Data Mining Techniques

CS 6220 - Section 3 - Fall 2016

Lecture 6: Classification 3

Jan-Willem van de Meent (credit: Yijun Zhao, Arthur Gretton)

Class Schedule Updates

```
SCHEDULE
Note:This schedule is subject to change and will be adjusted as needed throughout the semester.
Wk Day Lectures Homework Project
107 Sep Introduction 1: Course Overview
    09 Sep Introduction 2: Linear regression, Overfitting, Cross
        validation
2 14 Sep Introduction 3: Probability, Bayes Rule, Conjugacy #1 out Vote on
    16 Sep Classification 1: k-NN, Logistic Regression, Linear
    Discriminant Analysis
3 21 Sep Classification 2: Naive Bayes, Support Vector Machines
    23 Sep Classification 3: Non-linear SVMs, Kernels
428 Sep Classification 4: Ensemble Methods, Boosting, Random #2 out Teams due
    30 Sep Clustering 1: K-means, K-medioids #3 due
5 O5 Oct Clustering 2: DBSCAN, Mixture Models
    0 7 \text { Oct Clustering 3: Expectation Maximimization}
6 12 Oct Topic Models: pLSA, Latent Dirichlet Allocation #3 out
    14 Oct Dimensionality Reduction 1: PCA, SVD, ICA #2 due
719 Oct Dimensionality Reduction 2: Random Projections
    21 Oct Recommender Systems
8 Oct Midterm exam
```


Class Schedule Updates

```
SCHEDULE
Note:This schedule is subject to change and will be adjusted as needed throughout the semester.
Wk Day Lectures Homework Project
107 Sep Introduction 1: Course Overview
    0 9 ~ S e p ~ I n t r o d u c t i o n ~ 2 : ~ L i n e a r ~ r e g r e s s i o n , ~ O v e r f i t t i n g , ~ C r o s s ~
        validation
2 14 Sep Introduction 3: Probability, Bayes Rule, Conjugacy #1 out Vote on
    1 6 \text { Sep Classification 1: k-NN, Logistic Regression, Linear}
                        Discriminant Analysis
3 21 Sep Classification 2: Naive Bayes, Support Vector Machines
    23 Sep Classification 3: Non-linear SVMs, Kernels
428 Sep Classification 4: Ensemble Methods, Boosting, Random
                            #2 ou
                            Teams due
```

1 extra
1 instead of 2

Class Schedule Updates

```
SCHEDULE
Note:This schedule is subject to change and will be adjusted as needed throughout the semester.
Wk Day Lectures Homework Project
107 Sep Introduction 1: Course Overview
    09 Sep Introduction 2: Linear regression, Overfitting, Cross
        validation
2 14 Sep Introduction 3: Probability, Bayes Rule, Conjugacy #1 out Vote on
    16 Sep Classification 1: k-NN, Logistic Regression, Linear
    Discriminant Analysis
3 21 Sep Classification 2: Naive Bayes, Support Vector Machines
    23 Sep Classification 3: Non-linear SVMs, Kernels
42 Sep Classification 4: Ensemble Methods, Boosting, Random
    Forests
    30 Sep Clustering 1: K-means, K-medioids
#3 due
5 O5 Oct Clustering 2: DBSCAN, Mixture Models
    0 7 \text { Oct Clustering 3: Expectation Maximimization}
6 12 Oct Topic Models: pLSA, Latent Dirichlet Allocation #3 out
    14 Oct Dimensionality Reduction 1: PCA, SVD, ICA #2 due
719 Oct Dimensionality Reduction 2: Random Projections
    21 Oct Recommender Systems
8 26 Oct Midterm exam
```


Support Vector Machines (recap)

Max Margin Classifiers

Idea: Maximize the margin between two separable classes

Max Margin Classifiers

$$
\begin{gathered}
y>0 \\
y=0
\end{gathered}
$$

$$
\begin{aligned}
& w^{\top} \boldsymbol{x}+b= \\
& \quad\|\boldsymbol{w}\|\left(\frac{\boldsymbol{w}^{\top} \boldsymbol{x}}{\|\boldsymbol{w}\|}+\frac{b}{\|\boldsymbol{w}\|}\right)
\end{aligned}
$$

Distance from plane: $\frac{1}{\|\boldsymbol{w}\|}\left(\boldsymbol{w}^{\top} \boldsymbol{x}+b\right)$

SVMs as Convex Optimization

$$
\begin{array}{lll}
\max _{\boldsymbol{w}, b, \hat{\gamma}} \hat{\gamma} & y_{n}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{n}+b\right) \geq \hat{\gamma} & n=1, \ldots, N \\
\max _{\boldsymbol{w}, b, \gamma} \frac{\gamma}{\|\boldsymbol{w}\|} & \|\boldsymbol{w}\|=1 & \\
\max _{w, b} \frac{1}{\|\boldsymbol{w}\|} & y_{n}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{n}+b\right) \geq \gamma & n=1, \ldots, N \\
\min _{\boldsymbol{w}, b} \frac{1}{2}\|\boldsymbol{w}\|^{2} & y_{n}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{n}+b\right) \geq 1 & n=1, \ldots, N \\
& y_{n}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{n}+b\right) \geq 1 & n=1, \ldots, N
\end{array}
$$

SVMs as Convex Optimization

$$
\min _{w, b} \frac{1}{2}\|w\|^{2} \quad y_{n}\left(w^{\top} x_{n}+b\right) \geq 1 \quad n=1, \ldots, N
$$

Generalized Lagrangian

$$
\mathscr{L}(\boldsymbol{w}, b, \alpha)=\frac{1}{2} \boldsymbol{w}^{\top} \boldsymbol{w}-\sum_{i=1}^{m} \alpha_{i}\left(y_{i}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}+b\right)-1\right)
$$

Dual problem

$$
W(\alpha)=\sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} y_{i} y_{j} \alpha_{i} \alpha_{j} x_{i}^{\top} x_{j}
$$

SVMs as Convex Optimization

$$
\min _{w, b} \frac{1}{2}\|w\|^{2} \quad y_{n}\left(w^{\top} x_{n}+b\right) \geq 1 \quad n=1, \ldots, N
$$

Generalized Lagrangian

$$
\mathscr{L}(\boldsymbol{w}, b, \alpha)=\frac{1}{2} \boldsymbol{w}^{\top} \boldsymbol{w}-\sum_{i=1}^{m} \alpha_{i}\left(y_{i}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}+b\right)-1\right)
$$

Dual problem

$$
W(\alpha)=\sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} y_{i} y_{j} \alpha_{i} \alpha_{j}\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right\rangle
$$

SVMs as Convex Optimization

$$
\min _{w, b} \frac{1}{2}\|w\|^{2} \quad y_{n}\left(w^{\top} x_{n}+b\right) \geq 1 \quad n=1, \ldots, N
$$

Dual problem

$$
W(\alpha)=\sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} y_{i} y_{j} \alpha_{i} \alpha_{j}\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right\rangle
$$

Sum over support vectors during prediction

$$
\boldsymbol{w}^{\top} \boldsymbol{x}+b=\sum_{i=1}^{m} \alpha_{i} y_{i}\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}\right\rangle+b
$$

Soft-margin SVMs

$$
\begin{aligned}
\arg \min _{\mathbf{w}, b, \xi \geq 0} & \frac{1}{2} \mathbf{w}^{T} \mathbf{w}+C \sum_{i=1}^{m} \xi_{i} \\
\text { s.t. } & y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i}, \quad i=1, \ldots, m \\
& \bullet
\end{aligned}
$$

Loss Function

$$
\begin{aligned}
\arg \min _{\mathbf{w}, b, \xi \geq 0} & \frac{1}{2} \mathbf{w}^{T} \mathbf{w}+C \sum_{i=1}^{m} \xi_{i} \\
\text { s.t. } & y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i}, \quad i=1, \ldots, m
\end{aligned}
$$

$$
E^{\mathrm{SVM}}(w)=\sum_{i=1}^{m} \xi_{i}+\frac{1}{2 C} w^{\top} w
$$

Loss Function

$$
\begin{aligned}
\arg \min _{\mathbf{w}, b, \xi \geq 0} & \frac{1}{2} \mathbf{w}^{T} \mathbf{w}+C \sum_{i=1}^{m} \xi_{i} \\
\text { s.t. } & y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i}, \quad i=1, \ldots, m
\end{aligned}
$$

$$
\begin{aligned}
E^{\mathrm{SVM}}(\boldsymbol{w}) & =\sum_{i=1}^{m} \xi_{i}+\frac{1}{2 C} \boldsymbol{w}^{\top} \boldsymbol{w} \\
& =\sum_{i=1}^{m}\left(1-y_{i}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}+b\right)\right)_{+}+\frac{1}{2 C} \boldsymbol{w}^{\top} \boldsymbol{w}
\end{aligned}
$$

Loss Function

$$
\begin{aligned}
\arg \min _{\mathbf{w}, b, \xi \geq 0} & \frac{1}{2} \mathbf{w}^{T} \mathbf{w}+C \sum_{i=1}^{m} \xi_{i} \\
\text { s.t. } & y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i}, \quad i=1, \ldots, m
\end{aligned}
$$

$$
E^{\mathrm{SVM}}(\boldsymbol{w})=\sum_{i=1}^{m} \xi_{i}+\frac{1}{2 C} \boldsymbol{w}^{\top} \boldsymbol{w}
$$

$$
=\sum_{i=1}^{m}\left(1-y_{i}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}+b\right)\right)_{+}+\frac{1}{2 C} \boldsymbol{w}^{\top} \boldsymbol{w}
$$

Hinge Loss

Loss Function

$$
\begin{aligned}
\arg \min _{\mathbf{w}, b, \xi \geq 0} & \frac{1}{2} \mathbf{w}^{T} \mathbf{w}+C \sum_{i=1}^{m} \xi_{i} \\
\text { s.t. } & y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i}, \quad i=1, \ldots, m
\end{aligned}
$$

$$
\begin{aligned}
E^{\mathrm{SVM}}(\boldsymbol{w}) & =\sum_{i=1}^{m} \xi_{i}+\frac{1}{2 C} \boldsymbol{w}^{\top} \boldsymbol{w} \\
& =\sum_{i=1}^{m}\left(1-y_{i}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}+b\right)\right)_{+}+\frac{1}{2 C} \boldsymbol{w}^{\top} \boldsymbol{w}
\end{aligned}
$$

Regularization

Loss Function

$$
\begin{aligned}
\arg \min _{\mathbf{w}, b, \xi \geq 0} & \frac{1}{2} \mathbf{w}^{T} \mathbf{w}+C \sum_{i=1}^{m} \xi_{i} \\
\text { s.t. } & y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i}, \quad i=1, \ldots, m
\end{aligned}
$$

$$
\begin{aligned}
E^{\mathrm{SVM}}(\boldsymbol{w}) & =\sum_{i=1}^{m} \xi_{i}+\frac{1}{2 C} \boldsymbol{w}^{\top} \boldsymbol{w} \\
& =\sum_{i=1}^{m}\left(1-y_{i}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}+b\right)\right)_{+}+\lambda \boldsymbol{w}^{\top} \boldsymbol{w}
\end{aligned}
$$

Regularization

Relationship to Logistic Regression

$$
E^{\mathrm{SVM}}(\boldsymbol{w})=\sum_{i=1}^{m}\left(1-y_{i}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}+b\right)\right)_{+}+\lambda \boldsymbol{w}^{\top} \boldsymbol{w}
$$

Relationship to Logistic Regression

$$
\begin{aligned}
E^{\mathrm{SVM}}(\boldsymbol{w}) & =\sum_{i=1}^{m}\left(1-y_{i}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}+b\right)\right)_{+}+\lambda \boldsymbol{w}^{\top} \boldsymbol{w} \\
E^{\mathrm{LR}}(\boldsymbol{w}) & =-\log p(y \mid \boldsymbol{x}, \boldsymbol{w}, b) \\
& =-\sum_{i=1}^{N} \log \frac{1}{\left(1+e^{-y_{i}\left(\boldsymbol{w}^{\top} x_{i}+b\right)}\right)} \\
& =\sum_{i=1}^{N} \log \left(1+e^{-y_{i}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}+b\right)}\right)
\end{aligned}
$$

Relationship to Logistic Regression

$$
\begin{aligned}
E^{\mathrm{SVM}}(\boldsymbol{w}) & =\sum_{i=1}^{m}\left(1-y_{i}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}+b\right)\right)_{+}+\lambda \boldsymbol{w}^{\top} \boldsymbol{w} \\
E^{\mathrm{LR}}(\boldsymbol{w}) & =-\log p(y \mid \boldsymbol{x}, \boldsymbol{w}, b)
\end{aligned}
$$

Relationship to Logistic Regression

$$
\begin{aligned}
E^{\mathrm{SVM}}(\boldsymbol{w}) & =\sum_{i=1}^{m}\left(1-y_{i}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}+b\right)\right)_{+}+\lambda \boldsymbol{w}^{\top} \boldsymbol{w} \\
E^{\mathrm{LR}}(\boldsymbol{w}) & =-\log p(y \mid \boldsymbol{x}, \boldsymbol{w}, b) \\
& =-\sum_{i=1}^{N} \log \frac{1}{\left(1+e^{-y_{i}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}+b\right)}\right)}
\end{aligned}
$$

Relationship to Logistic Regression

$$
\begin{aligned}
E^{\mathrm{SVM}}(\boldsymbol{w}) & =\sum_{i=1}^{m}\left(1-y_{i}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}+b\right)\right)_{+}+\lambda \boldsymbol{w}^{\top} \boldsymbol{w} \\
E^{\mathrm{LR}}(\boldsymbol{w}) & =-\log p(y \mid \boldsymbol{x}, \boldsymbol{w}, b) \\
& =-\sum_{i=1}^{N} \log \frac{1}{\left(1+e^{-y_{i}\left(\boldsymbol{w}^{\top} x_{i}+b\right)}\right)} \\
& =\sum_{i=1}^{N} \log \left(1+e^{-y_{i}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}+b\right)}\right)
\end{aligned}
$$

Relationship to Logistic Regression

$$
\begin{aligned}
E^{\mathrm{SVM}}(\boldsymbol{w}) & =\sum_{i=1}^{m}\left(1-y_{i}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}+b\right)\right)_{+}+\lambda \boldsymbol{w}^{\top} \boldsymbol{w} \\
E^{\mathrm{LR}}(\boldsymbol{w}) & =\sum_{i=1}^{N} \log \left(1+e^{-y_{i}\left(\boldsymbol{w}^{\top} x_{i}+b\right)}\right)
\end{aligned}
$$

Relationship to Logistic Regression

$$
\begin{aligned}
E^{\mathrm{SVM}}(\boldsymbol{w}) & =\sum_{i=1}^{m}\left(1-y_{i}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}+b\right)\right)_{+}+\lambda \boldsymbol{w}^{\top} \boldsymbol{w} \\
E^{\mathrm{LR}}(\boldsymbol{w}) & =\sum_{i=1}^{N} \log \left(1+e^{-y_{i}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}+b\right)}\right)+\lambda \boldsymbol{w}^{\top} \boldsymbol{w}
\end{aligned}
$$

Loss Functions

squared loss: $\quad \frac{1}{2}\left(\boldsymbol{w}^{\top} \boldsymbol{x}-y\right)^{2}$
logistic loss: $\quad \log \left(1+\exp \left(-y \boldsymbol{w}^{\top} \boldsymbol{x}\right)\right)$ hinge loss: $\max \left\{0,1-y \boldsymbol{w}^{\top} \boldsymbol{x}\right\}$

Nonlinear SVMs

Inseparable Problems

No linear classifier

Inseparable Problems

Idea: Map features onto higher dimensional space

Feature Map

$$
\phi(x)=\left[\begin{array}{lll}
x_{1} & x_{2} & x_{1} x_{2}
\end{array}\right] \in \mathbb{R}^{3}
$$

SVMs with Feature Maps

Dual problem

$$
W(\alpha)=\sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} y_{i} y_{j} \alpha_{i} \alpha_{j} x_{i}^{\top} x_{j}
$$

Dual problem with feature map

$$
W(\alpha)=\sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} y_{i} y_{j} \alpha_{i} \alpha_{j} \phi\left(\boldsymbol{x}_{i}\right)^{\top} \phi\left(\boldsymbol{x}_{j}\right)
$$

Computational Cost

Example: Mapping with linear and quadratic terms

$$
\begin{aligned}
\boldsymbol{x} & =\left(x_{1}, \ldots, x_{d}\right) \\
\phi(\boldsymbol{x}) & =\left(1, x_{1}, \ldots, x_{d}, x_{1} x_{1}, x_{1} x_{2}, \ldots x_{d} x_{d}\right)
\end{aligned}
$$

Computational Cost

Example: Mapping with linear and quadratic terms

$$
\begin{array}{rlr}
\boldsymbol{x} & =\left(x_{1}, \ldots, x_{d}\right) & \\
\phi(\boldsymbol{x}) & =\left(1, x_{1}, \ldots, x_{d}, x_{1} x_{1}, x_{1} x_{2}, \ldots x_{d} x_{d}\right) \quad \begin{array}{c}
1+\mathrm{d}+\mathrm{d}^{2} / 2 \\
\text { terms }
\end{array}
\end{array}
$$

Computational Cost

Example: Mapping with linear and quadratic terms

$$
\begin{aligned}
\boldsymbol{x} & =\left(x_{1}, \ldots, x_{d}\right) \\
\phi(x) & =\left(1, x_{1}, \ldots, x_{d}, x_{1} x_{1}, x_{1} x_{2}, \ldots x_{d} x_{d}\right)
\end{aligned}
$$

Polynomial	$\phi(x)$	Cost	100 features
Quadratic	$>d^{2} / 2$ terms up to degree 2	$d^{2} N^{2} / 4$	$2,500 N^{2}$
Cubic	$>d^{3} / 6$ terms up to degree 3	$d^{3} N^{2} / 12$	$83,000 N^{2}$
Quartic	$>d^{4} / 24$ terms up to degree 4	$d^{4} N^{2} / 48$	$1,960,000 N^{2}$

Kernel Trick

Define a kernel function such that

$$
k\left(x, x^{\prime}\right)=\phi(x)^{\top} \phi\left(x^{\prime}\right)
$$

k can be cheaper to evaluate than ϕ !

Kernel Trick

Define a kernel function such that

$$
k\left(x, x^{\prime}\right)=\phi(x)^{\top} \phi\left(x^{\prime}\right)
$$

k can be cheaper to evaluate than ϕ !

$$
\begin{aligned}
\boldsymbol{x} & =\left(x_{1}, x_{2}\right) \\
k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) & =\left(1+\boldsymbol{x}^{\top} \boldsymbol{x}^{\prime}\right)^{2} \\
& =1+x_{1}^{2} x^{\prime 2}+x_{2}^{2}{x^{\prime}}_{2}^{2}+2 x_{1} x_{1}^{\prime}+2 x_{2} x^{\prime}{ }_{2}+2 x_{1} x^{\prime}{ }_{1} x_{2} x^{\prime}{ }_{2} \\
\phi(\boldsymbol{x}) & =\left(1, x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1}, \sqrt{2} x_{2}, \sqrt{2} x_{1} x_{2}\right)
\end{aligned}
$$

Computational Cost

Kernel for polynomials up to degree a

$$
\begin{aligned}
\boldsymbol{x} & =\left(x_{1}, \ldots, x_{d}\right) \\
k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) & =\left(1+\boldsymbol{x}^{\top} \boldsymbol{x}^{\prime}\right)^{q}
\end{aligned}
$$

Computational Cost

Kernel for polynomials up to degree q

$$
\begin{aligned}
\boldsymbol{x} & =\left(x_{1}, \ldots, x_{d}\right) \\
k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) & =\left(1+\boldsymbol{x}^{\top} \boldsymbol{x}^{\prime}\right)^{q}
\end{aligned}
$$

Polynomial	$\phi(x)$	Cost	100 features
Quadratic	$>d^{2} / 2$ terms up to degree 2	$d^{2} N^{2} / 4$	$2,500 N^{2}$
Cubic	$>d^{3} / 6$ terms up to degree 3	$d^{3} N^{2} / 12$	$83,000 N^{2}$
Quartic	$>d^{4} / 24$ terms up to degree 4	$d^{4} N^{2} / 48$	$1,960,000 N^{2}$

Computational Cost

Kernel for polynomials up to degree q

$$
\begin{aligned}
\boldsymbol{x} & =\left(x_{1}, \ldots, x_{d}\right) \\
k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) & =\left(1+\boldsymbol{x}^{\top} \boldsymbol{x}^{\prime}\right)^{q}
\end{aligned}
$$

Polynomial	$\phi(x)$	Cost	100 features
Quadratic	$>d^{2} / 2$ terms up to degree 2	$d^{\not /} N^{2} / 47$	$1002,500 N^{2}$
Cubic	$>d^{3} / 6$ terms up to degree 3	$d^{7} N^{2} / 12$	$10083,000 N^{2}$
Quartic	$>d^{4} / 24$ terms up to degree 4	$d^{4} N^{2} / 48$	$1001,960,000 N^{2}$

Computational Cost

Kernel for polynomials up to degree q

$$
\begin{aligned}
\boldsymbol{x} & =\left(x_{1}, \ldots, x_{d}\right) \\
k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) & =\left(1+\boldsymbol{x}^{\top} \boldsymbol{x}^{\prime}\right)^{q}
\end{aligned}
$$

Statistics Professors HATE Him!

Doctor's discovery revealed the secret to learning any problem with just 10 training samples. Watch this shocking video and learn how rapidly you can find a solution to your learning problems using this one sneaky kernel trick! Free from overfitting!
http://www.oneweirdkerneltrick.com

Kernels

Borrowing from:
Arthur Gretton
(Gatsby, UCL)

Hilbert Spaces

Definition (Inner product)

Let \mathcal{H} be a vector space over \mathbb{R}. A function $\langle\cdot, \cdot\rangle_{\mathcal{H}}: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{R}$ is an inner product on \mathcal{H} if
(1) Linear: $\left\langle\alpha_{1} f_{1}+\alpha_{2} f_{2}, g\right\rangle_{\mathcal{H}}=\alpha_{1}\left\langle f_{1}, g\right\rangle_{\mathcal{H}}+\alpha_{2}\left\langle f_{2}, g\right\rangle_{\mathcal{H}}$
(2) Symmetric: $\langle f, g\rangle_{\mathcal{H}}=\langle g, f\rangle_{\mathcal{H}}$
(3) $\langle f, f\rangle_{\mathcal{H}} \geq 0$ and $\langle f, f\rangle_{\mathcal{H}}=0$ if and only if $f=0$.

Norm induced by the inner product: $\|f\|_{\mathcal{H}}:=\sqrt{\langle f, f\rangle_{\mathcal{H}}}$

Definition (Hilbert space)

 Inner product space containing Cauchy sequence limits.
Example: Fourier Bases

$$
\left\langle f, f^{\prime}\right\rangle:=\int_{-\infty}^{\infty} d x f(x)^{*} f^{\prime}(x)
$$

Example: Fourier Bases

$$
\begin{aligned}
\left\langle f, f^{\prime}\right\rangle & :=\int_{-\infty}^{\infty} d x f(x)^{*} f^{\prime}(x) \\
f & :=e^{i \omega x} \\
f^{\prime} & :=e^{i \omega^{\prime} x}
\end{aligned}
$$

Example: Fourier Bases

$$
\begin{aligned}
\left\langle f, f^{\prime}\right\rangle & :=\int_{-\infty}^{\infty} d x f(x)^{*} f^{\prime}(x) \\
f & :=e^{i \omega x} \\
f^{\prime} & :=e^{i \omega^{\prime} x} \\
\left\langle f, f^{\prime}\right\rangle & :=\int_{-\infty}^{\infty} d x \exp ^{i\left(\omega^{\prime}-\omega\right) x} \\
& =\delta\left(\omega, \omega^{\prime}\right)
\end{aligned}
$$

Example: Fourier Bases

$$
\begin{aligned}
\left\langle f, f^{\prime}\right\rangle & :=\int_{-\infty}^{\infty} d x f(x)^{*} f^{\prime}(x) \\
f & :=e^{i \omega x} \\
f^{\prime} & :=e^{i \omega^{\prime} x} \\
\left\langle f, f^{\prime}\right\rangle & :=\int_{-\infty}^{\infty} d x \exp ^{i\left(\omega^{\prime}-\omega\right) x} \\
& =\delta\left(\omega, \omega^{\prime}\right)
\end{aligned}
$$

Fourier modes define a vector space

Kernels

Definition

Let \mathcal{X} be a non-empty set. A function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is a kernel if there exists an \mathbb{R}-Hilbert space and a map $\phi: \mathcal{X} \rightarrow \mathcal{H}$ such that $\forall x, x^{\prime} \in \mathcal{X}$,

$$
k\left(x, x^{\prime}\right):=\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle_{\mathcal{H}} .
$$

- Almost no conditions on \mathcal{X} (eg, \mathcal{X} itself doesn't need an inner product, eg. documents).
- A single kernel can correspond to several possible features. A trivial example for $\mathcal{X}:=\mathbb{R}$:

$$
\phi_{1}(x)=x \quad \text { and } \quad \phi_{2}(x)=\left[\begin{array}{l}
x / \sqrt{2} \\
x / \sqrt{2}
\end{array}\right]
$$

Sums, Transformations, Products

Theorem (Sums of kernels are kernels)

Given $\alpha>0$ and k, k_{1} and k_{2} all kernels on \mathcal{X}, then αk and $k_{1}+k_{2}$ are kernels on \mathcal{X}.
(Proof via positive definiteness: later!) A difference of kernels may not be a kernel (why?)

Theorem (Mappings between spaces)

Let \mathcal{X} and $\tilde{\mathcal{X}}$ be sets, and define a $\operatorname{map} A: \mathcal{X} \rightarrow \tilde{\mathcal{X}}$. Define the kernel k on $\widetilde{\mathcal{X}}$. Then the kernel $k\left(A(x), A\left(x^{\prime}\right)\right)$ is a kernel on \mathcal{X}.

Example: $k\left(x, x^{\prime}\right)=x^{2}\left(x^{\prime}\right)^{2}$.

Theorem (Products of kernels are kernels)

Given k_{1} on \mathcal{X}_{1} and k_{2} on \mathcal{X}_{2}, then $k_{1} \times k_{2}$ is a kernel on $\mathcal{X}_{1} \times \mathcal{X}_{2}$. If $\mathcal{X}_{1}=\mathcal{X}_{2}=\mathcal{X}$, then $k:=k_{1} \times k_{2}$ is a kernel on \mathcal{X}.

Polynomial Kernels

Theorem (Polynomial kernels)

Let $x, x^{\prime} \in \mathbb{R}^{d}$ for $d \geq 1$, and let $m \geq 1$ be an integer and $c \geq 0$ be a positive real. Then

$$
k\left(x, x^{\prime}\right):=\left(\left\langle x, x^{\prime}\right\rangle+c\right)^{m}
$$

is a valid kernel.
To prove: expand into a sum (with non-negative scalars) of kernels $\left\langle x, x^{\prime}\right\rangle$ raised to integer powers. These individual terms are valid kernels by the product rule.

Infinite Sequences

Definition

The space ℓ_{2} (square summable sequences) comprises all sequences $a:=\left(a_{i}\right)_{i \geq 1}$ for which

$$
\|a\|_{\ell_{2}}^{2}=\sum_{i=1}^{\infty} a_{i}^{2}<\infty
$$

Definition

Given sequence of functions $\left(\phi_{i}(x)\right)_{i \geq 1}$ in ℓ_{2} where $\phi_{i}: \mathcal{X} \rightarrow \mathbb{R}$ is the i th coordinate of $\phi(x)$. Then

$$
\begin{equation*}
k\left(x, x^{\prime}\right):=\sum_{i=1}^{\infty} \phi_{i}(x) \phi_{i}\left(x^{\prime}\right) \tag{1}
\end{equation*}
$$

Infinite Sequences

Why square summable? By Cauchy-Schwarz,

$$
\left|\sum_{i=1}^{\infty} \phi_{i}(x) \phi_{i}\left(x^{\prime}\right)\right| \leq\|\phi(x)\|_{\ell_{2}}\left\|\phi\left(x^{\prime}\right)\right\|_{\ell_{2}}
$$

so the sequence defining the inner product converges for all $x, x^{\prime} \in \mathcal{X}$

Taylor Series Kernels

Definition (Taylor series kernel)
For $r \in(0, \infty]$, with $a_{n} \geq 0$ for all $n \geq 0$

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \quad|z|<r, z \in \mathbb{R}
$$

Define \mathcal{X} to be the \sqrt{r}-ball in \mathbb{R}^{d}, so $\|x\|<\sqrt{r}$,

$$
k\left(x, x^{\prime}\right)=f\left(\left\langle x, x^{\prime}\right\rangle\right)=\sum_{n=0}^{\infty} a_{n}\left\langle x, x^{\prime}\right\rangle^{n}
$$

Example (Exponential kernel)

$$
k\left(x, x^{\prime}\right):=\exp \left(\left\langle x, x^{\prime}\right\rangle\right) .
$$

Gaussian Kernel

(also known as Radial Basis Function (RBF) kernel)

Example (Gaussian kernel)

The Gaussian kernel on \mathbb{R}^{d} is defined as

$$
k\left(x, x^{\prime}\right):=\exp \left(-\gamma^{-2}\left\|x-x^{\prime}\right\|^{2}\right)
$$

Proof: an exercise! Use product rule, mapping rule, exponential kernel.

Gaussian Kernel

(also known as Radial Basis Function (RBF) kernel)

Example (Gaussian kernel)

The Gaussian kernel on \mathbb{R}^{d} is defined as

$$
k\left(x, x^{\prime}\right):=\exp \left(-\gamma^{-2}\left\|x-x^{\prime}\right\|^{2}\right)
$$

Proof: an exercise! Use product rule, mapping rule, exponential kernel.

Squared Exponential (SE)

$$
k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\exp ^{-\frac{1}{2} \boldsymbol{x}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{x}^{\prime}}
$$

Automatic Relevance
Determination (ARD)

$$
k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\exp ^{-\frac{1}{2} \sum_{i=1}^{d} \frac{\left(x_{i}-x_{i}^{\prime}\right)^{2}}{\sigma_{i}^{2}}}
$$

Products of Kernels

Positive Definiteness

Definition (Positive definite functions)

A symmetric function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is positive definite if $\forall n \geq 1, \forall\left(a_{1}, \ldots a_{n}\right) \in \mathbb{R}^{n}, \forall\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{X}^{n}$,

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} k\left(x_{i}, x_{j}\right) \geq 0
$$

The function $k(\cdot, \cdot)$ is strictly positive definite if for mutually distinct x_{i}, the equality holds only when all the a_{i} are zero.

Mercer's Theorem

Theorem

Let \mathcal{H} be a Hilbert space, \mathcal{X} a non-empty set and $\phi: \mathcal{X} \rightarrow \mathcal{H}$. Then $\langle\phi(x), \phi(y)\rangle_{\mathcal{H}}=: k(x, y)$ is positive definite.

Proof.

$$
\begin{aligned}
\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} k\left(x_{i}, x_{j}\right) & =\sum_{i=1}^{n} \sum_{j=1}^{n}\left\langle a_{i} \phi\left(x_{i}\right), a_{j} \phi\left(x_{j}\right)\right\rangle_{\mathcal{H}} \\
& =\left\|\sum_{i=1}^{n} a_{i} \phi\left(x_{i}\right)\right\|_{\mathcal{H}}^{2} \geq 0
\end{aligned}
$$

Reverse also holds: positive definite $k\left(x, x^{\prime}\right)$ is inner product in a unique \mathcal{H} (Moore-Aronsajn: coming later!).

Kernelized SVMs

Dual problem

$$
W(\alpha)=\sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} y_{i} y_{j} \alpha_{i} \alpha_{j} \boldsymbol{x}_{i}^{\top} \boldsymbol{x}_{j}
$$

Dual problem with feature map

$$
W(\alpha)=\sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} y_{i} y_{j} \alpha_{i} \alpha_{j} \phi\left(\boldsymbol{x}_{i}\right)^{\top} \phi\left(\boldsymbol{x}_{j}\right)
$$

Kernelized SVMs

Dual problem

$$
W(\alpha)=\sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} y_{i} y_{j} \alpha_{i} \alpha_{j} \boldsymbol{x}_{i}^{\top} \boldsymbol{x}_{j}
$$

Dual problem with kernel

$$
W(\alpha)=\sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} y_{i} y_{j} \alpha_{i} \alpha_{j} k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)
$$

Kernelized SVMs

Generalization to multiple classes: Train multiple one-vs-all or one-vs-one classifiers

Kernelized SVMs

Generalization to multiple classes: Train multiple one-vs-all or one-vs-one classifiers

Kernel Ridge Regression

$$
f^{*}=\arg \min _{f \in \mathcal{H}}\left(\sum_{i=1}^{n}\left(y_{i}-\left\langle f, \phi\left(x_{i}\right)\right\rangle_{\mathcal{H}}\right)^{2}+\lambda\|f\|_{\mathcal{H}}^{2}\right) .
$$

$\lambda=0.1, \sigma=0.6$

$$
\lambda=1 \mathrm{e}-07, \sigma=0.6
$$

Optimization Problem $\min \lambda\|w\|^{2}+\sum \xi_{i}^{2}$
s.t. $\xi_{i}=y_{i}-\left\langle w, x_{i}\right\rangle$

Solve for Dual Problem

$$
\begin{aligned}
w & =\frac{1}{2 \lambda} \sum \alpha_{i} x_{i} \\
\xi & =\frac{\alpha_{i}}{2}
\end{aligned}
$$

Kernel Ridge Regression

$$
f^{*}=\arg \min _{f \in \mathcal{H}}\left(\sum_{i=1}^{n}\left(y_{i}-\left\langle f, \phi\left(x_{i}\right)\right\rangle_{\mathcal{H}}\right)^{2}+\lambda\|f\|_{\mathcal{H}}^{2}\right) .
$$

$\lambda=0.1, \sigma=0.6$

Closed form Solution

$$
\alpha=2 \lambda(K+\lambda I)^{-1} y
$$

$$
f(x)=y^{\top}(K+\lambda I)^{-1} k
$$

$$
\begin{aligned}
\boldsymbol{y} & :=\left(y_{1}, \ldots, y_{n}\right) \\
\boldsymbol{K}_{i j} & :=k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right) \\
\boldsymbol{k}_{i}(\boldsymbol{x}) & :=k\left(\boldsymbol{x}_{i}, \boldsymbol{x}\right)
\end{aligned}
$$

