Data Mining Techniques

CS 6220 - Section 3 - Fall 2016

Lecture 5: Classification 2

Jan-Willem van de Meent (credit: Zhao, CS 229, Bishop)

Generative Learning Algorithms

Linear Discriminant Analysis

Algorithm

Linear Discriminant Analysis

- Mean for each class

$$
\boldsymbol{\mu}_{k}=\frac{1}{N_{k}} \sum_{n: y_{n}=k} \boldsymbol{x}_{n}
$$

- Covariance for each class

$$
\boldsymbol{\Sigma}_{k}=\frac{1}{N_{k}} \sum_{n: y_{n}=k}\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)^{\top}\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)
$$

- Average covariance

$$
\boldsymbol{\Sigma}=\frac{1}{N} \sum_{k} N_{k} \Sigma_{k}
$$

Linear Discriminant Analysis

Predict using likelihood

$$
y^{*}=\underset{k}{\operatorname{argmax}} p\left(x^{*} \mid y=k\right)
$$

Linear Discriminant Analysis

$$
p(\boldsymbol{x} \mid y=k)=\mathscr{N}\left(\boldsymbol{x} ; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}\right)
$$

Quadratic Discriminant Analysis
$p(\boldsymbol{x} \mid y=k)=\mathscr{N}\left(\boldsymbol{x} ; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)$

Algorithm

- Mean for each class

$$
\mu_{k}=\frac{1}{N_{k}} \sum_{n: y_{n}=k} \boldsymbol{x}_{n}
$$

- Covariance for each class

$$
\boldsymbol{\Sigma}_{k}=\frac{1}{N_{k}} \sum_{n: y_{n}=k}\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)^{\top}\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)
$$

- Average covariance

$$
\boldsymbol{\Sigma}=\frac{1}{N} \sum_{k} N_{k} \Sigma_{k}
$$

Linear Discriminant Analysis

Predict using likelihood

$$
y^{*}=\underset{k}{\operatorname{argmax}} p\left(x^{*} \mid y=k\right)
$$

Linear Discriminant Analysis

Predict using likelihood

$$
y^{*}=\underset{k}{\operatorname{argmax}} p\left(x^{*} \mid y=k\right)
$$

Predict using posterior
$y^{*}=\underset{k}{\operatorname{argmax}} p\left(y=k \mid x^{*}\right)$

Linear Discriminant Analysis

Predict using likelihood

$$
y^{*}=\underset{k}{\operatorname{argmax}} p\left(\boldsymbol{x}^{*} \mid y=k\right)
$$

Predict using posterior
$y^{*}=\underset{k}{\operatorname{argmax}} p\left(y=k \mid x^{*}\right)$

Generative Model

$$
\begin{aligned}
y_{n} & \sim \operatorname{Discrete}(\pi) \\
x_{n} \mid y_{n}=k & \sim \mathscr{N}\left(\mu_{k}, \Sigma_{k}\right)
\end{aligned}
$$

Bayes Rule

$$
\begin{aligned}
& p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)} \\
& p(y \mid x)=\frac{p(x \mid y) p(y)}{p(x)}
\end{aligned}
$$

Linear Discriminant Analysis

Predict using likelihood

$$
y^{*}=\underset{k}{\operatorname{argmax}} p\left(x^{*} \mid y=k\right)
$$

Predict using posterior

$$
y^{*}=\underset{k}{\operatorname{argmax}} p\left(y=k \mid x^{*}\right)
$$

Generative Model

$$
\begin{aligned}
y_{n} & \sim \operatorname{Discrete}(\pi) \\
x_{n} \mid y_{n}=k & \sim \mathscr{N}\left(\mu_{k}, \Sigma_{k}\right)
\end{aligned}
$$

Generative Learning

- Treat features as "observations"
- Treat class labels as "latent variables"
- Calculate ML estimates of parameters
- Predict according to MAP value

Linear Discriminant Analysis

Predict using likelihood

$$
y^{*}=\underset{k}{\operatorname{argmax}} p\left(\boldsymbol{x}^{*} \mid y=k\right)
$$

Predict using posterior

$$
y^{*}=\underset{k}{\operatorname{argmax}} p\left(y=k \mid x^{*}\right)
$$

Generative Model

$$
\begin{aligned}
y_{n} & \sim \operatorname{Discrete}(\pi) \\
x_{n} \mid y_{n}=k & \sim \mathscr{N}\left(\mu_{k}, \Sigma_{k}\right)
\end{aligned}
$$

Maximum Likelihood Estimates

$$
\boldsymbol{\mu}_{k}=\frac{1}{N_{k}} \sum_{n: y_{n}=k} \boldsymbol{x}_{n}
$$

$$
\boldsymbol{\Sigma}_{k}=\frac{1}{N_{k}} \sum_{n: y_{n}=k}\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)^{\top}\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)
$$

$$
\pi_{k}=?
$$

Linear Discriminant Analysis

Predict using likelihood

$$
y^{*}=\underset{k}{\operatorname{argmax}} p\left(\boldsymbol{x}^{*} \mid y=k\right)
$$

Predict using posterior
$y^{*}=\underset{k}{\operatorname{argmax}} p\left(y=k \mid x^{*}\right)$
Generative Model

$$
\begin{aligned}
y_{n} & \sim \operatorname{Discrete}(\pi) \\
x_{n} \mid y_{n}=k & \sim \mathscr{N}\left(\mu_{k}, \Sigma_{k}\right)
\end{aligned}
$$

Maximum Likelihood Estimates

$$
\boldsymbol{\mu}_{k}=\frac{1}{N_{k}} \sum_{n: y_{n}=k} \boldsymbol{x}_{n}
$$

$$
\begin{aligned}
& \boldsymbol{\Sigma}_{k}=\frac{1}{N_{k}} \sum_{n: y_{n}=k}\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)^{\top}\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right) \\
& \pi_{k}=\frac{N_{k}}{N}
\end{aligned}
$$

Naive Bayes

Example: Spam Filtering

Features: Words in E-mail
$x=\left[\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0\end{array}\right] \begin{aligned} & \text { a } \\ & \text { aardvark } \\ & \text { aardwolf } \\ & \vdots \\ & \text { buy } \\ & \text { zygmurgy }\end{aligned}$

Labels: Spam or not Spam

$$
y_{n} \in\{0,1\}
$$

Naive Bayes

Features: Words in E-mail

Generative Model

$$
\begin{aligned}
y_{n} & \sim \operatorname{Bernoulli}(\mu) \\
\boldsymbol{x}_{n d} \mid y_{n}=k & \sim \operatorname{Bernoulli}\left(\phi_{k d}\right)
\end{aligned}
$$

Conditional Independence

$$
p\left(\boldsymbol{x}_{n} \mid y_{n}\right)=\prod_{d=1}^{D} p\left(x_{n d} \mid y_{n}\right)
$$

Naive Bayes

Features: Words in E-mail

$$
x=\left[\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right] \quad \begin{aligned}
& \text { aardvark } \\
& \vdots \\
& \text { aardwolf } \\
& \text { zygmurgy }
\end{aligned}
$$

Generative Model

$$
\begin{aligned}
y_{n} & \sim \operatorname{Bernoulli}(\mu) \\
\boldsymbol{x}_{n d} \mid y_{n}=k & \sim \operatorname{Bernoulli}\left(\phi_{k d}\right)
\end{aligned}
$$

Maximum Likelihood

$$
\begin{aligned}
\mu & =\frac{1}{N} \sum_{n=1}^{N} I\left[y_{n}=1\right] \\
\phi_{k d} & =\frac{1}{N_{k}} \sum_{n: y_{n}=k} I\left[x_{n d}=1\right]
\end{aligned}
$$

Online Estimation and Smoothing

Features: Words in E-mail

Suppose word d not in training set

$$
\begin{aligned}
& \phi_{0 d}=\phi_{1 d}=0 \\
& p(x \mid y=0)=p(x \mid y=1)=0
\end{aligned}
$$

Bayes Rule

$$
\begin{aligned}
p(\boldsymbol{y} \mid \boldsymbol{x}) & =\frac{p(\boldsymbol{x} \mid \boldsymbol{y}) p(\boldsymbol{y})}{p(\boldsymbol{x})} \\
& =\frac{0}{0}
\end{aligned}
$$

Online Estimation and Smoothing

Generative model with prior

$$
\begin{aligned}
\mu & \sim \operatorname{Beta}(1,1) \\
\phi_{k d} & \sim \operatorname{Beta}(1,1) \\
y_{n} & \sim \operatorname{Bernoulli}(\mu) \\
x_{n d} \mid y_{n}=k & \sim \operatorname{Bernoulli}\left(\phi_{k d}\right)
\end{aligned}
$$

Posterior Mean

$$
\mu^{*}, \boldsymbol{\phi}^{*}=\mathbb{E}_{p\left(\mu, \boldsymbol{\phi} \mid x_{1: N}, y_{1: N}\right)}[\mu, \boldsymbol{\phi}]
$$

Conjugacy

$\operatorname{Bin}(m \mid N, \mu)=\binom{N}{m} \mu^{m}(1-\mu)^{N-m}$
$\operatorname{Beta}(\mu \mid a, b)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \mu^{a-1}(1-\mu)^{b-1}$

$$
\begin{aligned}
p(\mu \mid m) & =\frac{p(m, \mu)}{p(m)} \\
& \propto \operatorname{Bin}(m \mid N, \mu) \operatorname{Beta}(\mu \mid a, b) \\
& \propto \mu^{m+(a-1)}(1-\mu)^{(N-m)+(b-1)}
\end{aligned}
$$

Online Estimation and Smoothing

Generative model with prior

$$
\begin{aligned}
\mu & \sim \operatorname{Beta}(1,1) \\
\phi_{k d} & \sim \operatorname{Beta}(1,1) \\
y_{n} & \sim \operatorname{Bernoulli}(\mu) \\
x_{n d} \mid y_{n}=k & \sim \operatorname{Bernoulli}\left(\phi_{k d}\right)
\end{aligned}
$$

Posterior Mean

$$
\mu^{*}, \boldsymbol{\phi}^{*}=\mathbb{E}_{p\left(\mu, \boldsymbol{\phi} \mid \boldsymbol{x}_{1: N}, y_{1: N}\right)}[\mu, \boldsymbol{\phi}]
$$

$$
\mu^{*}=\frac{N_{1}+1}{N+2}
$$

$$
\phi_{k d}^{*}=\frac{N_{k d}+1}{N_{k}+2}
$$

Support Vector Machines

Intuition

Which of these linear classifiers is the best?

Max Margin Classifiers

Idea: Maximize the margin between two separable classes

Max Margin Classifiers

$$
\begin{aligned}
h(\boldsymbol{x} ; \boldsymbol{w}, b) & =\operatorname{Sign}\left(\boldsymbol{w}^{\top} \boldsymbol{x}+b\right) \\
y_{n} & \in\{-1,1\} \\
\boldsymbol{x} & =\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{D}\right) \\
\boldsymbol{w} & =\left(w_{1}, \ldots, w_{D}\right)
\end{aligned}
$$

Max Margin Classifiers

$$
\begin{aligned}
& w^{\top} x+b= \\
& \quad\|w\|\left(\frac{w^{\top} x}{\|w\|}+\frac{b}{\|w\|}\right)
\end{aligned}
$$

Max Margin Classifiers

$$
\begin{aligned}
& w^{\top} x+b= \\
& \quad\|w\|\left(\frac{w^{\top} \boldsymbol{x}}{\|w\|}+\frac{b}{\|w\|}\right)
\end{aligned}
$$

What are the lengths of these vectors?

Max Margin Classifiers

$$
\begin{gathered}
y>0 \\
y=0 \\
y<0
\end{gathered}
$$

$$
\begin{aligned}
& w^{\top} x+b= \\
& \quad\|w\|\left(\frac{w^{\top} x}{\|w\|}+\frac{b}{\|w\|}\right)
\end{aligned}
$$

Max Margin Classifiers

$$
\begin{gathered}
y>0 \\
y=0
\end{gathered}
$$

$$
\begin{aligned}
& w^{\top} \boldsymbol{x}+b= \\
& \quad\|\boldsymbol{w}\|\left(\frac{\boldsymbol{w}^{\top} \boldsymbol{x}}{\|\boldsymbol{w}\|}+\frac{b}{\|\boldsymbol{w}\|}\right)
\end{aligned}
$$

Distance from plane: $\frac{1}{\|\boldsymbol{w}\|}\left(\boldsymbol{w}^{\top} \boldsymbol{x}+b\right)$

Equivalent Optimization Problems

$\max _{w, b} \hat{\gamma}$

$$
\begin{aligned}
& y_{n}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{n}+b\right) \geq \hat{\gamma} \quad n=1, \ldots, N \\
& \|\boldsymbol{w}\|=1
\end{aligned}
$$

Distance from plane: $\frac{1}{\|\boldsymbol{w}\|}\left(\boldsymbol{w}^{\top} \boldsymbol{x}+b\right)$

Equivalent Optimization Problems

$$
\begin{array}{lll}
\max _{\boldsymbol{w}, b} \hat{\gamma} & y_{n}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{n}+b\right) \geq \hat{\gamma} & n=1, \ldots, N \\
\max _{\boldsymbol{w}, b, \gamma} \frac{\gamma}{\|\boldsymbol{w}\|} & \|\boldsymbol{w}\|=1 & \\
y_{n}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{n}+b\right) \geq \gamma \quad n=1, \ldots, N
\end{array}
$$

Distance from plane: $\frac{1}{\|\boldsymbol{w}\|}\left(\boldsymbol{w}^{\top} \boldsymbol{x}+b\right)$

Equivalent Optimization Problems

$$
\begin{array}{lll}
\max _{\boldsymbol{w}, b} \hat{\gamma} & y_{n}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{n}+b\right) \geq \hat{\gamma} & n=1, \ldots, N \\
\max _{\boldsymbol{w}, b, \gamma} \frac{\gamma}{\|\boldsymbol{w}\|} & \|\boldsymbol{w}\|=1 & \\
\max _{\boldsymbol{w}, b} \frac{1}{\|\boldsymbol{w}\|} & y_{n}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{n}+b\right) \geq \gamma & n=1, \ldots, N \\
& y_{n}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{n}+b\right) \geq 1 & n=1, \ldots, N
\end{array}
$$

Distance from plane: $\frac{1}{\|\boldsymbol{w}\|}\left(\boldsymbol{w}^{\top} \boldsymbol{x}+b\right)$

Equivalent Optimization Problems

$\max _{w, b} \hat{\gamma}$

$$
\begin{aligned}
& y_{n}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{n}+b\right) \geq \hat{\gamma} \quad n=1, \ldots, N \\
& \|\boldsymbol{w}\|=1
\end{aligned}
$$

$\max _{w, b, \gamma} \frac{\gamma}{\|\boldsymbol{w}\|}$
$y_{n}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{n}+b\right) \geq \gamma$
$n=1, \ldots, N$
$\max _{\boldsymbol{w}, b} \frac{1}{\|\boldsymbol{w}\|}$
$\min _{w, b} \frac{1}{2}\|w\|^{2}$
$y_{n}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{n}+b\right) \geq 1 \quad n=1, \ldots, N$
$y_{n}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{n}+b\right) \geq 1$
$n=1, \ldots, N$

Distance from plane: $\frac{1}{\|\boldsymbol{w}\|}\left(\boldsymbol{w}^{\top} \boldsymbol{x}+b\right)$

Equivalent Optimization Problems

$$
\begin{aligned}
& y_{n}\left(w^{\top} x_{n}+b\right) \geq \hat{\gamma} \quad n=1, \ldots, N \\
& \|w\|=1
\end{aligned}
$$

$\max _{w, b, \gamma} \frac{\gamma}{\|w\|}$
$y_{n}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{n}+b\right) \geq \gamma$
$n=1, \ldots, N$
$\max _{w, b} \frac{1}{\|w\|}$
$\min _{w, b} \frac{1}{2}\|w\|^{2}$

$$
\begin{array}{ll}
y_{n}\left(w^{\top} x_{n}+b\right) \geq 1 & n=1, \ldots, N \\
y_{n}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{n}+b\right) \geq 1 & n=1, \ldots, N
\end{array}
$$

Distance from plane: $\frac{1}{\|\boldsymbol{w}\|}\left(\boldsymbol{w}^{\top} \boldsymbol{x}+b\right)$

Intermezzo Convex Optimization

Convex Sets and Functions

Non-convex
Set

Convex
Set

Convex
Function

Lagrange Duality

Constrained Optimization Problem

$$
\begin{array}{rl}
\min _{w} & f(w) \\
\text { s.t. } & h_{i}(w)=0, \quad i=1, \ldots, l .
\end{array}
$$

Lagrangian

$$
\mathcal{L}(w, \beta)=f(w)+\sum_{i=1}^{l} \beta_{i} h_{i}(w)
$$

Optimum

$$
\frac{\partial \mathcal{L}}{\partial w_{i}}=0 ; \quad \frac{\partial \mathcal{L}}{\partial \beta_{i}}=0,
$$

Lagrange Duality

Primal Optimization Problem

$$
\begin{array}{rl}
\min _{w} & f(w) \\
\text { s.t. } & g_{i}(w) \leq 0, \quad i=1, \ldots, k \\
& h_{i}(w)=0, \quad i=1, \ldots, l
\end{array}
$$

Generalized Lagrangian

$$
\mathcal{L}(w, \alpha, \beta)=f(w)+\sum_{i=1}^{k} \alpha_{i} g_{i}(w)+\sum_{i=1}^{l} \beta_{i} h_{i}(w) .
$$

Lagrange Duality

Primal Optimization Problem

$$
\theta_{\mathcal{P}}(w)=\max _{\alpha, \beta: \alpha_{i} \geq 0} \mathcal{L}(w, \alpha, \beta) .
$$

Generalized Lagrangian

$$
\mathcal{L}(w, \alpha, \beta)=f(w)+\sum_{i=1}^{k} \alpha_{i} g_{i}(w)+\sum_{i=1}^{l} \beta_{i} h_{i}(w) .
$$

Lagrange Duality

Primal Optimization Problem

$$
\theta_{\mathcal{P}}(w)= \begin{cases}f(w) & \text { if } w \text { satisfies primal constraints } \\ \infty & \text { otherwise }\end{cases}
$$

Generalized Lagrangian

$$
\mathcal{L}(w, \alpha, \beta)=f(w)+\sum_{i=1}^{k} \alpha_{i} g_{i}(w)+\sum_{i=1}^{l} \beta_{i} h_{i}(w) .
$$

Lagrange Duality

Primal Optimization Problem

$$
\min _{w} \theta_{\mathcal{P}}(w)=\min _{w} \max _{\alpha, \beta: \alpha_{i} \geq 0} \mathcal{L}(w, \alpha, \beta),
$$

Generalized Lagrangian

$$
\mathcal{L}(w, \alpha, \beta)=f(w)+\sum_{i=1}^{k} \alpha_{i} g_{i}(w)+\sum_{i=1}^{l} \beta_{i} h_{i}(w) .
$$

Lagrange Duality

Dual Optimization Problem

$$
\theta_{\mathcal{D}}(\alpha, \beta)=\min _{w} \mathcal{L}(w, \alpha, \beta) .
$$

Generalized Lagrangian

$$
\mathcal{L}(w, \alpha, \beta)=f(w)+\sum_{i=1}^{k} \alpha_{i} g_{i}(w)+\sum_{i=1}^{l} \beta_{i} h_{i}(w) .
$$

Lagrange Duality

Dual Optimization Problem

$$
\max _{\alpha, \beta: \alpha_{i} \geq 0} \theta_{\mathcal{D}}(\alpha, \beta)=\max _{\alpha, \beta: \alpha_{i} \geq 0} \min _{w} \mathcal{L}(w, \alpha, \beta) .
$$

Generalized Lagrangian

$$
\mathcal{L}(w, \alpha, \beta)=f(w)+\sum_{i=1}^{k} \alpha_{i} g_{i}(w)+\sum_{i=1}^{l} \beta_{i} h_{i}(w) .
$$

Lagrange Duality

Relationship between Primal and Dual

$$
d^{*}=\max _{\alpha, \beta: \alpha_{i} \geq 0} \min _{w} \mathcal{L}(w, \alpha, \beta) ? \min _{w} \max _{\alpha, \beta: \alpha_{i} \geq 0} \mathcal{L}(w, \alpha, \beta)=p^{*} .
$$

Generalized Lagrangian

$$
\mathcal{L}(w, \alpha, \beta)=f(w)+\sum_{i=1}^{k} \alpha_{i} g_{i}(w)+\sum_{i=1}^{l} \beta_{i} h_{i}(w) .
$$

Lagrange Duality

Relationship between Primal and Dual

$$
d^{*}=\max _{\alpha, \beta: \alpha_{i} \geq 0} \min _{w} \mathcal{L}(w, \alpha, \beta) \leq \min _{w} \max _{\alpha, \beta: \alpha_{i} \geq 0} \mathcal{L}(w, \alpha, \beta)=p^{*} .
$$

Generalized Lagrangian

$$
\mathcal{L}(w, \alpha, \beta)=f(w)+\sum_{i=1}^{k} \alpha_{i} g_{i}(w)+\sum_{i=1}^{l} \beta_{i} h_{i}(w) .
$$

Lagrange Duality

Duality gap $p^{*}-d^{*}$ is zero when
f convex, $\quad g_{i}$ convex, $\quad h_{i}$ affine

Generalized Lagrangian

$$
\mathcal{L}(w, \alpha, \beta)=f(w)+\sum_{i=1}^{k} \alpha_{i} g_{i}(w)+\sum_{i=1}^{l} \beta_{i} h_{i}(w) .
$$

Lagrange Duality

Karush-Kuhn-Tucker (KKT) conditions at optimum

$$
\begin{aligned}
\frac{\partial}{\partial w_{i}} \mathcal{L}\left(w^{*}, \alpha^{*}, \beta^{*}\right) & =0, \quad i=1, \ldots, n \\
\frac{\partial}{\partial \beta_{i}} \mathcal{L}\left(w^{*}, \alpha^{*}, \beta^{*}\right) & =0, \quad i=1, \ldots, l \\
\alpha_{i}^{*} g_{i}\left(w^{*}\right) & =0, \quad i=1, \ldots, k \\
g_{i}\left(w^{*}\right) & \leq 0, \quad i=1, \ldots, k \\
\alpha^{*} & \geq 0, \quad i=1, \ldots, k
\end{aligned}
$$

Dual complementarity

$g_{i}(w)=0$ when $a_{i}>0, a_{i}=0$ when $g_{i}(w)<0$

(back to SVMs)

Equivalent Optimization Problems

$\max _{w, b} \hat{\gamma}$

$$
\begin{aligned}
& y_{n}\left(w^{\top} x_{n}+b\right) \geq \hat{\gamma} \quad n=1, \ldots, N \\
& \|w\|=1
\end{aligned}
$$

$\max _{w, b, \gamma} \frac{\gamma}{\|w\|}$
$y_{n}\left(w^{\top} x_{n}+b\right) \geq \gamma$
$y_{n}\left(w^{\top} x_{n}+b\right) \geq 1$
$y_{n}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{n}+b\right) \geq 1$
$n=1, \ldots, N$

SVMs as Convex Optimization

$$
\min _{w, b} \frac{1}{2}\|w\|^{2}
$$

$$
y_{n}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{n}+b\right) \geq 1
$$

$$
n=1, \ldots, N
$$

SVMs as Convex Optimization

$$
\min _{w, b} \frac{1}{2}\|\boldsymbol{w}\|^{2} \quad y_{n}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{n}+b\right) \geq 1 \quad n=1, \ldots, N
$$

Write as Convex Optimization Problem

$$
\mathcal{L}(w, \alpha, \beta)=f(w)+\sum_{i=1}^{k} \alpha_{i} g_{i}(w)+\sum_{i=1}^{l} \beta_{i} h_{i}(w) .
$$

SVMs as Convex Optimization

$$
\min _{w, b} \frac{1}{2}\|\boldsymbol{w}\|^{2} \quad y_{n}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{n}+b\right) \geq 1 \quad n=1, \ldots, N
$$

Write as Convex Optimization Problem

$$
\mathcal{L}(w, \alpha, \beta)=f(w)+\sum_{i=1}^{k} \alpha_{i} g_{i}(w)+\sum_{i=1}^{l} \beta_{i} h_{i}(w) .
$$

$$
f(w)=\frac{1}{2}\|w\|^{2}
$$

$$
g_{i}(w)=-y_{i}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}+b\right)+1 \leq 0
$$

SVMs as Convex Optimization

$$
\min _{w, b} \frac{1}{2}\|\boldsymbol{w}\|^{2} \quad y_{n}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{n}+b\right) \geq 1 \quad n=1, \ldots, N
$$

Generalized Lagrangian

$$
\mathcal{L}(w, b, \alpha)=\frac{1}{2}\|w\|^{2}-\sum_{i=1}^{m} \alpha_{i}\left[y^{(i)}\left(w^{T} x^{(i)}+b\right)-1\right] .
$$

(note: no equality constraints)

Dual Form

Generalized Lagrangian

$$
\mathcal{L}(w, b, \alpha)=\frac{1}{2}\|w\|^{2}-\sum_{i=1}^{m} \alpha_{i}\left[y^{(i)}\left(w^{T} x^{(i)}+b\right)-1\right]
$$

Dual problem

$$
\theta_{D}(\alpha)=\min _{w, b} \mathscr{L}(w, b, \alpha)
$$

Solve for w

$$
\nabla_{w} \mathcal{L}(w, b, \alpha)=w-\sum_{i=1}^{m} \alpha_{i} y^{(i)} x^{(i)}=0 \quad \frac{\partial}{\partial b} \mathcal{L}(w, b, \alpha)=\sum_{i=1}^{m} \alpha_{i} y^{(i)}=0 .
$$

Solve for b

Dual Form

Generalized Lagrangian

$$
\mathcal{L}(w, b, \alpha)=\frac{1}{2}\|w\|^{2}-\sum_{i=1}^{m} \alpha_{i}\left[y^{(i)}\left(w^{T} x^{(i)}+b\right)-1\right] .
$$

Dual problem

$$
\theta_{D}(\alpha)=?
$$

Solve for w

$$
\nabla_{w} \mathcal{L}(w, b, \alpha)=w-\sum_{i=1}^{m} \alpha_{i} y^{(i)} x^{(i)}=0 \quad \frac{\partial}{\partial b} \mathcal{L}(w, b, \alpha)=\sum_{i=1}^{m} \alpha_{i} y^{(i)}=0 .
$$

Dual Form

Generalized Lagrangian

$$
\mathcal{L}(w, b, \alpha)=\frac{1}{2}\|w\|^{2}-\sum_{i=1}^{m} \alpha_{i}\left[y^{(i)}\left(w^{T} x^{(i)}+b\right)-1\right] .
$$

Dual problem

$$
\theta_{D}(\alpha)=\sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} y^{(i)} y^{(j)} \alpha_{i} \alpha_{j}\left(x^{(i)}\right)^{T} x^{(j)}-b \sum_{i=1}^{m} \alpha_{i} y^{(i)} .
$$

Solve for w

$$
\nabla_{w} \mathcal{L}(w, b, \alpha)=w-\sum_{i=1}^{m} \alpha_{i} y^{(i)} x^{(i)}=0
$$

Solve for b

$$
\frac{\partial}{\partial b} \mathcal{L}(w, b, \alpha)=\sum_{i=1}^{m} \alpha_{i} y^{(i)}=0 .
$$

Dual Form

Generalized Lagrangian

$$
\mathcal{L}(w, b, \alpha)=\frac{1}{2}\|w\|^{2}-\sum_{i=1}^{m} \alpha_{i}\left[y^{(i)}\left(w^{T} x^{(i)}+b\right)-1\right] .
$$

$$
\begin{gathered}
\text { Dual problem } \\
\theta_{D}(\alpha)=\sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} y^{(i)} y^{(j)} \alpha_{i} \alpha_{j}\left(x^{(i)}\right)^{T} x^{(j)}
\end{gathered}
$$

Dual Form

Generalized Lagrangian

$$
\mathcal{L}(w, b, \alpha)=\frac{1}{2}\|w\|^{2}-\sum_{i=1}^{m} \alpha_{i}\left[y^{(i)}\left(w^{T} x^{(i)}+b\right)-1\right]
$$

Dual problem

$$
\theta_{D}(\alpha)=\sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} y^{(i)} y^{(j)} \alpha_{i} \alpha_{j}\left(x^{(i)}\right)^{T} x^{(j)}
$$

Compute w
Compute b

$$
w=\sum_{i=1}^{m} \alpha_{i} y^{(i)} x^{(i)} .
$$

$$
b^{*}=-\frac{\max _{i: y^{(i)}=-1} w^{* T} x^{(i)}+\min _{i: y^{(i)}=1} w^{* T} x^{(i)}}{2}
$$

Support Vectors

Compute w

$$
w=\sum_{i=1}^{m} \alpha_{i} y^{(i)} x^{(i)} .
$$

Compute b

$$
b^{*}=-\frac{\max _{i: y^{(i)}=-1} w^{* T} x^{(i)}+\min _{i: y^{(i)}=1} w^{* T} x^{(i)}}{2}
$$

Dual complementarity

- $a_{i}=0$ when $g_{i}(w)<0$
- $g_{i}(w)=0$ when $a_{i}>0$

SVM with Non-Separable Data

$$
\begin{aligned}
\arg \min _{\mathbf{w}, b, \xi \geq 0} & \frac{1}{2} \mathbf{w}^{T} \mathbf{w}+C \sum_{i=1}^{m} \xi_{i} \\
\text { s.t. } & y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i}, \quad i=1, \ldots, m \\
& \bullet
\end{aligned}
$$

SVM with Non-Separable Data

Generalized Lagrangian

$$
L(\mathbf{w}, b, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\lambda})=\frac{1}{2} \mathbf{w}^{T} \mathbf{w}+C \sum_{i=1}^{m} \xi_{i}+\sum_{i=1}^{m} \alpha_{i}\left(1-\xi_{i}-y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right)\right)-\sum_{i=1}^{m} \lambda_{i} \xi_{i}
$$

Solve for Dual Form

$$
\begin{aligned}
& \frac{\partial L}{\partial b}=\sum_{i=1}^{m} y_{i} \alpha_{i}=0 \\
& \frac{\partial L}{\partial \mathbf{w}}=\mathbf{w}-\sum_{i=1}^{m} \alpha_{i} y_{i} \mathbf{x}_{i} \Rightarrow \mathbf{w}=\sum_{i=1}^{m} \alpha_{i} y_{i} \mathbf{x}_{i} \\
& \frac{\partial L}{\partial \xi}=C-\alpha_{i}-\lambda_{i}=0
\end{aligned}
$$

SVM with Non-Separable Data

Dual Optimization Problem

$$
\begin{aligned}
\arg \max _{\alpha \geq 0} & \sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j} \\
\text { s.t. } & \sum_{i=1}^{m} \alpha_{i} y_{i}=0 \\
0 \leq & \alpha_{i} \leq C, i=1, \ldots, m
\end{aligned}
$$

Inner Products

Dual Optimization Problem

$$
\begin{aligned}
\max _{\alpha} & W(\alpha)=\sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} y^{(i)} y^{(j)} \alpha_{i} \alpha_{j}\left\langle x^{(i)}, x^{(j)}\right\rangle \\
\text { s.t. } & \alpha_{i} \geq 0, \quad i=1, \ldots, m \\
& \sum_{i=1}^{m} \alpha_{i} y^{(i)}=0
\end{aligned}
$$

Prediction

$$
\begin{aligned}
w^{T} x+b & =\left(\sum_{i=1}^{m} \alpha_{i} y^{(i)} x^{(i)}\right)^{T} x+b \\
& =\sum_{i=1}^{m} \alpha_{i} y^{(i)}\left\langle x^{(i)}, x\right\rangle+b
\end{aligned}
$$

Next Lecture: Nonlinear SVMs

Let $\mathbf{z}=\Phi(\mathbf{x})$ for some function Φ :

Apply SVM in the z space by maximizing:

$$
L(\alpha)=\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y_{i} y_{j} \alpha_{i} \alpha_{j} \mathbf{z}_{i}^{\boldsymbol{\top}} \mathbf{z}_{j}
$$

