Data Mining Techniques

CS 6220 - Section 3 - Fall 2016

Lecture 8

Jan-Willem van de Meent (*credit*: Yijun Zhao, Carla Brodley, Eamonn Keogh)

Classification Wrap-up

Classifier Comparison

Confusion Matrix

	Truth				
Prediction	email	spam			
email	57.3%	4.0%			
spam	5.3%	33.4%			

Confusion Matrix

True Positive (TP): Hit (show e-mail) True Negative (TN): Correct rejection False Positive (FP): False alarm, type I error False Negative (FN): Miss, type II error

Decision Theory

$$\begin{aligned} R(\alpha_2 | \mathbf{x}) &> R(\alpha_1 | \mathbf{x}) \\ \lambda_{21} p(Y = 1 | \mathbf{x}) + \lambda_{22} p(Y = 2 | \mathbf{x}) &> \lambda_{11} p(Y = 1 | \mathbf{x}) + \lambda_{12} p(Y = 2 | \mathbf{x}) \\ (\lambda_{21} - \lambda_{11}) p(Y = 1 | \mathbf{x}) &> (\lambda_{12} - \lambda_{22}) p(Y = 2 | \mathbf{x}) \\ \frac{p(Y = 1 | \mathbf{x})}{p(Y = 2 | \mathbf{x})} &> \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \end{aligned}$$

Precision and Recall

Precision and Recall

Precision or Positive Predictive Value (PPV) $PPV = \frac{TP}{TP+FP}$ Recall or Sensitivity, True Positive Rate (TPR) $TPR = \frac{TP}{TP+FN}$

F1 score: harmonic mean of Precisin and Recall $F1 = \frac{2TP}{(2TP+FP+FN)}$

Specificity (SPC) or True Negative Rate (TNR)

$$SPC = \frac{TN}{(FP+TN)}$$

Precision-Recall Curve

threshold

Macro-average $\frac{1}{2}\left(\frac{TP_1}{TP_1 + FP_1} + \frac{TP_2}{TP_2 + FP_2}\right)$

Micro-average $TP_1 + TP_2$ (True Positive Rate) $TP_1 + TP_2 + FP_1 + FP_2$

Clustering (a.k.a. unsupervised classification)

with slides from Eamonn Keogh (UC Riverside)

Clustering

- Unsupervised learning (no labels for training)
- Group data into similar classes that
 - Maximize inter-cluster similarity
 - Minimize intra-cluster similarity

Two Types of Clustering

Hierarchical

Partitional

Create a hierarchical decomposition using *"some criterion"*

Construct partitions and evaluate them using *"some criterion"*

What is a natural grouping?

Choice of clustering criterion can be task-dependent

School

Simpson's **Family Employees**

Females

Males

What is Similarity?

Can be hard to define, but we know it when we see it.

Defining Distance Measures

Need: Some function $D(\mathbf{x}_1, \mathbf{x}_2)$ that represents degree of dissimilarity

Example: Distance Measures

Example: Kernels

Polynomial
$$k(x, x') = (\langle x, x' \rangle + c)^m$$

Radial Basis Function (RBF) $k(x, x') = \exp^{-\frac{1}{2}\gamma^{-2}||x-x'||^2}$

Squared Exponential (SE)

$$k(\boldsymbol{x},\boldsymbol{x}') = \exp^{-\frac{1}{2}\boldsymbol{x}^{\top}\boldsymbol{\Sigma}^{-1}\boldsymbol{x}'}$$

Automatic Relevance Determination (ARD)

$$k(\boldsymbol{x},\boldsymbol{x}') = \exp^{-\frac{1}{2}\sum_{i=1}^{d} \frac{(x_i - x'_i)^2}{\sigma_i^2}}$$

Inner Product vs Distance Measure

Inner Product

- $\langle \mathsf{A}, \mathsf{B} \rangle = \langle \mathsf{B}, \mathsf{A} \rangle$
- $\langle \alpha A, B \rangle = \alpha \langle A, B \rangle$
- $\langle A, A \rangle = 0$, $\langle A, A \rangle = 0$ iff A = 0

Distance Measure

- D(A, B) = D(B, A)
- D(A, A) = 0
- D(A, B) = 0 iff A = B
- $D(A, B) \le D(A, C) + D(B, C)$

Symmetry Linearity Postive-definiteness

Symmetry Constancy of Self-Similarity Positivity (Separation) Triangular Inequality

An inner product $\langle A, B \rangle$ induces a distance measure D(A, B) = $\langle A-B, A-B \rangle^{1/2}$

Inner Product vs Distance Measure

Inner Product

- $\langle \mathsf{A}, \mathsf{B} \rangle = \langle \mathsf{B}, \mathsf{A} \rangle$
- $\langle \alpha A, B \rangle = \alpha \langle A, B \rangle$
- $\langle A, A \rangle = 0$, $\langle A, A \rangle = 0$ iff A = 0

Distance Measure

- D(A, B) = D(B, A)
- D(A, A) = 0
- D(A, B) = 0 iff A = B
- $D(A, B) \leq D(A, C) + D(B, C)$

Symmetry Linearity Postive-definiteness

Symmetry Constancy of Self-Similarity Positivity (Separation) Triangular Inequality

Is the reverse also true? Why? Hierarchical Clustering

Dendrogram

(a.k.a. a similarity tree)

(Bovine: 0.69395, (Spider Monkey: 0.390, (Gibbon:0.36079,(Orang: 0.33636, (Gorilla: 0.17147, (Chimp: 0.19268, Human: 0.11927): 0.08386): 0.06124): 0.15057): 0.54939);

Dendrogram

(a.k.a. a similarity tree)

(Bovine: 0.69395, (Spider Monkey: 0.390, (Gibbon:0.36079,(Orang: 0.33636, (Gorilla: 0.17147, (Chimp: 0.19268, Human: 0.11927): 0.08386): 0.06124): 0.15057): 0.54939);

Example: Iris data

Iris Setosa

lris versicolor

Iris virginica

https://en.wikipedia.org/wiki/Iris_flower_data_set

Hierarchical Clustering

(Euclidian Distance)

https://en.wikipedia.org/wiki/Iris_flower_data_set

Edit Distance

Distance Patty and Selma

Change dress color, 1 point Change earring shape, 1 point Change hair part, 1 point

D(Patty, Selma) = 3

Distance Marge and Selma

Change dress color,	1 point
Add earrings,	1 point
Decrease height,	1 point
Take up smoking,	1 point
Lose weight,	1 point
	_

D(Marge,Selma) = 5

Can be defined for any set of discrete features

Edit Distance for Strings

- Transform string Q into string C, using only Substitution, Insertion and Deletion.
- Assume that each of these operators has a cost associated with it.
- The similarity between two strings can be defined as the cost of the *cheapest* transformation from *Q* to *C*.

Hierarchical Clustering

(Edit Distance)

Meaningful Patterns

Edit distance yields clustering according to geography

Spurious Patterns

In general clusterings will only be as meaningful as your distance metric

Spurious Patterns

In general clusterings will only be as meaningful as your distance metric

Former UK colonies

No relation

"Correct" Number of Clusters

"Correct" Number of Clusters

Determine number of clusters by looking at distance

Detecting Outliers

Bottom-up vs Top-down

The number of dendrograms with *n* leafs = $(2n - 3)!/[(2^{(n-2)})(n - 2)!]$

Since we cannot test all possible trees we will have to heuristic search of all possible trees. We could do this..

Bottom-Up (agglomerative):

Starting with each item in its own cluster, find the best pair to merge into a new cluster. Repeat until all clusters are fused together.

Top-Down (divisive): Starting with all the data in a single cluster, consider every possible way to divide the cluster into two. Choose the best division and recursively operate on both sides.

Distance Matrix

We begin with a distance matrix which contains the distances between every pair of objects in our database.

 $D(\mathbb{R},\mathbb{R}) = 8$ $D(\mathbb{R},\mathbb{R}) = 1$

Can you now implement this?

Distance Between Clusters

(nearest neighbor) (mean distance) (furthest neighbor)

Example

	P1	P2	P3	P4	P5	P6
P1	0	0.24	0.22	0.37	0.34	0.23
P2	0.24	0	0.15	0.2	0.14	0.25
P3	0.22	0.15	0	0.15	0.28	0.11
P4	0.37	0.2	0.15	0	0.29	0.22
P5	0.34	0.14	0.28	0.29	0	0.39
P6	0.23	0.25	0.11	0.22	0.39	0

Euclidean distance

Example

Example

AGNES (Agglomerative Nesting)

- Introduced in Kaufmann and Rousseeuw (1990)
- Implemented in statistical packages, e.g., Splus
- Use the single-link method and the dissimilarity matrix
- Merge nodes that have the least dissimilarity
- Go on in a non-descending fashion
- Eventually all nodes belong to the same cluster

DIANA (Divisive Analysis)

- Introduced in Kaufmann and Rousseeuw (1990)
- Implemented in statistical analysis packages, e.g., Splus
- Inverse order of AGNES
- Eventually each node forms a cluster on its own

Hierarchical Clustering Summary

- + No need to specify number of clusters
- Hierarchical structure maps nicely onto human intuition in some domains
- Scaling: Time complexity at least O(n²) in number of examples
- *Heuristic search method*: Local optima are a problem
- Interpretation of results is (very) subjective

Next Lecture: Partitional Clustering

Agglomerative Clustering

> .14s .26s

MiniBatch Affinity **KMeans Propagation Clustering**

.01s .02s

Spectral

.02s

DBSCAN