} \mid \boldsymbol{\theta}) & \text { (multiplication by 1) } \\
& =\sum_{\boldsymbol{z}} q(\boldsymbol{z}) \log \left[p(\boldsymbol{X} \mid \boldsymbol{\theta}) \frac{q(\boldsymbol{z})}{q(\boldsymbol{z})}\right] & \text { (multiplication by 1) } \\
& =\sum_{\boldsymbol{z}} q(\boldsymbol{z}) \log \left[\frac{p(\boldsymbol{X}, \boldsymbol{z} \mid \boldsymbol{\theta})}{p(\boldsymbol{z} \mid \boldsymbol{X}, \boldsymbol{\theta})} \frac{q(\boldsymbol{z})}{q(\boldsymbol{z})}\right] & \text { (Bayes rule) }
\end{array}
$$

Lower Bound on Log Likelihood

$$
\begin{array}{rlr}
\log p(X \mid \boldsymbol{\theta}) & =\sum_{\boldsymbol{z}} q(\boldsymbol{z}) \log p(X \mid \boldsymbol{\theta}) & \text { (multiplication by 1) } \\
& =\sum_{\boldsymbol{z}} q(\boldsymbol{z}) \log \left[p(X \mid \boldsymbol{\theta}) \frac{q(\boldsymbol{z})}{q(\boldsymbol{z})}\right] & \text { (multiplication by 1) } \\
& =\sum_{\boldsymbol{z}} q(\boldsymbol{z}) \log \left[\frac{p(\boldsymbol{X}, \boldsymbol{z} \mid \boldsymbol{\theta})}{p(\boldsymbol{z} \mid \boldsymbol{X}, \boldsymbol{\theta})} \frac{q(\boldsymbol{z})}{q(\boldsymbol{z})}\right] \quad \text { (Bayes rule) } \\
& =\sum_{\boldsymbol{z}} q(\boldsymbol{z}) \log \left[\frac{p(X, \boldsymbol{z} \mid \boldsymbol{\theta})}{q(\boldsymbol{z})}\right]+\sum_{\boldsymbol{z}} q(\boldsymbol{z}) \log \left[\frac{q(\boldsymbol{z})}{p(\boldsymbol{z} \mid \boldsymbol{X}, \boldsymbol{\theta})}\right]
\end{array}
$$

Lower Bound on Log Likelihood

$$
\begin{aligned}
\log p(X \mid \boldsymbol{\theta}) & =\sum_{\boldsymbol{z}} q(\boldsymbol{z}) \log p(X \mid \boldsymbol{\theta}) \\
& =\sum_{\boldsymbol{z}} q(\boldsymbol{z}) \log \left[p(\boldsymbol{X} \mid \boldsymbol{\theta}) \frac{q(\boldsymbol{z})}{q(\boldsymbol{z})}\right] \\
& =\sum_{\boldsymbol{z}} q(\boldsymbol{z}) \log \left[\frac{p(\boldsymbol{X}, \boldsymbol{z} \mid \boldsymbol{\theta})}{p(\boldsymbol{z} \mid \boldsymbol{X}, \boldsymbol{\theta})} \frac{q(\boldsymbol{z})}{q(\boldsymbol{z})}\right] \\
& =\underbrace{\sum_{\boldsymbol{z}} q(\boldsymbol{z}) \log \left[\frac{p(\boldsymbol{X}, \boldsymbol{z} \mid \boldsymbol{\theta})}{q(\boldsymbol{z})}\right]}_{\text {Lower bound: } \mathscr{L}(q, \boldsymbol{\theta})}+\underbrace{\sum_{\boldsymbol{z}} q(\boldsymbol{z}) \log \left[\frac{q(\boldsymbol{z})}{p(\boldsymbol{z} \mid \boldsymbol{X}, \boldsymbol{\theta})}\right]}_{\text {KL divergence: } K L(q \| p)}
\end{aligned}
$$

Lower Bound on Log Likelihood

$$
\begin{aligned}
\log p(X \mid \boldsymbol{\theta}) & =\sum_{\boldsymbol{z}} q(\boldsymbol{z}) \log p(X \mid \boldsymbol{\theta}) \\
& =\sum_{z} q(\boldsymbol{z}) \log \left[p(\boldsymbol{X} \mid \boldsymbol{\theta}) \frac{q(\boldsymbol{z})}{q(\boldsymbol{z})}\right] \\
& =\sum_{\boldsymbol{z}} q(\boldsymbol{z}) \log \left[\frac{p(\boldsymbol{X}, \boldsymbol{z} \mid \boldsymbol{\theta})}{p(\boldsymbol{z} \mid \boldsymbol{X}, \boldsymbol{\theta})} \frac{q(\boldsymbol{z})}{q(\boldsymbol{z})}\right] \\
& =\underbrace{\sum_{\boldsymbol{z}} q(\boldsymbol{z}) \log \left[\frac{p(\boldsymbol{X}, \boldsymbol{z} \mid \boldsymbol{\theta})}{q(\boldsymbol{z})}\right]}_{\text {Lower bound: } \mathscr{L}(q, \boldsymbol{\theta})}+\underbrace{\sum_{\boldsymbol{z}} q(\boldsymbol{z}) \log \left[\frac{q(\boldsymbol{z})}{p(\boldsymbol{z} \mid X, \boldsymbol{\theta})}\right]}_{\text {KL divergence: } K L(q \| p)}
\end{aligned}
$$

Claim: $\mathscr{L}(q, \boldsymbol{\theta}) \leq \log p(\boldsymbol{X} \mid \boldsymbol{\theta})$

Intermezzo: KL Divergence

KL Divergence

$$
K L(q \| p)=\sum_{x} q(x) \log \frac{q(x)}{p(x)}
$$

Properties

- $K L(q \| p) \geq 0$
- If $K L(q \| p)=0$, then $q=p$
- KL(q || p) $\neq \operatorname{KL}(p| | q)$

Intermezzo: Information Theory

KL Divergence

$$
K L(q \| p)=\sum_{x} q(x) \log \frac{q(x)}{p(x)}
$$

Properties

- KL(q || p) ≥ 0
- If $K L(q \| p)=0$, then $q=p$
- KL(q || p) $\neq \mathrm{KL}(\mathrm{p}| | q)$

Proof

$$
\begin{aligned}
-D(p \| q) & =-\sum_{x \in A} p(x) \log \frac{p(x)}{q(x)} \\
& =\sum_{x \in A} p(x) \log \frac{q(x)}{p(x)} \\
& \leq \log \sum_{x \in A} p(x) \frac{q(x)}{p(x)} \\
& =\log \sum_{x \in A} q(x) \\
& \leq \log \sum_{x \in \mathcal{X}} q(x) \\
& =\log 1
\end{aligned}
$$

Intermezzo: Information Theory

KL Divergence

$$
K L(q \| p)=\sum_{x} q(x) \log \frac{q(x)}{p(x)}
$$

Entropy

$$
H(X)=-\sum_{x} p(x) \log p(x)
$$

Mutual Information

$$
I(X ; Y)=\sum_{x, y} p(x, y) \log \frac{p(x, y)}{p(x) p(y)}
$$

$$
\begin{aligned}
& I(X ; Y)=H(Y)-H(Y \mid X) \\
& I(X ; Y)=K L(p(x, y) \| p(x) p(y))
\end{aligned}
$$

Lower Bound on Log Likelihood

$$
\begin{aligned}
\log p(X \mid \boldsymbol{\theta}) & =\sum_{\boldsymbol{z}} q(\boldsymbol{z}) \log p(X \mid \boldsymbol{\theta}) \\
& =\sum_{\boldsymbol{z}} q(\boldsymbol{z}) \log \left[p(\boldsymbol{X} \mid \boldsymbol{\theta}) \frac{q(\boldsymbol{z})}{q(\boldsymbol{z})}\right] \\
& =\sum_{\boldsymbol{z}} q(\boldsymbol{z}) \log \left[\frac{p(\boldsymbol{X}, \boldsymbol{z} \mid \boldsymbol{\theta})}{p(\boldsymbol{z} \mid \boldsymbol{X}, \boldsymbol{\theta})} \frac{q(\boldsymbol{z})}{q(\boldsymbol{z})}\right] \\
& =\underbrace{\sum_{\boldsymbol{z}} q(\boldsymbol{z}) \log \left[\frac{p(\boldsymbol{X}, \boldsymbol{z} \mid \boldsymbol{\theta})}{q(\boldsymbol{z})}\right]}_{\text {Lower bound: } \mathscr{L}(q, \boldsymbol{\theta})}+\underbrace{\sum_{\boldsymbol{z}} q(\boldsymbol{z}) \log \left[\frac{q(\boldsymbol{z})}{p(\boldsymbol{z} \mid \boldsymbol{X}, \boldsymbol{\theta})}\right]}_{\text {KL divergence: } K L(q \| p)}
\end{aligned}
$$

Claim: $\mathscr{L}(q, \boldsymbol{\theta}) \leq \log p(X \mid \boldsymbol{\theta})$

Generalized EM

1. Lower bound is sum over log, not log of sum

$$
\mathscr{L}(q(\boldsymbol{z}), \boldsymbol{\theta})=\sum_{z} q(\boldsymbol{z}) \log \frac{p(X, \boldsymbol{z} \mid \boldsymbol{\theta})}{q(\boldsymbol{z})} \leq \log \sum_{z} p(X, \boldsymbol{z} \mid \boldsymbol{\theta})
$$

Generalized EM

1. Lower bound is sum over log, not log of sum

$$
\mathscr{L}(q(\boldsymbol{z}), \boldsymbol{\theta})=\sum_{n=1}^{N} \sum_{k=1}^{K} q\left(z_{n}=k\right) \log \frac{p\left(\boldsymbol{x}_{n}, z_{n}=k \mid \boldsymbol{\theta}\right)}{q\left(z_{n}=k\right)}
$$

Generalized EM

2. Bound is tight when $q(z)=p(z \mid X, \theta)$
$\log p(\boldsymbol{X} \mid \boldsymbol{\theta})=\mathscr{L}(q(\boldsymbol{z}), \boldsymbol{\theta})+K L(q(\boldsymbol{z}) \| p(\boldsymbol{z} \mid \boldsymbol{X}, \boldsymbol{\theta}))$

Generalized EM

E-step: maximize with respect to $\mathrm{q}(z)$

$$
q^{i}(\boldsymbol{z})=\underset{q(\boldsymbol{z})}{\operatorname{argmax}} \mathscr{L}\left(q(\boldsymbol{z}), \boldsymbol{\theta}^{i-1}\right)=p\left(\boldsymbol{z} \mid \boldsymbol{X}, \boldsymbol{\theta}^{i-1}\right)
$$

Generalized EM

M-step: maximize with respect to θ

$$
\boldsymbol{\theta}^{i}=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \mathscr{L}\left(q^{i}(\boldsymbol{z}), \boldsymbol{\theta}\right)
$$

Gaussian Mixture Model

Generative Model

$$
z_{n} \sim \operatorname{Discrete}(\pi)
$$

$$
\boldsymbol{x}_{n} \mid z_{n}=k \sim \mathscr{N}\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

Expectation Maximization

Initialize $\boldsymbol{\theta}$
Repeat until convergence

1. Expectation Step

$$
q^{i}(\boldsymbol{z})=\underset{q(\boldsymbol{z})}{\operatorname{argmax}} \mathscr{L}\left(q(\boldsymbol{z}), \boldsymbol{\theta}^{i-1}\right)
$$

2. Maximization Step

$$
\boldsymbol{\theta}^{i}=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \mathscr{L}\left(q^{i}(\boldsymbol{z}), \boldsymbol{\theta}\right)
$$

$$
\mathscr{L}(q(\boldsymbol{z}), \boldsymbol{\theta})=\sum_{\boldsymbol{z}} q(\boldsymbol{z}) \log \frac{p(X, \boldsymbol{z} \mid \boldsymbol{\theta})}{q(\boldsymbol{z})}
$$

GMM Advantages / Disadvantages

+ Works with overlapping clusters
+ Works with clusters of different densities
+ Same complexity as K-means
- Can get stuck in local maximum
- Need to set number of components

GMM Advantages / Disadvantages

+ Works with overlapping clusters
+ Works with clusters of different densities
+ Same complexity as K-means
- Can get stuck in local maximum
- Need to set number of components

Model Selection

$$
p(X, \boldsymbol{z} \mid \boldsymbol{\theta})=\prod_{n=1}^{N} p\left(\boldsymbol{x}_{n} \mid z_{n}, \boldsymbol{\theta}\right) p\left(z_{n} \mid \boldsymbol{\theta}\right)
$$

Need to specify two components

1. Likelihood

$$
p\left(\boldsymbol{x}_{n} \mid z_{n}, \boldsymbol{\theta}\right)
$$

2. Mixture distribution
$p\left(z_{n} \mid \boldsymbol{\theta}\right)$

How do we know that we have made "good" choices?

Model Selection

Strategy 1: Cross-validation

Split data in to K folds.
For each fold k

- Perform EM to learn θ from training set $X^{\text {rain }}$
- Calculate test set likelihood $p\left(X^{\text {est }} \mid \theta\right)$

Model Selection

Strategy 2: Model Evidence

Define a prior $p(\theta)$ and evaluate the marginal likelihood
$p(\boldsymbol{X})=\int d \boldsymbol{\theta} p(\boldsymbol{X} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta})$
Two families of methods

- Variational Inference
- Importance Sampling

Variational Inference (Sketch)

Lower bound on Log Evidence

$$
\begin{aligned}
\mathscr{L}(q(\boldsymbol{z}), q(\boldsymbol{\theta})) & =\int d \boldsymbol{\theta} \sum_{\boldsymbol{z}} q(\boldsymbol{\theta}) q(\boldsymbol{z}) \log \frac{p(\boldsymbol{X}, \boldsymbol{z}, \boldsymbol{\theta})}{q(\boldsymbol{\theta}) q(\boldsymbol{z})} \\
& =\log p(X)-K L(q(\boldsymbol{\theta}) q(\boldsymbol{z}) \| p(\boldsymbol{z}, \boldsymbol{\theta} \mid \boldsymbol{X}))
\end{aligned}
$$

Variational E-step

$$
q^{i}(\boldsymbol{z})=\underset{q(\boldsymbol{z})}{\operatorname{argmax}} \mathscr{L}\left(q(\boldsymbol{z}), q^{i-1}(\boldsymbol{\theta})\right)
$$

Variational M-step

$$
q^{i}(\boldsymbol{\theta})=\underset{q(\boldsymbol{\theta})}{\operatorname{argmax}} \mathscr{L}\left(q^{i}(\boldsymbol{z}), q(\boldsymbol{\theta})\right)
$$

Variational Inference (Sketch)

Can use lower bound on evidence to select best model

Variational inference for often assigns zero weight to superfluous components

