Data Mining Techniques

CS 6220 - Section 3 - Fall 2016

Lecture 2: Regression

Jan-Willem van de Meent (credit: Yijun Zhao, Marc Toussaint, Bishop)

Administrativa

Instructor

Jan-Willem van de Meent
Email: j.vandemeent@northeastern.edu Phone: +1617373-7696
Office Hours: 478 WVH, Wed 1.30pm - 2.30pm

Teaching Assistants
Yuan Zhong
E-mail: yzhong@ccs.neu.edu
Office Hours: WVH 462, Wed 3pm - 5pm
Kamlendra Kumar
E-mail: kumark@zimbra.ccs.neu.edu
Office Hours: WVH 462, Fri 3pm - 5pm

Administrativa

Course Website

http://www.ccs.neu.edu/course/cs6220f16/sec3/

Piazza
https://piazza.com/northeastern/fall2016/cs622003/home

Project Guidelines (Vote next week)
http://www.ccs.neu.edu/course/cs6220f16/sec3/project/

Question

What would you like to get out of this course?

Linear Regression

Regression Examples

Features

Continuous
 Value

X

 y

- \{age, major, gender, race $\} \Rightarrow$ GPA
- $\{$ income, credit score, profession $\} \Rightarrow$ Loan Amount
- $\{$ college,major,GPA $\} \Rightarrow$ Future Income

Example: Boston Housing Data

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	B	LSTAT	MEDV
$\mathbf{0}$	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98	24.0
$\mathbf{1}$	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14	21.6
$\mathbf{2}$	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03	34.7
$\mathbf{3}$	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94	33.4
$\mathbf{4}$	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33	36.2
$\mathbf{5}$	0.02985	0.0	2.18	0.0	0.458	6.430	58.7	6.0622	3.0	222.0	18.7	394.12	5.21	28.7
$\mathbf{6}$	0.08829	12.5	7.87	0.0	0.524	6.012	66.6	5.5605	5.0	311.0	15.2	395.60	12.43	22.9
$\mathbf{7}$	0.14455	12.5	7.87	0.0	0.524	6.172	96.1	5.9505	5.0	311.0	15.2	396.90	19.15	27.1
$\mathbf{8}$	0.21124	12.5	7.87	0.0	0.524	5.631	100.0	6.0821	5.0	311.0	15.2	386.63	29.93	16.5
$\mathbf{9}$	0.17004	12.5	7.87	0.0	0.524	6.004	85.9	6.5921	5.0	311.0	15.2	386.71	17.10	18.9
$\mathbf{1 0}$	0.22489	12.5	7.87	0.0	0.524	6.377	94.3	6.3467	5.0	311.0	15.2	392.52	20.45	15.0

UC Irvine Machine Learning Repository

(good source for project datasets)

https://archive.ics.uci.edu/ml/datasets/Housing

Example: Boston Housing Data

1. CRIM: per capita crime rate by town
2. ZN: proportion of residential land zoned for lots over 25,000 sq.ft.
3. INDUS: proportion of non-retail business acres per town
4. CHAS: Charles River dummy variable ($=1$ if tract bounds river; 0 otherwise)
5. NOX: nitric oxides concentration (parts per 10 million)
6. RM: average number of rooms per dwelling
7. AGE: proportion of owner-occupied units built prior to 1940
8. DIS: weighted distances to five Boston employment centres
9. RAD: index of accessibility to radial highways
10. TAX: full-value property-tax rate per \$10,000
11. PTRATIO: pupil-teacher ratio by town
12. $\mathbf{B}: 1000(B k-0.63)^{\wedge} 2$ where $B k$ is the proportion of african americans by town
13. LSTAT: \% lower status of the population
14. MEDV: Median value of owner-occupied homes in \$1000's

Example: Boston Housing Data

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	B	LSTAT	MEDV
$\mathbf{0}$	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98	24.0
$\mathbf{1}$	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14	21.6
$\mathbf{2}$	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03	34.7
$\mathbf{3}$	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94	33.4
$\mathbf{4}$	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33	36.2
$\mathbf{5}$	0.02985	0.0	2.18	0.0	0.458	6.430	58.7	6.0622	3.0	222.0	18.7	394.12	5.21	28.7
$\mathbf{6}$	0.08829	12.5	7.87	0.0	0.524	6.012	66.6	5.5605	5.0	311.0	15.2	395.60	12.43	22.9
$\mathbf{7}$	0.14455	12.5	7.87	0.0	0.524	6.172	96.1	5.9505	5.0	311.0	15.2	396.90	19.15	27.1
$\mathbf{8}$	0.21124	12.5	7.87	0.0	0.524	5.631	100.0	6.0821	5.0	311.0	15.2	386.63	29.93	16.5
$\mathbf{9}$	0.17004	12.5	7.87	0.0	0.524	6.004	85.9	6.5921	5.0	311.0	15.2	386.71	17.10	18.9
$\mathbf{1 0}$	0.22489	12.5	7.87	0.0	0.524	6.377	94.3	6.3467	5.0	311.0	15.2	392.52	20.45	15.0

CRIM: per capita crime rate by town

Example: Boston Housing Data

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	B	LSTAT	MEDV
$\mathbf{0}$	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98	24.0
$\mathbf{1}$	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14	21.6
$\mathbf{2}$	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03	34.7
$\mathbf{3}$	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94	33.4
$\mathbf{4}$	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33	36.2
$\mathbf{5}$	0.02985	0.0	2.18	0.0	0.458	6.430	58.7	6.0622	3.0	222.0	18.7	394.12	5.21	28.7
$\mathbf{6}$	0.08829	12.5	7.87	0.0	0.524	6.012	66.6	5.5605	5.0	311.0	15.2	395.60	12.43	22.9
$\mathbf{7}$	0.14455	12.5	7.87	0.0	0.524	6.172	96.1	5.9505	5.0	311.0	15.2	396.90	19.15	27.1
$\mathbf{8}$	0.21124	12.5	7.87	0.0	0.524	5.631	100.0	6.0821	5.0	311.0	15.2	386.63	29.93	16.5
$\mathbf{9}$	0.17004	12.5	7.87	0.0	0.524	6.004	85.9	6.5921	5.0	311.0	15.2	386.71	17.10	18.9
$\mathbf{1 0}$	0.22489	12.5	7.87	0.0	0.524	6.377	94.3	6.3467	5.0	311.0	15.2	392.52	20.45	15.0

CHAS: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)

Example: Boston Housing Data

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	B	LSTAT	MEDV
$\mathbf{0}$	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98	24.0
$\mathbf{1}$	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14	21.6
$\mathbf{2}$	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03	34.7
$\mathbf{3}$	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94	33.4
$\mathbf{4}$	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33	36.2
$\mathbf{5}$	0.02985	0.0	2.18	0.0	0.458	6.430	58.7	6.0622	3.0	222.0	18.7	394.12	5.21	28.7
$\mathbf{6}$	0.08829	12.5	7.87	0.0	0.524	6.012	66.6	5.5605	5.0	311.0	15.2	395.60	12.43	22.9
$\mathbf{7}$	0.14455	12.5	7.87	0.0	0.524	6.172	96.1	5.9505	5.0	311.0	15.2	396.90	19.15	27.1
$\mathbf{8}$	0.21124	12.5	7.87	0.0	0.524	5.631	100.0	6.0821	5.0	311.0	15.2	386.63	29.93	16.5
$\mathbf{9}$	0.17004	12.5	7.87	0.0	0.524	6.004	85.9	6.5921	5.0	311.0	15.2	386.71	17.10	18.9
$\mathbf{1 0}$	0.22489	12.5	7.87	0.0	0.524	6.377	94.3	6.3467	5.0	311.0	15.2	392.52	20.45	15.0

MEDV: Median value of owner-occupied homes in \$1000's

Example: Boston Housing Data

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	B	LSTAT	MEDV
$\mathbf{0}$	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98	24.0
$\mathbf{1}$	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14	21.6
$\mathbf{2}$	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03	34.7
$\mathbf{3}$	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94	33.4
$\mathbf{4}$	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33	36.2
$\mathbf{5}$	0.02985	0.0	2.18	0.0	0.458	6.430	58.7	6.0622	3.0	222.0	18.7	394.12	5.21	28.7
$\mathbf{6}$	0.08829	12.5	7.87	0.0	0.524	6.012	66.6	5.5605	5.0	311.0	15.2	395.60	12.43	22.9
$\mathbf{7}$	0.14455	12.5	7.87	0.0	0.524	6.172	96.1	5.9505	5.0	311.0	15.2	396.90	19.15	27.1
$\mathbf{8}$	0.21124	12.5	7.87	0.0	0.524	5.631	100.0	6.0821	5.0	311.0	15.2	386.63	29.93	16.5
$\mathbf{9}$	0.17004	12.5	7.87	0.0	0.524	6.004	85.9	6.5921	5.0	311.0	15.2	386.71	17.10	18.9
$\mathbf{1 0}$	0.22489	12.5	7.87	0.0	0.524	6.377	94.3	6.3467	5.0	311.0	15.2	392.52	20.45	15.0

N data points

D features

Regression: Problem Setup

Given N observations

$$
\left\{\left(x_{1}, y_{1}\right),\left(\boldsymbol{x}_{2}, y_{2}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}
$$

learn a function

$$
y_{i}=f\left(\boldsymbol{x}_{i}\right) \quad \forall i=1,2, \ldots, N
$$

and for a new input \mathbf{x}^{*} predict

$$
y^{*}=f\left(x^{*}\right)
$$

Linear Regression

Assume f is a linear combination of D features

$$
y=w_{0}+w_{1} x_{1}+\ldots+w_{D} x_{D}=\boldsymbol{w}^{\top} \boldsymbol{x}
$$

were \mathbf{x} and \mathbf{w} are defined as

$$
\boldsymbol{x}=\left(1, x_{1}, \ldots, x_{D}\right) \quad \boldsymbol{w}=\left(w_{0}, w_{1}, \ldots w_{D}\right)
$$

for N points we write

$$
y=X w \quad y=\left(y_{1}, \ldots, y_{N}\right) \quad X=\left(x_{1}^{\top}, \ldots, x_{N}^{\top}\right)
$$

Learning task: Estimate w

Linear Regression

Error Measure

Mean Squared Error (MSE):
where

$$
\begin{aligned}
E(\mathbf{w}) & =\frac{1}{N} \sum_{n=1}^{N}\left(\mathbf{w}^{T} \mathbf{x}_{n}-y_{n}\right)^{2} \\
& =\frac{1}{N}\|\mathbf{X} \mathbf{w}-\mathbf{y}\|^{2}
\end{aligned}
$$

$$
\mathbf{X}=\left[\begin{array}{c}
-\mathbf{x}_{1}{ }^{T}- \\
-\mathbf{x}_{2}^{T}- \\
\cdots \\
-\mathbf{x}_{N}{ }^{T}-
\end{array}\right] \quad \mathbf{y}=\left[\begin{array}{c}
y_{1}{ }^{T} \\
y_{2}{ }^{T} \\
\cdots \\
y_{N}{ }^{T}
\end{array}\right]
$$

Minimizing the Error

$E(\mathbf{w})=\frac{1}{N}\|\mathbf{X} \mathbf{w}-\mathbf{y}\|^{2}$
$\nabla E(\mathbf{w})=\frac{2}{N} \mathbf{X}^{\top}(\mathbf{X} \mathbf{w}-\mathbf{y})=\mathbf{0}$
$\mathbf{X}^{\boldsymbol{\top}} \mathbf{X} \mathbf{w}=\mathbf{X}^{\boldsymbol{\top}} \mathbf{y}$
$w=\mathbf{X}^{\dagger} \mathbf{y}$
where $\mathbf{X}^{\dagger}=\left(\mathbf{X}^{\boldsymbol{\top}} \mathbf{X}\right)^{-1} \mathbf{X}^{\boldsymbol{\top}}$ is the 'pseudo-inverse' of \mathbf{X}

Minimizing the Error

$$
\begin{aligned}
& E(\mathbf{w})=\frac{1}{N}\|\mathbf{X} \mathbf{w}-\mathbf{y}\|^{2} \\
& \nabla E(\mathbf{w})=\frac{2}{N} \mathbf{X}^{\top}(\mathbf{X} \mathbf{w}-\mathbf{y})=\mathbf{0} \\
& \mathbf{X}^{\top} \mathbf{X} \mathbf{w}=\mathbf{X}^{\top} \mathbf{y} \\
& \mathbf{w}=\mathbf{X}^{\dagger} \mathbf{y} \\
& \text { where } \mathbf{X}^{\dagger}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\boldsymbol{\top}} \text { is the } \\
& \text { 'pseudo-inverse' of } \mathbf{X}
\end{aligned}
$$

Matrix Cookbook (on course website)

Ordinary Least Squares

- Construct matrix \mathbf{X} and the vector \mathbf{y} from the dataset $\left.\left\{\left(\mathbf{x}_{1}, y_{1}\right), \mathbf{x}_{2}, y_{2}\right), \ldots,\left(\mathbf{x}_{\mathbf{N}}, y_{N}\right)\right\}$ (each \mathbf{x} includes $x_{0}=1$) as follows:

$$
\mathbf{X}=\left[\begin{array}{c}
-\mathbf{x}_{1}^{\top}- \\
-\mathbf{x}_{2}^{\top}- \\
\cdots \\
-\mathbf{x}_{N}^{\top}-
\end{array}\right] \quad \mathbf{y}=\left[\begin{array}{c}
y_{1}^{\top} \\
y_{2}^{\top} \\
\cdots \\
y_{N}^{\top}
\end{array}\right]
$$

- Compute $\mathbf{X}^{\dagger}=\left(\mathbf{X}^{\boldsymbol{\top}} \mathbf{X}\right)^{-1} \mathbf{X}^{\boldsymbol{\top}}$
- Return w $=\mathbf{X}^{\dagger} \mathbf{y}$

Gradient Descent

Least Mean Squares

(a.k.a. gradient descent)

- Initialize the $\mathbf{w}(0)$ for time $t=0$
- for $t=0,1,2, \ldots$ do
- Compute the gradient $\mathbf{g}_{t}=\nabla E(\mathbf{w}(t))$
- Set the direction to move, $\mathbf{v}_{t}=-\mathbf{g}_{t}$
- Update $\mathbf{w}(t+1)=\mathbf{w}(t)+\eta \mathbf{v}_{t}$
- Iterate until it is time to stop
- Return the final weights w

Question

When would you want
to use OLS, when LMS?

Computational Complexity

Ordinary least squares (OMS)

$$
\begin{array}{lll}
\boldsymbol{w}=\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1}\left(\boldsymbol{X}^{\top} \boldsymbol{y}\right) & \nabla E(\boldsymbol{1} \\
\left(\boldsymbol{X}^{\top} \boldsymbol{y}\right) & O(D N) & \boldsymbol{X} \boldsymbol{w} \\
\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right) & O\left(D^{2} N\right) & \boldsymbol{X}(\boldsymbol{w} \\
\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} & O\left(D^{3}\right) & \boldsymbol{X}^{\top}(\boldsymbol{x}
\end{array}
$$

$$
X(w-y)
$$

$$
X^{\top}(X w-y) \quad O(D N)
$$

Computational Complexity

Ordinary least squares (OMS)

$$
\begin{array}{llll}
\boldsymbol{w}=\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1}\left(\boldsymbol{X}^{\top} \boldsymbol{y}\right) & \nabla E(\boldsymbol{w})=\frac{2}{N} \boldsymbol{X}^{\top}(\boldsymbol{X} \boldsymbol{w}-\boldsymbol{y}) \\
\left(\boldsymbol{X}^{\top} \boldsymbol{y}\right) & O(D N) & \boldsymbol{X} \boldsymbol{w} & O(D N) \\
\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right) & O\left(D^{2} N\right) & \boldsymbol{X}(\boldsymbol{w}-\boldsymbol{y}) & O(N) \\
\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} & O\left(D^{3}\right) & \boldsymbol{X}^{\top}(\boldsymbol{X} \boldsymbol{w}-\boldsymbol{y}) & O(D N)
\end{array}
$$

Effect of step size

η too small

Weights, w
η too large

Weights, w
variable η - just right

Choosing Stepsize

Set step size proportional to $\nabla f(x)$?

Choosing Stepsize

Set step size proportional to $\nabla f(x)$?

Two commonly used techniques

1. Stepsize adaptation
2. Line search

Stepsize Adaptation

```
Input: initial \(x \in \mathbb{R}^{n}\), functions \(f(x)\) and \(\nabla f(x)\), initial stepsize \(\alpha\), tolerance
    \(\theta\)
Output: \(x\)
    1: repeat
        \(y \leftarrow x-\alpha \frac{\nabla f(x)}{|\nabla f(x)|}\)
        if [ thenstep is accepted] \(f(y) \leq f(x)\)
        \(x \leftarrow y\)
        \(\alpha \leftarrow 1.2 \alpha \quad / /\) increase stepsize
        else[step is rejected]
            \(\alpha \leftarrow 0.5 \alpha \quad / /\) decrease stepsize
        end if
    : until \(|y-x|<\theta \quad\) [perhaps for 10 iterations in sequence]
```


Second Order Methods

Compute Hessian matrix of second derivatives

$$
\mathbf{H}=\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right]
$$

Second Order Methods

Broyden-Fletcher-Goldfarb-Shanno (BFGS) method:

Input: initial $x \in \mathbb{R}^{n}$, functions $f(x), \nabla f(x)$, tolerance θ Output: x
1: initialize $H^{-1}=\mathbf{I}_{n}$
2: repeat
3: \quad compute $\Delta=-H^{-1} \nabla f(x)$
4: \quad perform a line search $\min _{\alpha} f(x+\alpha \Delta)$
5: $\quad \Delta \leftarrow \alpha \Delta$
6: $\quad y \leftarrow \nabla f(x+\Delta)-\nabla f(x)$
7: $\quad x \leftarrow x+\Delta$
8: \quad update $H^{-1} \leftarrow\left(\mathbf{I}-\frac{y \Delta^{\top}}{\Delta^{\top} y}\right)^{\top} H^{-1}\left(\mathbf{I}-\frac{y \Delta^{\top}}{\Delta^{\top} y}\right)+\frac{\Delta \Delta^{\top}}{\Delta^{\top} y}$
9: until $\|\Delta\|_{\infty}<\theta$
Memory-limited version: L-BFGS

Stochastic Gradient Descent

 What if N is really large?Batch gradient descent (evaluates all data)

$$
\boldsymbol{w}_{t}=\boldsymbol{w}_{t-1}-\left.\alpha_{t} \nabla_{w} E(\boldsymbol{y} ; \boldsymbol{w})\right|_{w=w_{t-1}}
$$

Minibatch gradient descent (evaluates subset)

$$
w_{t}=w_{t-1}-\left.\alpha_{t} \nabla_{w} E\left(y_{t} ; w\right)\right|_{w=w_{t-1}} \quad y_{t} \subset y
$$

Converges under Robbins-Monro conditions

$$
\sum_{t=1}^{\infty} \alpha_{t}=\infty \quad \sum_{t=1}^{\infty} \alpha_{t}^{2}<\infty \quad \alpha_{t}=\frac{\alpha_{0}}{(\tau+t)^{\kappa}}
$$

> Probabilistic Interpretation

Normal Distribution

Normal Distribution

Density: $\quad f(x ; \mu, \sigma)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp ^{-\frac{1}{2}(x-\mu)^{2} / \sigma^{2}}$

Central Limit Theorem

If y_{1}, \ldots, y_{n} are

1. Independent identically distributed (i.i.d.)
2. Have finite variance $0<\sigma_{y}^{2}<\infty$
$f(\bar{y})=\operatorname{Normal}\left(\bar{y} ; \mu_{y}, \sigma_{y}^{2} / N\right) \quad \bar{y}=\frac{1}{N} \sum_{n=1}^{N} y_{n}$

Multivariate Normal

Density: $\quad f(\boldsymbol{x} ; \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{\sqrt{(2 \pi)^{D}|\boldsymbol{\Sigma}|}} \exp ^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}$

Regression: Probabilistic Interpretation

$$
y_{n}=a x_{n}+b+\sigma \epsilon_{n} \quad \epsilon \sim \operatorname{Normal}(0,1)
$$

Regression: Probabilistic Interpretation

$$
\boldsymbol{\mu}_{n}=\boldsymbol{w}^{\top} \boldsymbol{x}_{n} \quad \boldsymbol{y}_{n} \sim \operatorname{Normal}\left(\boldsymbol{\mu}_{n}, \boldsymbol{\Sigma}\right)
$$

Regression: Probabilistic Interpretation

 Joint probability of N independent data points$$
\begin{aligned}
& p\left(y_{1}, \ldots, y_{N}\right)=\prod_{n=1}^{N} p\left(y_{n}\right) \\
&=\frac{1}{{\sqrt{2 \pi \sigma^{2}}}^{N}} \prod_{n=1}^{N} \exp ^{-\frac{1}{2}(x-\mu)^{2} / \sigma^{2}} \\
&=\frac{1}{\sqrt{2 \pi \sigma^{2}}}{ }^{N} \\
& \exp ^{-\frac{1}{2} \sum_{n=1}^{N}(x-\mu)^{2} / \sigma^{2}}
\end{aligned}
$$

Regression: Probabilistic Interpretation

Log joint probability of N independent data points

$$
\begin{aligned}
\log p\left(y_{1}, \ldots, y_{N}\right) & =\sum_{n=1}^{N} \log p\left(y_{n}\right) \\
& =-\frac{1}{2}\left[N \log \left(2 \pi \sigma^{2}\right)+\sum_{n=1}^{N} \frac{\left(y_{n}-\mu_{n}\right)^{2}}{\sigma^{2}}\right]
\end{aligned}
$$

Regression: Probabilistic Interpretation

Log joint probability of N independent data points

$$
\begin{aligned}
\log p\left(y_{1}, \ldots, y_{N}\right) & =\sum_{n=1}^{N} \log p\left(y_{n}\right) \\
& =-\frac{1}{2}\left[N \log \left(2 \pi \sigma^{2}\right)+\sum_{n=1}^{N} \frac{\left(y_{n}-\boldsymbol{w}^{\top} x_{n}\right)^{2}}{\sigma^{2}}\right]
\end{aligned}
$$

Regression: Probabilistic Interpretation

Log joint probability of N independent data points

$$
\begin{aligned}
\log p\left(y_{1}, \ldots, y_{N}\right) & =\sum_{n=1}^{N} \log p\left(y_{n}\right) \\
& =-\frac{1}{2}\left[N \log \left(2 \pi \sigma^{2}\right)+\sum_{n=1}^{N} \frac{\left(y_{n}-\boldsymbol{w}^{\top} x_{n}\right)^{2}}{\sigma^{2}}\right] \\
& =-\frac{N}{2}[\text { const }+E(w)]
\end{aligned}
$$

Regression: Probabilistic Interpretation

Log joint probability of N independent data points

$$
\begin{aligned}
\log p\left(y_{1}, \ldots, y_{N}\right) & =\sum_{n=1}^{N} \log p\left(y_{n}\right) \\
& =-\frac{1}{2}\left[N \log \left(2 \pi \sigma^{2}\right)+\sum_{n=1}^{N} \frac{\left(y_{n}-w^{\top} x_{n}\right)^{2}}{\sigma^{2}}\right] \\
& =-\frac{N}{2}[\text { const }+E(w)]
\end{aligned}
$$

$\operatorname{argmax} p\left(y_{1}, \ldots, y_{N} ; \boldsymbol{w}\right)=\operatorname{argmin} E(\boldsymbol{w})$
W

Maximum
Likelihood

Basis function regression

Linear regression

$$
y=w_{0}+w_{1} \boldsymbol{x}_{1}+\ldots+w_{D} \boldsymbol{x}_{D}=\boldsymbol{w}^{T} \boldsymbol{x}
$$

Basis function regression

$$
y=w_{0}+w_{1} \phi_{1}(\boldsymbol{x})+\ldots+w_{D} \phi_{D}(\boldsymbol{x})
$$

Polynomial regression

$$
x_{d}:=\phi_{d}(x) \quad \phi_{d}(x):=x^{d}
$$

Polynomial Regression

Polynomial Regression

Underfit

Polynomial Regression

Overfit

Regularization

L2 regularization (ridge regression) minimizes:

$$
E(\mathbf{w})=\quad\|\mathbf{X} \mathbf{w}-\mathbf{y}\|^{2}+\lambda\|\mathbf{w}\|^{2}
$$

where $\lambda \geq 0$ and $\|\mathbf{w}\|^{2}=\mathbf{w}^{\boldsymbol{\top}} \mathbf{w}$
L1 regularization (LASSO) minimizes:

$$
E(\mathbf{w})=\|\mathbf{X} \mathbf{w}-\mathbf{y}\|^{2}+\lambda|\mathbf{w}|_{1}
$$

where $\lambda \geq 0$ and $|\mathbf{w}|_{1}=\sum_{i=1}^{D}\left|\omega_{i}\right|$

Regularization

Regularization

L2: closed form solution

$$
\mathbf{w}=\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{\boldsymbol{\top}} \mathbf{y}
$$

L1: No closed form solution. Use quadratic programming:

$$
\operatorname{minimize}\|\mathbf{X w}-\mathbf{y}\|^{2} \quad \text { s.t. }\|\mathbf{w}\|_{1} \leq s
$$

Review: Bias-Variance Trade-off

Maximum likelihood estimator

$$
\hat{f}:=\underset{\tilde{f}}{\operatorname{argmax}} p(y \mid \tilde{f})
$$

Bias-variance decomposition
(expected value over possible data points)

$$
\mathbb{E}\left[(y-\hat{f}(\boldsymbol{x}))^{2}\right]=\operatorname{Bias}[\hat{f}(\boldsymbol{x})]^{2}+\operatorname{Var}[\hat{f}(\boldsymbol{x})]+\sigma^{2}
$$

$$
\operatorname{Bias}[\hat{f}(\boldsymbol{x})]=\mathbb{E}[\hat{f}(\boldsymbol{x})-f(\boldsymbol{x})]
$$

$$
\operatorname{Var}[\hat{f}(\boldsymbol{x})]=\mathbb{E}\left[\hat{f}(\boldsymbol{x})^{2}\right]-\mathbb{E}[\hat{f}(\boldsymbol{x})]^{2}
$$

$$
\sigma^{2}=\mathbb{E}\left[y^{2}\right]-\mathbb{E}[f(\boldsymbol{x})]^{2}
$$

Bias-Variance Trade-off

Often: low bias \Rightarrow high variance low variance \Rightarrow high bias
Trade-off:

Model Complexity

K-fold Cross-Validation

1. Divide dataset into K "folds"
2. Train on all except k-th fold
3. Test on k-th fold
4. Minimize test error w.r.t. λ

K-fold Cross-Validation

- Choices for K: 5, 10, N (leave-one-out)
- Cost of computation: $K \times$ number of λ

Learning Curve

Learning Curve

Loss Functions

squared loss: $\quad \frac{1}{2}\left(\boldsymbol{w}^{\top} \boldsymbol{x}-y\right)^{2} \quad y \in \mathbb{R}$
logistic loss: $\log \left(1+\exp \left(-y \boldsymbol{w}^{\top} \boldsymbol{x}\right)\right) \quad y \in\{-1,+1\}$
hinge loss: $\max \left\{0,1-y \boldsymbol{w}^{\top} \boldsymbol{x}\right\}$
$y \in\{-1,+1\}$

