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Classification Wrap-up
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Linear 
SVM

RBF  
SVM

Random  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Ada- 
boost

Naive  
Bayes QDA



Confusion Matrix
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TABLE 9.3. Spam data: confusion rates for the 17-node tree (chosen by cross–
validation) on the test data. Overall error rate is 9.3%.

Predicted
True email spam

email 57.3% 4.0%
spam 5.3% 33.4%

can be viewed as a modification of CART designed to alleviate this lack of
smoothness.

Difficulty in Capturing Additive Structure

Another problem with trees is their difficulty in modeling additive struc-
ture. In regression, suppose, for example, that Y = c1I(X1 < t1)+c2I(X2 <
t2) + ε where ε is zero-mean noise. Then a binary tree might make its first
split on X1 near t1. At the next level down it would have to split both nodes
on X2 at t2 in order to capture the additive structure. This might happen
with sufficient data, but the model is given no special encouragement to find
such structure. If there were ten rather than two additive effects, it would
take many fortuitous splits to recreate the structure, and the data analyst
would be hard pressed to recognize it in the estimated tree. The “blame”
here can again be attributed to the binary tree structure, which has both
advantages and drawbacks. Again the MARS method (Section 9.4) gives
up this tree structure in order to capture additive structure.

9.2.5 Spam Example (Continued)

We applied the classification tree methodology to the spam example intro-
duced earlier. We used the deviance measure to grow the tree and mis-
classification rate to prune it. Figure 9.4 shows the 10-fold cross-validation
error rate as a function of the size of the pruned tree, along with ±2 stan-
dard errors of the mean, from the ten replications. The test error curve is
shown in orange. Note that the cross-validation error rates are indexed by
a sequence of values of α and not tree size; for trees grown in different folds,
a value of α might imply different sizes. The sizes shown at the base of the
plot refer to |Tα|, the sizes of the pruned original tree.
The error flattens out at around 17 terminal nodes, giving the pruned tree

in Figure 9.5. Of the 13 distinct features chosen by the tree, 11 overlap with
the 16 significant features in the additive model (Table 9.2). The overall
error rate shown in Table 9.3 is about 50% higher than for the additive
model in Table 9.1.

Consider the rightmost branches of the tree. We branch to the right
with a spam warning if more than 5.5% of the characters are the $ sign.

Prediction

Truth
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Prediction

Truth

Confusion Matrix

True Pos False Pos

False Neg True Neg

True Positive (TP): Hit (show e-mail) 
True Negative (TN): Correct rejection  
False Positive (FP): False alarm, type I error  
False Negative (FN): Miss, type II error



Decision Theory
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Optimal strategy for binary classification
• We should pick class/ label/ action 1 if

where we have assumed λ21 (FN) >λ11 (TP)
• As we vary our loss function, we simply change the 

optimal threshold θ on the decision rule

R(α2|x) > R(α1|x)
λ21p(Y = 1|x) + λ22p(Y = 2|x) > λ11p(Y = 1|x) + λ12p(Y = 2|x)

(λ21 − λ11)p(Y = 1|x) > (λ12 − λ22)p(Y = 2|x)
p(Y = 1|x)
p(Y = 2|x) >

λ12 − λ22
λ21 − λ11

π(x) = 1 iff
p(Y = 1|x)
p(Y = 2|x) > θ



Precision and Recall
Precision-Recall (External)

Precision or Positive Predictive Value (PPV)

PPV = TP

TP+FP

Recall or Sensitivity, True Positive Rate (TPR)

TPR = TP

TP+FN

F1 score: harmonic mean of Precisin and Recall

F1 = 2TP
(2TP+FP+FN)

Specificity (SPC) or True Negative Rate (TNR)

SPC = TN

(FP+TN)
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Precision-Recall Curve
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Optimal strategy for binary classification
• We should pick class/ label/ action 1 if

where we have assumed λ21 (FN) >λ11 (TP)
• As we vary our loss function, we simply change the 

optimal threshold θ on the decision rule

R(α2|x) > R(α1|x)
λ21p(Y = 1|x) + λ22p(Y = 2|x) > λ11p(Y = 1|x) + λ12p(Y = 2|x)

(λ21 − λ11)p(Y = 1|x) > (λ12 − λ22)p(Y = 2|x)
p(Y = 1|x)
p(Y = 2|x) >

λ12 − λ22
λ21 − λ11

π(x) = 1 iff
p(Y = 1|x)
p(Y = 2|x) > θ
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ROC Curve
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Optimal strategy for binary classification
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ROC Curve
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Clustering 
(a.k.a. unsupervised classification)

with slides from 
Eamonn Keogh 
(UC Riverside)



Clustering

• Unsupervised learning (no labels for training) 
• Group data into similar classes that 

• Maximize inter-cluster similarity 
• Minimize intra-cluster similarity



Two Types of Clustering
Hierarchical Partitional

Construct partitions and 
evaluate them using 
“some criterion”

Create a hierarchical 
decomposition using  
“some criterion”



What is a natural grouping?

Simpson’s
Family

School
Employees Females Males

Choice of clustering criterion can be task-dependent



What is Similarity?

Can be hard to define, but we know it when we see it.



Defining Distance Measures

0.2 3 342.7

Peter Piotr

Need: Some function D(x1, x2) that  
represents degree of dissimilarity



Example: Distance MeasuresHow to Measure Distance

For continuous variables:

Euclidean Distance

s

(
kP

i=1
(xi � yi)2)

Mahattan Distance
kP

i=1
|xi � yi |

Minkowski Distance

✓
kP

i=1
(|xi � yi |)q

◆ 1

q

Yijun Zhao Classification Model: K-Nearest Neighbor (KNN)



Example: Kernels

Squared Exponential (SE)

Automatic Relevance  
Determination (ARD)

Radial Basis Function (RBF)

Polynomial



Inner Product vs Distance Measure

• D(A, B) = D(B, A)
• D(A, A) = 0
• D(A, B) = 0 iff  A = B
• D(A, B) ≤ D(A, C) + D(B, C)

Symmetry 
Constancy of Self-Similarity
Positivity (Separation)
Triangular Inequality

• ⟨A, B⟩ = ⟨B, A⟩

• ⟨αA, B⟩ = α⟨A, B⟩

• ⟨A, Α⟩ = 0, ⟨A, Α⟩ = 0 iff  A = 0

Symmetry 
Linearity
Postive-definiteness

Inner Product

Distance Measure

An inner product ⟨A, B⟩ induces  
a distance measure D(A, B) = ⟨A-B, A-B⟩1/2



Inner Product vs Distance Measure

• D(A, B) = D(B, A)
• D(A, A) = 0
• D(A, B) = 0 iff  A = B
• D(A, B) ≤ D(A, C) + D(B, C)

Symmetry 
Constancy of Self-Similarity
Positivity (Separation)
Triangular Inequality

• ⟨A, B⟩ = ⟨B, A⟩

• ⟨αA, B⟩ = α⟨A, B⟩

• ⟨A, Α⟩ = 0, ⟨A, Α⟩ = 0 iff  A = 0

Symmetry 
Linearity
Postive-definiteness

Inner Product

Distance Measure

Is the reverse also true?  
Why?



Hierarchical 
Clustering



Dendrogram

Similarity of A and B is 
represented as height  
of lowest shared  
internal node

(a.k.a. a similarity tree) 

(Bovine: 0.69395, (Spider Monkey: 0.390, (Gibbon:0.36079,(Orang: 0.33636, (Gorilla: 0.17147,  
(Chimp: 0.19268, Human: 0.11927): 0.08386): 0.06124): 0.15057): 0.54939);

D(A,B)



Dendrogram

Natural when measuring  
genetic similarity, distance  
to common ancestor

(a.k.a. a similarity tree) 

(Bovine: 0.69395, (Spider Monkey: 0.390, (Gibbon:0.36079,(Orang: 0.33636, (Gorilla: 0.17147,  
(Chimp: 0.19268, Human: 0.11927): 0.08386): 0.06124): 0.15057): 0.54939);

D(A,B)



Example: Iris data

https://en.wikipedia.org/wiki/Iris_flower_data_set

Iris 
Setosa

Iris 
versicolor

Iris 
virginica

https://en.wikipedia.org/wiki/Iris_flower_data_set


Hierarchical Clustering

https://en.wikipedia.org/wiki/Iris_flower_data_set

(Euclidian Distance) 

https://en.wikipedia.org/wiki/Iris_flower_data_set


Edit Distance
 Change dress color,   1 point 
 Change earring shape, 1 point 
 Change hair part,     1 point 

D(Patty, Selma) = 3

 Change dress color,   1 point 
 Add earrings,         1 point 
 Decrease height,      1 point 
 Take up smoking,      1 point 
 Lose weight,          1 point 

D(Marge,Selma) = 5

Distance Patty and Selma

Distance Marge and Selma

Can be defined for any set of discrete features



Edit Distance for Strings

Peter 

Piter 

Pioter 

Piotr

Substitution (i for e) 

Insertion  (o) 

Deletion  (e) 

• Transform string Q into string C, using only 
Substitution, Insertion and Deletion.

• Assume that each of these operators has a 
cost associated with it.

• The similarity between two strings can be 
defined as the cost of the cheapest 
transformation from Q to C.

Similarity “Peter” and “Piotr”?

Substitution 1 Unit
Insertion 1 Unit
Deletion 1 Unit

D(Peter,Piotr) is 3
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Hierarchical Clustering
(Edit Distance) 
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Pedro (Portuguese)
Petros (Greek), Peter  (English), Piotr (Polish), 
Peadar (Irish), Pierre (French), Peder (Danish), 
Peka (Hawaiian), Pietro (Italian), Piero (Italian 
Alternative), Petr (Czech), Pyotr (Russian)

Cristovao (Portuguese)
Christoph (German), Christophe (French), Cristobal 
(Spanish), Cristoforo (Italian), Kristoffer
(Scandinavian), Krystof (Czech), Christopher 
(English)

Miguel (Portuguese)
Michalis (Greek), Michael (English), Mick (Irish)

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms



Meaningful Patterns

Pedro
(Portuguese/Spanish)
Petros (Greek), Peter  (English), Piotr
(Polish), Peadar (Irish), Pierre (French), 
Peder (Danish), Peka (Hawaiian), Pietro
(Italian), Piero (Italian Alternative), Petr
(Czech), Pyotr (Russian)

Slide from Eamonn Keogh
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Edit distance yields clustering according to geography



Spurious Patterns

ANGUILLAAUSTRALIA 
St. Helena &
Dependencies 

South Georgia &
South Sandwich 
Islands

U.K.
Serbia & 
Montenegro
(Yugoslavia)

FRANCE NIGER INDIA IRELAND BRAZIL

spurious; there is no connection between the two

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

In general clusterings will only be  
as meaningful as your distance metric
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In general clusterings will only be  
as meaningful as your distance metric

Former UK colonies No relation



“Correct” Number of Clusters

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms



“Correct” Number of Clusters

Yijun Zhao DATA MINING TECHNIQUES Clustering AlgorithmsDetermine number of clusters by looking at distance 



Detecting Outliers

Outlier

The single isolated branch is suggestive of a data 
point that is very different to all others
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Bottom-up vs Top-down
The number of dendrograms with n

leafs  = (2n -3)!/[(2(n -2)) (n -2)!]

Number Number of Possible
of Leafs Dendrograms
2 1
3 3
4 15
5 105
... …
10 34,459,425

Since we cannot test all possible 
trees we will have to heuristic 
search of all possible trees. We 
could do this..

Bottom-Up (agglomerative):
Starting with each item in its own 
cluster, find the best pair to merge 
into a new cluster. Repeat until all 
clusters are fused together. 

Top-Down (divisive): Starting with 
all the data in a single cluster, 
consider every possible way to 
divide the cluster into two. Choose 
the best division and recursively 
operate on both sides.

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms



Distance Matrix

0 8 8 7 7

0 2 4 4

0 3 3

0 1

0

D(  ,  ) = 8
D(  ,  ) = 1

We begin with a distance 
matrix which contains the 
distances between every 
pair of objects in our 
database.
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Bottom-up (Agglomerative Clustering)

25

…
Consider 
all possible 
merges…

Choose 
the best
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Can you now implement this?
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Distances between examples 
(can calculate using metric)



Bottom-up (Agglomerative Clustering)

25

…
Consider 
all possible 
merges…

Choose 
the best

Consider 
all possible 
merges… …

Choose 
the best

Consider 
all possible 
merges…

Choose 
the best…

 
Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

How do we calculate the  
distance to a cluster?



Distance Between Clusters

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

Single Linkage Average Linkage Complete Linkage

(nearest neighbor) (furthest neighbor)(mean distance)



Example
 P1 P2 P3 P4 P5 P6 

P1 0 0.24 0.22 0.37 0.34 0.23 
P2 0.24 0 0.15 0.2 0.14 0.25 
P3 0.22 0.15 0 0.15 0.28 0.11 
P4 0.37 0.2 0.15 0 0.29 0.22 
P5 0.34 0.14 0.28 0.29 0 0.39 
P6 0.23 0.25 0.11 0.22 0.39 0 

 
Euclidean distance  
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Example

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms



Example
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AGNES (Agglomerative Nesting)
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DIANA (Divisive Analysis)
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Hierarchical Clustering Summary

+ No need to specify number of clusters
+ Hierarchical structure maps nicely onto  

human intuition in some domains 
- Scaling: Time complexity at least O(n2)  

in number of examples 
- Heuristic search method:  

Local optima are a problem 
- Interpretation of results is (very) subjective



Next Lecture: Partitional Clustering
Agglomerative  

Clustering
MiniBatch 
KMeans

Affinity  
Propagation

Spectral
Clustering DBSCAN


