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Project Vote
1. Freeform: Develop your own project proposals 

• 30% of grade (homework 30%) 

• Present proposals after midterm 

• Peer-review reports 

2. Predefined: Same project for whole class 

• 20% of grade (homework 40%) 

• More like a “super-homework” 

• Teaching assistants and instructors  



Homework Problems
Homework 1 will be out today (due 30 Sep) 

• 4 or (more likely) 5 problem sets 

• 30% - 40% of grade (depends on type of project) 

• Can use any language (within reason) 

• Discussion is encouraged, but submissions must 
be completed individually  
(absolutely no sharing of code) 

• Submission via zip file by 11.59pm on day of deadline  
(no late submissions) 

• Please follow submission guidelines on website  
(TA’s have authority to deduct points)



Regression: Probabilistic Interpretation

Log joint probability of N independent data points

Maximum  
Likelihood



Probability



Examples: Independent Events

1. What’s the probability of getting a sequence of 
1,2,3,4,5,6 if we roll a dice six times? 

2. A school survey found that 9 out of 10 students 
like pizza. If three students are chosen at 
random with replacement, what is the 
probability that all three students like pizza?



Dependent Events

12 1. INTRODUCTION

give us some important insights into the concepts we have introduced in the con-
text of polynomial curve fitting and will allow us to extend these to more complex
situations.

1.2. Probability Theory

A key concept in the field of pattern recognition is that of uncertainty. It arises both
through noise on measurements, as well as through the finite size of data sets. Prob-
ability theory provides a consistent framework for the quantification and manipula-
tion of uncertainty and forms one of the central foundations for pattern recognition.
When combined with decision theory, discussed in Section 1.5, it allows us to make
optimal predictions given all the information available to us, even though that infor-
mation may be incomplete or ambiguous.

We will introduce the basic concepts of probability theory by considering a sim-
ple example. Imagine we have two boxes, one red and one blue, and in the red box
we have 2 apples and 6 oranges, and in the blue box we have 3 apples and 1 orange.
This is illustrated in Figure 1.9. Now suppose we randomly pick one of the boxes
and from that box we randomly select an item of fruit, and having observed which
sort of fruit it is we replace it in the box from which it came. We could imagine
repeating this process many times. Let us suppose that in so doing we pick the red
box 40% of the time and we pick the blue box 60% of the time, and that when we
remove an item of fruit from a box we are equally likely to select any of the pieces
of fruit in the box.

In this example, the identity of the box that will be chosen is a random variable,
which we shall denote by B. This random variable can take one of two possible
values, namely r (corresponding to the red box) or b (corresponding to the blue
box). Similarly, the identity of the fruit is also a random variable and will be denoted
by F . It can take either of the values a (for apple) or o (for orange).

To begin with, we shall define the probability of an event to be the fraction
of times that event occurs out of the total number of trials, in the limit that the total
number of trials goes to infinity. Thus the probability of selecting the red box is 4/10

Figure 1.9 We use a simple example of two
coloured boxes each containing fruit
(apples shown in green and or-
anges shown in orange) to intro-
duce the basic ideas of probability.

Red bin Blue bin
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If I take a fruit from the red bin,  
what is the probability that I get an apple?
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Conditional Probability 
P(fruit = apple | bin = red) = 2 / 8
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Joint Probability 
P(fruit = apple , bin = red) = 2 / 12
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sort of fruit it is we replace it in the box from which it came. We could imagine
repeating this process many times. Let us suppose that in so doing we pick the red
box 40% of the time and we pick the blue box 60% of the time, and that when we
remove an item of fruit from a box we are equally likely to select any of the pieces
of fruit in the box.

In this example, the identity of the box that will be chosen is a random variable,
which we shall denote by B. This random variable can take one of two possible
values, namely r (corresponding to the red box) or b (corresponding to the blue
box). Similarly, the identity of the fruit is also a random variable and will be denoted
by F . It can take either of the values a (for apple) or o (for orange).

To begin with, we shall define the probability of an event to be the fraction
of times that event occurs out of the total number of trials, in the limit that the total
number of trials goes to infinity. Thus the probability of selecting the red box is 4/10

Figure 1.9 We use a simple example of two
coloured boxes each containing fruit
(apples shown in green and or-
anges shown in orange) to intro-
duce the basic ideas of probability.
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P(fruit = orange , bin = blue) = 1 / 12
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Posterior Likelihood Prior

Sum Rule:

Product Rule:



Bayes' Rule

Posterior Likelihood Prior

Probability of rare disease:  0.005

Probability of detection:  0.98
Probability of false positive:  0.05

Probability of disease when test positive?



Bayes' Rule

Posterior Likelihood Prior

0.99 * 0.005 + 0.05 * 0.995 = 0.0547

0.99 * 0.005 = 0.00495

0.00495 / 0.0547 = 0.09
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Elements of Probability

• Sample space Ω  
The set of all  outcomes ω ∈ Ω of an experiment 

• Event space F 
The set of all possible events A ∈ F, which are 
subsets A ⊆ Ω of possible outcomes 

• Probability Measure P  
A function P: F → R



Axioms of Probability

• A probability measure must satisfy 
1. P(A) ≥ 0 ∀ A ∈ F 
2. P(Ω) = 1 
3. When A1, A2, … disjoint 

Elements of Probability

Sample space ⌦: the set of all the outcomes of
an experiment

Event space F : a collection of possible
outcomes of an experiment. F ✓ ⌦.

Probability measure: a function P : F ! R

that satisfies the following properties:

P(A) � 0 8 A 2 F

P(⌦) = 1
If A1,A2, . . . are disjoint events, then

P([
i

A

i

) =
P
i

P(A
i

)

Yijun Zhao DATA MINING TECHNIQUES Review of Probability Theory



Corollaries of Axioms
Properties of Probability

If A ✓ B =) P(A)  P(B)

P(A \ B)  min (P(A),P(B))

P(A [ B)  P(A) + P(B) (Union Bound)

P(⌦ \ A) = 1� P(A)

If A1, . . . ,Ak

is a disjoint partition of ⌦, then
kP

i=1
P(A

k

) = 1

Yijun Zhao DATA MINING TECHNIQUES Review of Probability Theory



Conditional Probability
• Conditional Probability  

Probability of event A, conditioned on  
occurrence of event B 

• Conditional Independence  
Events A and B are independent iff 
• P(A | B) = P(A) 

which implies 
• P(A ∩ B) = P(A)P(B) 

Conditional Probability

A conditional probability P(A|B)
measures the probability of an event A

after observing the occurrence of event B

P(A|B) = P(A\B)
P(B)

Two events A and B are independent i↵

P(A|B) = P(A) or equivalently,

P(A \ B) = P(A)P(B)

Yijun Zhao DATA MINING TECHNIQUES Review of Probability Theory



Conditional Probability



Conditional Probability

What is the probability P(B3)?



Conditional Probability

What is the probability P(B1 | B3)?



Conditional Probability

What is the probability P(B2 | A)?



Examples: Conditional Probability

1. A math teacher gave her class two tests.  
• 25% of the class passed both tests  
• 42% of the class passed the first test.  

What percent of those who passed the first test also 
passed the second test? 

2. Suppose that for houses in New England  
• 84% of the houses have a garage  
• 65% of the houses have a garage and a back yard.  

What is the probability that a house has a backyard 
given that it has a garage?



Random Variable
• A random variable X, is a function X: Ω → R 

Rolling a die: 
• X = number on the die 
• p(X = i) = 1/6       i = 1,2,...,6 

Rolling two dice at the same time: 
• X = sum of the two numbers 
• p(X = 2) = 1 / 36



Probability Mass Function
• For a discrete random variable X,  

a PMF is a function p: R → R such that 
p(x) = P(X = x)  

Rolling a die: 
• X = number on the die 
• p(X = i) = 1/6       i = 1,2,...,6 

Rolling two dice at the same time: 
• X = sum of the two numbers 
• p(X = 2) = 1 / 36



Continuous Random Variables
16 1. INTRODUCTION

p(X,Y )

X

Y = 2

Y = 1

p(Y )

p(X)

X X

p(X |Y = 1)

Figure 1.11 An illustration of a distribution over two variables, X, which takes 9 possible values, and Y , which
takes two possible values. The top left figure shows a sample of 60 points drawn from a joint probability distri-
bution over these variables. The remaining figures show histogram estimates of the marginal distributions p(X)
and p(Y ), as well as the conditional distribution p(X|Y = 1) corresponding to the bottom row in the top left
figure.

Again, note that these probabilities are normalized so that

p(F = a|B = r) + p(F = o|B = r) = 1 (1.20)

and similarly
p(F = a|B = b) + p(F = o|B = b) = 1. (1.21)

We can now use the sum and product rules of probability to evaluate the overall
probability of choosing an apple

p(F = a) = p(F = a|B = r)p(B = r) + p(F = a|B = b)p(B = b)

=
1
4
× 4

10
+

3
4
× 6

10
=

11
20

(1.22)

from which it follows, using the sum rule, that p(F = o) = 1 − 11/20 = 9/20.



Probability Density Functions
18 1. INTRODUCTION

Figure 1.12 The concept of probability for
discrete variables can be ex-
tended to that of a probability
density p(x) over a continuous
variable x and is such that the
probability of x lying in the inter-
val (x, x+δx) is given by p(x)δx
for δx → 0. The probability
density can be expressed as the
derivative of a cumulative distri-
bution function P (x).

xδx

p(x) P (x)

Because probabilities are nonnegative, and because the value of x must lie some-
where on the real axis, the probability density p(x) must satisfy the two conditions

p(x) ! 0 (1.25)∫ ∞

−∞
p(x) dx = 1. (1.26)

Under a nonlinear change of variable, a probability density transforms differently
from a simple function, due to the Jacobian factor. For instance, if we consider
a change of variables x = g(y), then a function f(x) becomes f̃(y) = f(g(y)).
Now consider a probability density px(x) that corresponds to a density py(y) with
respect to the new variable y, where the suffices denote the fact that px(x) and py(y)
are different densities. Observations falling in the range (x, x + δx) will, for small
values of δx, be transformed into the range (y, y + δy) where px(x)δx ≃ py(y)δy,
and hence

py(y) = px(x)
∣∣∣∣
dx

dy

∣∣∣∣

= px(g(y)) |g′(y)| . (1.27)

One consequence of this property is that the concept of the maximum of a probability
density is dependent on the choice of variable.Exercise 1.4

The probability that x lies in the interval (−∞, z) is given by the cumulative
distribution function defined by

P (z) =
∫ z

−∞
p(x) dx (1.28)

which satisfies P ′(x) = p(x), as shown in Figure 1.12.
If we have several continuous variables x1, . . . , xD, denoted collectively by the

vector x, then we can define a joint probability density p(x) = p(x1, . . . , xD) such
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Appendix B. Probability Distributions

In this appendix, we summarize the main properties of some of the most widely used
probability distributions, and for each distribution we list some key statistics such as
the expectation E[x], the variance (or covariance), the mode, and the entropy H[x].
All of these distributions are members of the exponential family and are widely used
as building blocks for more sophisticated probabilistic models.

Bernoulli

This is the distribution for a single binary variable x ∈ {0, 1} representing, for
example, the result of flipping a coin. It is governed by a single continuous parameter
µ ∈ [0, 1] that represents the probability of x = 1.

Bern(x|µ) = µx(1 − µ)1−x (B.1)
E[x] = µ (B.2)

var[x] = µ(1 − µ) (B.3)

mode[x] =
{

1 if µ ! 0.5,
0 otherwise (B.4)

H[x] = −µ lnµ − (1 − µ) ln(1 − µ). (B.5)

The Bernoulli is a special case of the binomial distribution for the case of a single
observation. Its conjugate prior for µ is the beta distribution.
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Binomial

686 B. PROBABILITY DISTRIBUTIONS

Beta

This is a distribution over a continuous variable µ ∈ [0, 1], which is often used to
represent the probability for some binary event. It is governed by two parameters a
and b that are constrained by a > 0 and b > 0 to ensure that the distribution can be
normalized.

Beta(µ|a, b) =
Γ(a + b)
Γ(a)Γ(b)

µa−1(1 − µ)b−1 (B.6)

E[µ] =
a

a + b
(B.7)

var[µ] =
ab

(a + b)2(a + b + 1)
(B.8)

mode[µ] =
a − 1

a + b − 2
. (B.9)

The beta is the conjugate prior for the Bernoulli distribution, for which a and b can
be interpreted as the effective prior number of observations of x = 1 and x = 0,
respectively. Its density is finite if a ! 1 and b ! 1, otherwise there is a singularity
at µ = 0 and/or µ = 1. For a = b = 1, it reduces to a uniform distribution. The beta
distribution is a special case of the K-state Dirichlet distribution for K = 2.

Binomial

The binomial distribution gives the probability of observing m occurrences of x = 1
in a set of N samples from a Bernoulli distribution, where the probability of observ-
ing x = 1 is µ ∈ [0, 1].

Bin(m|N, µ) =
(

N

m

)
µm(1 − µ)N−m (B.10)

E[m] = Nµ (B.11)
var[m] = Nµ(1 − µ) (B.12)

mode[m] = ⌊(N + 1)µ⌋ (B.13)

where ⌊(N + 1)µ⌋ denotes the largest integer that is less than or equal to (N + 1)µ,
and the quantity (

N

m

)
=

N !
m!(N − m)!

(B.14)

denotes the number of ways of choosing m objects out of a total of N identical
objects. Here m!, pronounced ‘factorial m’, denotes the product m × (m − 1) ×
. . . ,×2 × 1. The particular case of the binomial distribution for N = 1 is known as
the Bernoulli distribution, and for large N the binomial distribution is approximately
Gaussian. The conjugate prior for µ is the beta distribution.
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respectively. Its density is finite if a ! 1 and b ! 1, otherwise there is a singularity
at µ = 0 and/or µ = 1. For a = b = 1, it reduces to a uniform distribution. The beta
distribution is a special case of the K-state Dirichlet distribution for K = 2.

Binomial

The binomial distribution gives the probability of observing m occurrences of x = 1
in a set of N samples from a Bernoulli distribution, where the probability of observ-
ing x = 1 is µ ∈ [0, 1].

Bin(m|N, µ) =
(

N

m

)
µm(1 − µ)N−m (B.10)

E[m] = Nµ (B.11)
var[m] = Nµ(1 − µ) (B.12)

mode[m] = ⌊(N + 1)µ⌋ (B.13)

where ⌊(N + 1)µ⌋ denotes the largest integer that is less than or equal to (N + 1)µ,
and the quantity (

N

m

)
=

N !
m!(N − m)!

(B.14)

denotes the number of ways of choosing m objects out of a total of N identical
objects. Here m!, pronounced ‘factorial m’, denotes the product m × (m − 1) ×
. . . ,×2 × 1. The particular case of the binomial distribution for N = 1 is known as
the Bernoulli distribution, and for large N the binomial distribution is approximately
Gaussian. The conjugate prior for µ is the beta distribution.
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and the marginal distribution p(xa) is given by

p(xa) = N (xa|µa,Σaa). (B.51)

Gaussian-Gamma

This is the conjugate prior distribution for a univariate Gaussian N (x|µ, λ−1) in
which the mean µ and the precision λ are both unknown and is also called the
normal-gamma distribution. It comprises the product of a Gaussian distribution for
µ, whose precision is proportional to λ, and a gamma distribution over λ.

p(µ, λ|µ0, β, a, b) = N
(
µ|µo, (βλ)−1

)
Gam(λ|a, b). (B.52)

Gaussian-Wishart

This is the conjugate prior distribution for a multivariate Gaussian N (x|µ,Λ) in
which both the mean µ and the precision Λ are unknown, and is also called the
normal-Wishart distribution. It comprises the product of a Gaussian distribution for
µ, whose precision is proportional to Λ, and a Wishart distribution over Λ.

p(µ,Λ|µ0, β,W, ν) = N
(
µ|µ0, (βΛ)−1

)
W(Λ|W, ν). (B.53)

For the particular case of a scalar x, this is equivalent to the Gaussian-gamma distri-
bution.

Multinomial

If we generalize the Bernoulli distribution to an K-dimensional binary variable x
with components xk ∈ {0, 1} such that

∑
k xk = 1, then we obtain the following

discrete distribution

p(x) =
K∏

k=1

µxk
k (B.54)

E[xk] = µk (B.55)
var[xk] = µk(1 − µk) (B.56)

cov[xjxk] = Ijkµk (B.57)

H[x] = −
M∑

k=1

µk ln µk (B.58)



Discrete (Multinomial)

690 B. PROBABILITY DISTRIBUTIONS

and the marginal distribution p(xa) is given by

p(xa) = N (xa|µa,Σaa). (B.51)

Gaussian-Gamma

This is the conjugate prior distribution for a univariate Gaussian N (x|µ, λ−1) in
which the mean µ and the precision λ are both unknown and is also called the
normal-gamma distribution. It comprises the product of a Gaussian distribution for
µ, whose precision is proportional to λ, and a gamma distribution over λ.

p(µ, λ|µ0, β, a, b) = N
(
µ|µo, (βλ)−1

)
Gam(λ|a, b). (B.52)

Gaussian-Wishart

This is the conjugate prior distribution for a multivariate Gaussian N (x|µ,Λ) in
which both the mean µ and the precision Λ are unknown, and is also called the
normal-Wishart distribution. It comprises the product of a Gaussian distribution for
µ, whose precision is proportional to Λ, and a Wishart distribution over Λ.

p(µ,Λ|µ0, β,W, ν) = N
(
µ|µ0, (βΛ)−1

)
W(Λ|W, ν). (B.53)

For the particular case of a scalar x, this is equivalent to the Gaussian-gamma distri-
bution.

Multinomial

If we generalize the Bernoulli distribution to an K-dimensional binary variable x
with components xk ∈ {0, 1} such that

∑
k xk = 1, then we obtain the following

discrete distribution

p(x) =
K∏

k=1

µxk
k (B.54)

E[xk] = µk (B.55)
var[xk] = µk(1 − µk) (B.56)

cov[xjxk] = Ijkµk (B.57)

H[x] = −
M∑

k=1

µk ln µk (B.58)



Dirichlet

B. PROBABILITY DISTRIBUTIONS 687

Dirichlet

The Dirichlet is a multivariate distribution over K random variables 0 ! µk ! 1,
where k = 1, . . . , K, subject to the constraints

0 ! µk ! 1,
K∑

k=1

µk = 1. (B.15)

Denoting µ = (µ1, . . . , µK)T and α = (α1, . . . , αK)T, we have

Dir(µ|α) = C(α)
K∏

k=1

µαk−1
k (B.16)

E[µk] =
αk

α̂
(B.17)

var[µk] =
αk(α̂ − αk)
α̂2(α̂ + 1)

(B.18)

cov[µjµk] = −
αjαk

α̂2(α̂ + 1)
(B.19)

mode[µk] =
αk − 1
α̂ − K

(B.20)

E[ln µk] = ψ(αk) − ψ(α̂) (B.21)

H[µ] = −
K∑

k=1

(αk − 1) {ψ(αk) − ψ(α̂)}− lnC(α) (B.22)

where
C(α) =

Γ(α̂)
Γ(α1) · · ·Γ(αK)

(B.23)

and

α̂ =
K∑

k=1

αk. (B.24)

Here
ψ(a) ≡ d

da
ln Γ(a) (B.25)

is known as the digamma function (Abramowitz and Stegun, 1965). The parameters
αk are subject to the constraint αk > 0 in order to ensure that the distribution can be
normalized.

The Dirichlet forms the conjugate prior for the multinomial distribution and rep-
resents a generalization of the beta distribution. In this case, the parameters αk can
be interpreted as effective numbers of observations of the corresponding values of
the K-dimensional binary observation vector x. As with the beta distribution, the
Dirichlet has finite density everywhere provided αk " 1 for all k.
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Figure 2.5 Plots of the Dirichlet distribution over three variables, where the two horizontal axes are coordinates
in the plane of the simplex and the vertical axis corresponds to the value of the density. Here {αk} = 0.1 on the
left plot, {αk} = 1 in the centre plot, and {αk} = 10 in the right plot.

modelled using the binomial distribution (2.9) or as 1-of-2 variables and modelled
using the multinomial distribution (2.34) with K = 2.

2.3. The Gaussian Distribution

The Gaussian, also known as the normal distribution, is a widely used model for the
distribution of continuous variables. In the case of a single variable x, the Gaussian
distribution can be written in the form

N (x|µ, σ2) =
1

(2πσ2)1/2
exp

{
− 1

2σ2
(x − µ)2

}
(2.42)

where µ is the mean and σ2 is the variance. For a D-dimensional vector x, the
multivariate Gaussian distribution takes the form

N (x|µ,Σ) =
1

(2π)D/2

1
|Σ|1/2

exp
{
−1

2
(x− µ)TΣ−1(x− µ)

}
(2.43)

where µ is a D-dimensional mean vector, Σ is a D × D covariance matrix, and |Σ|
denotes the determinant of Σ.

The Gaussian distribution arises in many different contexts and can be motivated
from a variety of different perspectives. For example, we have already seen that forSection 1.6
a single real variable, the distribution that maximizes the entropy is the Gaussian.
This property applies also to the multivariate Gaussian.Exercise 2.14

Another situation in which the Gaussian distribution arises is when we consider
the sum of multiple random variables. The central limit theorem (due to Laplace)
tells us that, subject to certain mild conditions, the sum of a set of random variables,
which is of course itself a random variable, has a distribution that becomes increas-
ingly Gaussian as the number of terms in the sum increases (Walker, 1969). We can

α = (0.1, 0.1, 0.1) α = (1, 1, 1) α = (10, 10, 10) 
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positive-definite.

N (x|µ,Σ) =
1

(2π)D/2

1
|Σ|1/2

exp
{
−1

2
(x − µ)TΣ−1(x − µ)

}
(B.37)

E[x] = µ (B.38)
cov[x] = Σ (B.39)

mode[x] = µ (B.40)

H[x] =
1
2

ln |Σ| + D

2
(1 + ln(2π)) . (B.41)

The inverse of the covariance matrix Λ = Σ−1 is the precision matrix, which is also
symmetric and positive definite. Averages of random variables tend to a Gaussian, by
the central limit theorem, and the sum of two Gaussian variables is again Gaussian.
The Gaussian is the distribution that maximizes the entropy for a given variance
(or covariance). Any linear transformation of a Gaussian random variable is again
Gaussian. The marginal distribution of a multivariate Gaussian with respect to a
subset of the variables is itself Gaussian, and similarly the conditional distribution is
also Gaussian. The conjugate prior for µ is the Gaussian, the conjugate prior for Λ
is the Wishart, and the conjugate prior for (µ,Λ) is the Gaussian-Wishart.

If we have a marginal Gaussian distribution for x and a conditional Gaussian
distribution for y given x in the form

p(x) = N (x|µ,Λ−1) (B.42)
p(y|x) = N (y|Ax + b,L−1) (B.43)

then the marginal distribution of y, and the conditional distribution of x given y, are
given by

p(y) = N (y|Aµ + b,L−1 + AΛ−1AT) (B.44)
p(x|y) = N (x|Σ{ATL(y − b) + Λµ},Σ) (B.45)

where
Σ = (Λ + ATLA)−1. (B.46)

If we have a joint Gaussian distribution N (x|µ,Σ) with Λ ≡ Σ−1 and we
define the following partitions

x =
(

xa

xb

)
, µ =

(
µa
µb

)
(B.47)

Σ =
(

Σaa Σab

Σba Σbb

)
, Λ =

(
Λaa Λab

Λba Λbb

)
(B.48)

then the conditional distribution p(xa|xb) is given by

p(xa|xb) = N (x|µa|b,Λ
−1
aa ) (B.49)

µa|b = µa − Λ−1
aa Λab(xb − µb) (B.50)
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positive-definite.

N (x|µ,Σ) =
1

(2π)D/2

1
|Σ|1/2

exp
{
−1

2
(x − µ)TΣ−1(x − µ)

}
(B.37)

E[x] = µ (B.38)
cov[x] = Σ (B.39)

mode[x] = µ (B.40)

H[x] =
1
2

ln |Σ| + D

2
(1 + ln(2π)) . (B.41)

The inverse of the covariance matrix Λ = Σ−1 is the precision matrix, which is also
symmetric and positive definite. Averages of random variables tend to a Gaussian, by
the central limit theorem, and the sum of two Gaussian variables is again Gaussian.
The Gaussian is the distribution that maximizes the entropy for a given variance
(or covariance). Any linear transformation of a Gaussian random variable is again
Gaussian. The marginal distribution of a multivariate Gaussian with respect to a
subset of the variables is itself Gaussian, and similarly the conditional distribution is
also Gaussian. The conjugate prior for µ is the Gaussian, the conjugate prior for Λ
is the Wishart, and the conjugate prior for (µ,Λ) is the Gaussian-Wishart.

If we have a marginal Gaussian distribution for x and a conditional Gaussian
distribution for y given x in the form

p(x) = N (x|µ,Λ−1) (B.42)
p(y|x) = N (y|Ax + b,L−1) (B.43)

then the marginal distribution of y, and the conditional distribution of x given y, are
given by

p(y) = N (y|Aµ + b,L−1 + AΛ−1AT) (B.44)
p(x|y) = N (x|Σ{ATL(y − b) + Λµ},Σ) (B.45)

where
Σ = (Λ + ATLA)−1. (B.46)

If we have a joint Gaussian distribution N (x|µ,Σ) with Λ ≡ Σ−1 and we
define the following partitions

x =
(

xa

xb

)
, µ =

(
µa
µb

)
(B.47)

Σ =
(

Σaa Σab

Σba Σbb

)
, Λ =

(
Λaa Λab

Λba Λbb

)
(B.48)

then the conditional distribution p(xa|xb) is given by

p(xa|xb) = N (x|µa|b,Λ
−1
aa ) (B.49)

µa|b = µa − Λ−1
aa Λab(xb − µb) (B.50)

Marginal Probability Density Function

Similarly, we can obtain a marginal PDF (also
called marginal density) for a continuous random
variable from a joint PDF :

f (x) =

Z 1

�1
f (x , y)dy

Integrating out one variable in the 2D Gaussian
gives a 1D Gaussian in either dimension
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Bayesian Linear Regression
Prior and Likelihood 

Posterior

Maximum A Posteriori (MAP) gives Ridge Regression


