Data Mining Techniques

CS 6220 - Section 3 - Fall 2016

Lecture 3: Probability

Jan-Willem van de Meent (credit: Zhao, CS 229, Bishop)

Project Vote

1. Freeform: Develop your own project proposals

- 30\% of grade (homework 30\%)
- Present proposals after midterm
- Peer-review reports

2. Predefined: Same project for whole class

- 20% of grade (homework 40%)
- More like a "super-homework"
- Teaching assistants and instructors

Homework Problems

Homework 1 will be out today (due 30 Sep)

- 4 or (more likely) 5 problem sets
- 30\% - 40\% of grade (depends on type of project)
- Can use any language (within reason)
- Discussion is encouraged, but submissions must be completed individually (absolutely no sharing of code)
- Submission via zip file by 11.59pm on day of deadline (no late submissions)
- Please follow submission guidelines on website (TA's have authority to deduct points)

Regression: Probabilistic Interpretation

Log joint probability of N independent data points

$$
\begin{aligned}
\log p\left(y_{1}, \ldots, y_{N}\right) & =\sum_{n=1}^{N} \log p\left(y_{n}\right) \\
& =-\frac{1}{2}\left[N \log \left(2 \pi \sigma^{2}\right)+\sum_{n=1}^{N} \frac{\left(y_{n}-w^{\top} x_{n}\right)^{2}}{\sigma^{2}}\right] \\
& =-\frac{N}{2}[\text { const }+E(w)]
\end{aligned}
$$

$\operatorname{argmax} p\left(y_{1}, \ldots, y_{N} ; \boldsymbol{w}\right)=\operatorname{argmin} E(\boldsymbol{w})$
W

Maximum
Likelihood

Probability

Examples: Independent Events

1. What's the probability of getting a sequence of $1,2,3,4,5,6$ if we roll a dice six times?
2. A school survey found that 9 out of 10 students like pizza. If three students are chosen at random with replacement, what is the probability that all three students like pizza?

Dependent Events

Red bin

Blue bin

Apple
Orange

If I take a fruit from the red bin, what is the probability that I get an apple?

Dependent Events

Red bin

Blue bin

Apple
Orange

Conditional Probability
$P($ fruit $=$ apple \mid bin $=$ red $)=2 / 8$

Dependent Events

Red bin

Blue bin

Apple
Orange

Joint Probability
$P($ fruit $=$ apple, bin $=$ red $)=2 / 12$

Dependent Events

Red bin

Blue bin

Apple
Orange

Joint Probability
$P($ fruit $=$ apple, bin $=$ blue $)=$?

Dependent Events

Red bin

Blue bin

Apple
Orange

Joint Probability
$P($ fruit $=$ apple, bin $=$ blue $)=3 / 12$

Dependent Events

Red bin

Blue bin

Apple
Orange

Joint Probability
$\mathrm{P}($ fruit $=$ orange, bin $=$ blue $)=$?

Dependent Events

Red bin

Blue bin

Apple
Orange

Joint Probability
$P($ fruit $=$ orange, bin $=$ blue $)=1 / 12$

Two rules of Probability

1. Sum Rule (Marginal Probabilities)
$P($ fruit $=$ apple $)=P($ fruit $=$ apple, bin $=$ blue $)$

$$
\begin{aligned}
& +\mathrm{P}(\text { fruit }=\text { apple }, \text { bin }=\text { red }) \\
= & ?
\end{aligned}
$$

Two rules of Probability

1. Sum Rule (Marginal Probabilities)
$P($ fruit $=$ apple $)=P($ fruit $=$ apple, bin $=$ blue $)$

$$
\begin{aligned}
& + \text { P(fruit }=\text { apple }, \text { bin }=\text { red }) \\
= & 3 / 12+2 / 12=5 / 12
\end{aligned}
$$

Two rules of Probability

2. Product Rule
$\mathrm{P}($ fruit $=$ apple , bin $=$ red $)=$

$$
\begin{aligned}
& P(\text { fruit }=\text { apple } \mid \text { bin }=\text { red }) p(\text { bin }=\text { red }) \\
& =?
\end{aligned}
$$

Two rules of Probability

2. Product Rule
$\mathrm{P}($ fruit $=$ apple , bin $=$ red $)=$

$$
\begin{aligned}
& P(\text { fruit }=\text { apple } \mid \text { bin }=\text { red }) p(\text { bin }=\text { red }) \\
& =2 / 8 * 8 / 12=2 / 12
\end{aligned}
$$

Two rules of Probability

2. Product Rule (reversed)
$\mathrm{P}($ fruit $=$ apple , bin $=$ red $)=$

$$
\begin{aligned}
& \text { P(bin = red | fruit = apple) p(fruit = apple }) \\
& =?
\end{aligned}
$$

Two rules of Probability

2. Product Rule (reversed)
$\mathrm{P}($ fruit $=$ apple , bin $=$ red $)=$

$$
\begin{aligned}
& P(\text { bin }=\text { red } \mid \text { fruit }=\text { apple }) p(\text { fruit }=\text { apple }) \\
& =2 / 5 * 5 / 12=2 / 12
\end{aligned}
$$

Bayes' Rule

Sum Rule: $\quad p(y)=\sum_{x} p(y, x) \quad p(x)=\sum_{y} p(y, x)$
Product Rule: $\quad p(y, x)=p(y \mid x) p(x)=p(x \mid y) p(y)$

Bayes' Rule

$p(x)$
Probability of rare disease: 0.005
$p(y \mid x) \quad$ Probability of detection: 0.98
Probability of false positive: 0.05
$p(x \mid y) \quad$ Probability of disease when test positive?

Bayes' Rule

$$
p(y, x)=p(y \mid x) p(x) \quad 0.99 * 0.005=0.00495
$$

$$
p(y)=\sum_{x} p(y, x) \quad 0.99 * 0.005+0.05 * 0.995=0.0547
$$

Measures

Elements of Probability

- Sample space Ω

The set of all outcomes $\omega \in \Omega$ of an experiment

- Event space F

The set of all possible events $A \in F$, which are subsets $A \subseteq \Omega$ of possible outcomes

- Probability Measure P

A function $P: F \rightarrow R$

Axioms of Probability

- A probability measure must satisfy

1. $P(A) \geq 0 \forall A \in F$
2. $P(\Omega)=1$
3. When A_{1}, A_{2}, \ldots disjoint

$$
P\left(\cup_{i} A_{i}\right)=\sum_{i} P\left(A_{i}\right)
$$

Corollaries of Axioms

- If $A \subseteq B \Longrightarrow P(A) \leq P(B)$
- $P(A \cap B) \leq \min (P(A), P(B))$
- $P(A \cup B) \leq P(A)+P(B)$ (Union Bound)
- $P(\Omega \backslash A)=1-P(A)$
- If A_{1}, \ldots, A_{k} is a disjoint partition of Ω, then

$$
\sum_{i=1}^{k} P\left(A_{k}\right)=1
$$

Conditional Probability

- Conditional Probability Probability of event A, conditioned on occurrence of event B

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

- Conditional Independence

Events A and B are independent iff

- $P(A \mid B)=P(A)$
which implies
- $\mathrm{P}(A \cap B)=P(A) P(B)$

Conditional Probability

Conditional Probability

What is the probability $P\left(B_{3}\right)$?

Conditional Probability

What is the probability $P\left(B_{1} \mid B_{3}\right)$?

Conditional Probability

What is the probability $P\left(B_{2} \mid A\right)$?

Examples: Conditional Probability

1. A math teacher gave her class two tests.

- 25% of the class passed both tests
- 42% of the class passed the first test.

What percent of those who passed the first test also passed the second test?
2. Suppose that for houses in New England

- 84% of the houses have a garage
- 65% of the houses have a garage and a back yard.

What is the probability that a house has a backyard given that it has a garage?

Random Variable

- A random variable X, is a function $X: \Omega \rightarrow R$

Rolling a die:

- $X=$ number on the die
- $p(X=i)=1 / 6 \quad i=1,2, \ldots, 6$

Rolling two dice at the same time:

- $X=$ sum of the two numbers
- $p(X=2)=1 / 36$

Probability Mass Function

- For a discrete random variable X, a PMF is a function $p: R \rightarrow R$ such that

$$
\rho(x)=P(X=x)
$$

Rolling a die:

- $X=$ number on the die
- $p(X=i)=1 / 6 \quad i=1,2, \ldots, 6$

Rolling two dice at the same time:

- $X=$ sum of the two numbers
- $p(X=2)=1 / 36$

Continuous Random Variables

Probability Density Functions

$$
p(x)=\lim _{\delta x \rightarrow 0} \frac{P(X<=x+\delta x)-P(X<=x)}{\delta x}
$$

Expected Values

Statistics

$$
\begin{aligned}
& \mathbb{E}[X]=\sum_{x} p(x) x \\
& \mathbb{E}[X]=\int d x p(x) x
\end{aligned}
$$

Machine Learning
$\mathbb{E}_{p(x \mid y)}[f(x)]=\sum_{x} p(x \mid y) f(x)$
$\mathbb{E}_{p(x \mid y)}[f(x)]=\int d x p(x \mid y) f(x)$

Expected Values

Statistics

$$
\begin{aligned}
& \mathbb{E}[X]=\sum_{x} p(x) x \\
& \mathbb{E}[X]=\int d x p(x) x
\end{aligned}
$$

Machine Learning

$$
\begin{aligned}
\mathbb{E}_{x}[f(x) \mid y] & =\sum_{x} p(x \mid y) f(x) \\
\mathbb{E}_{x}[f(x) \mid y] & =\int d x p(x \mid y) f(x)
\end{aligned}
$$

Expected Values

Mean

$\bar{X}=\mathbb{E}[X]$
Variance
$\operatorname{Var}[X]=\mathbb{E}\left[(X-\bar{X})^{2}\right]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$
Covariance

$$
\boldsymbol{\Sigma}_{i, j}=\operatorname{Cov}\left[X_{i}, X_{j}\right]=\mathbb{E}\left[\left(X_{i}-\bar{X}_{i}\right)\left(X_{j}-\bar{X}_{j}\right)\right]
$$

Conjugate Distributions

Bernoulli

$$
\begin{aligned}
\operatorname{Bern}(x \mid \mu) & =\mu^{x}(1-\mu)^{1-x} \\
\mathbb{E}[x] & =\mu \\
\operatorname{var}[x] & =\mu(1-\mu) \\
\operatorname{mode}[x] & = \begin{cases}1 & \text { if } \mu \geqslant 0.5 \\
0 & \text { otherwise }\end{cases} \\
x \in\{0,1\} & \quad \mu \in[0,1]
\end{aligned}
$$

Binomial

$$
\begin{aligned}
\operatorname{Bin}(m \mid N, \mu) & =\binom{N}{m} \mu^{m}(1-\mu)^{N-m} \\
\mathbb{E}[m] & =N \mu \\
\operatorname{var}[m] & =N \mu(1-\mu) \\
\operatorname{mode}[m] & =\lfloor(N+1) \mu\rfloor
\end{aligned}
$$

Beta

$$
\begin{aligned}
\operatorname{Beta}(\mu \mid a, b) & =\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \mu^{a-1}(1-\mu)^{b-1} \\
\mathbb{E}[\mu] & =\frac{a}{a+b} \\
\operatorname{var}[\mu] & =\frac{a b}{(a+b)^{2}(a+b+1)} \\
\operatorname{mode}[\mu] & =\frac{a-1}{a+b-2} .
\end{aligned}
$$

Conjugacy

$\operatorname{Bin}(m \mid N, \mu)=\binom{N}{m} \mu^{m}(1-\mu)^{N-m}$
$\operatorname{Beta}(\mu \mid a, b)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \mu^{a-1}(1-\mu)^{b-1}$

$$
\begin{aligned}
p(\mu \mid m) & =\frac{p(m, \mu)}{p(m)} \\
& \propto \operatorname{Bin}(m \mid N, \mu) \operatorname{Beta}(\mu \mid a, b) \\
& \propto \mu^{m+(a-1)}(1-\mu)^{(N-m)+(b-1)}
\end{aligned}
$$

Conjugacy

$\operatorname{Bin}(m \mid N, \mu)=\binom{N}{m} \mu^{m}(1-\mu)^{N-m}$
$\operatorname{Beta}(\mu \mid a, b)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \mu^{a-1}(1-\mu)^{b-1}$

$$
\begin{aligned}
p(\mu \mid m) & =\frac{p(m, \mu)}{p(m)} \\
& \propto \operatorname{Bin}(m \mid N, \mu) \operatorname{Beta}(\mu \mid a, b) \\
& \propto \mu^{m+(a-1)}(1-\mu)^{(N-m)+(b-1)}
\end{aligned}
$$

$$
p(\mu \mid m)=\operatorname{Beta}(a+m, b+(N-m))
$$

Conjugacy

Example: Biased Coin
y Observed data (flip outcomes)
$x \quad$ Unknown variable (coin bias)

Conjugacy

Example: Biased Coin
$p(y \mid x)$ Likelihood of outcome given bias
$p(x) \quad$ Prior belief about bias
$p(x \mid y)$ Posterior belief after trials

Conjugacy

$$
p(x)=\operatorname{Beta}(x ; 0,0)
$$

Conjugacy

$$
p(x \mid y)=\operatorname{Beta}(x ; 7,3)
$$

Conjugacy

$$
p(x \mid y)=\operatorname{Beta}(x ; 16,4)
$$

Conjugacy

Discrete (Multinomial)

$$
\begin{aligned}
p(\mathbf{x}) & =\prod_{k=1}^{K} \mu_{k}^{x_{k}} \\
\mathbb{E}\left[x_{k}\right] & =\mu_{k} \\
\operatorname{var}\left[x_{k}\right] & =\mu_{k}\left(1-\mu_{k}\right) \\
\operatorname{cov}\left[x_{j} x_{k}\right] & =I_{j k} \mu_{k}
\end{aligned}
$$

Discrete (Multinomial)

$$
\begin{aligned}
p(\mathbf{x}) & =\prod_{k=1}^{K} \mu_{k}^{x_{k}} \\
\mathbb{E}\left[x_{k}\right] & =\mu_{k} \\
\operatorname{var}\left[x_{k}\right] & =\mu_{k}\left(1-\mu_{k}\right) \\
\operatorname{cov}\left[x_{j} x_{k}\right] & =I_{j k} \mu_{k}
\end{aligned}
$$

Dirichlet

$$
\begin{aligned}
\operatorname{Dir}(\boldsymbol{\mu} \mid \boldsymbol{\alpha}) & =C(\boldsymbol{\alpha}) \prod_{k=1}^{K} \mu_{k}^{\alpha_{k}-1} \\
\mathbb{E}\left[\mu_{k}\right] & =\frac{\alpha_{k}}{\widehat{\alpha}} \\
\operatorname{var}\left[\mu_{k}\right] & =\frac{\alpha_{k}\left(\widehat{\alpha}-\alpha_{k}\right)}{\widehat{\alpha}^{2}(\widehat{\alpha}+1)} \\
\operatorname{cov}\left[\mu_{j} \mu_{k}\right] & =-\frac{\alpha_{j} \alpha_{k}}{\widehat{\alpha}^{2}(\widehat{\alpha}+1)} \\
\operatorname{mode}\left[\mu_{k}\right] & =\frac{\alpha_{k}-1}{\widehat{\alpha}-K}
\end{aligned}
$$

Dirichlet

$$
a=(0.1,0.1,0.1) \quad a=(1,1,1) \quad a=(10,10,10)
$$

$$
\begin{aligned}
p(\boldsymbol{\mu}) & =\operatorname{Dir}(\boldsymbol{\mu} ; \boldsymbol{\alpha}) \\
p(\boldsymbol{x} \mid \boldsymbol{\mu}) & =\operatorname{Mult}(\boldsymbol{x} ; \boldsymbol{\mu}) \\
p(\boldsymbol{\mu} \mid \boldsymbol{x}) & =\operatorname{Dir}(\boldsymbol{x} ; \boldsymbol{\alpha}+\boldsymbol{x})
\end{aligned}
$$

Multivariate Normal

$$
\begin{aligned}
\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) & =\frac{1}{(2 \pi)^{D / 2}} \frac{1}{|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\} \\
\mathbb{E}[\mathbf{x}] & =\boldsymbol{\mu} \\
\operatorname{cov}[\mathbf{x}] & =\boldsymbol{\Sigma} \\
\operatorname{mode}[\mathbf{x}] & =\boldsymbol{\mu} \\
p(\mathbf{x}) & =\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1}\right) \\
p(\mathbf{y} \mid \mathbf{x}) & =\mathcal{N}\left(\mathbf{y} \mid \mathbf{A} \mathbf{x}+\mathbf{b}, \mathbf{L}^{-1}\right) \\
p(\mathbf{y}) & =\mathcal{N}\left(\mathbf{y} \mid \mathbf{A} \boldsymbol{\mu}+\mathbf{b}, \mathbf{L}^{-1}+\mathbf{A} \mathbf{\Lambda}^{-1} \mathbf{A}^{\mathrm{T}}\right) \\
p(\mathbf{x} \mid \mathbf{y}) & =\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\Sigma}\left\{\mathbf{A}^{\mathrm{T}} \mathbf{L}(\mathbf{y}-\mathbf{b})+\boldsymbol{\Lambda} \boldsymbol{\mu}\right\}, \boldsymbol{\Sigma}\right)
\end{aligned}
$$

Bayesian Linear Regression

$$
\begin{gathered}
\text { Prior and Likelihood } \\
p(\boldsymbol{w} \mid \alpha)=\mathscr{N}\left(\boldsymbol{w} \mid \mathbf{0}, \alpha^{-1} \boldsymbol{I}\right) \\
p(\boldsymbol{y} \mid \boldsymbol{w}, \alpha, \beta)=\mathscr{N}\left(\boldsymbol{y} \mid \boldsymbol{w}^{\top} \boldsymbol{x}, \beta^{-1} \boldsymbol{I}\right)
\end{gathered}
$$

Posterior

$$
p(\boldsymbol{w} \mid \boldsymbol{y}, \alpha, \beta) \propto p(\boldsymbol{y} \mid \boldsymbol{w}, \alpha, \beta) p(\boldsymbol{w} \mid \alpha)
$$

Maximum A Posteriori (MAP) gives Ridge Regression
$\underset{\boldsymbol{w}}{\operatorname{argmax}} p(\boldsymbol{w} \mid \boldsymbol{y}, \alpha, \beta)=\frac{\beta}{2} \sum_{n=1}^{N}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{n}-\boldsymbol{y}_{n}\right)^{2}+\frac{\alpha}{2} \boldsymbol{w}^{\top} \boldsymbol{w}$

