Data Mining Techniques

CS 6220 - Section 3 - Fall 2016

Lecture 1: Overview

Jan-Willem van de Meent

Who are we?

Instructor

Jan-Willem van de Meent

Email: <u>j.vandemeent@northeastern.edu</u> *Phone*: +1 617 373-7696 *Office Hours*: 478 WVH, Wed 1.30pm - 2.30pm

Teaching Assistants

Yuan Zhong

E-mail: <u>yzhong@ccs.neu.edu</u> Office Hours: WVH 462, Wed 3pm - 5pm

Kamlendra Kumar

E-mail: <u>kumark@zimbra.ccs.neu.edu</u> Office Hours: WVH 462, Fri 3pm - 5pm

Who are you?

Syllabus

http://www.ccs.neu.edu/course/cs6220f16/sec3/

Northeastern University

College of Computer and Information Science

CS6220 - Fall 2016 - Section 3 - Data Mining Techniques

LECTURES

Time: Wednesdays and Fridays 11:45am - 1:30pm Room: Ryder Hall 161

INSTRUCTOR

Jan-Willem van de Meent E-mail: j.vandemeent@northeastern.edu Phone: +1 617 373-7696 Office Hours: WVH 478, Wednesdays 1.30pm - 2.30pm (or by appointment)

Course Objectives

1. Lectures: <u>Understand</u> data mining methods

- Mathematical/algorithmic definitions
- When should each method be used?
- What are some limitations of each method?

2. Homework Problems: <u>Use</u> data mining methods

- Implement methods
- Use methods in existing libraries
- Visualize results, evaluate effectiveness

Homework Problems

- 4 or (more likely) 5 problem sets
- 30% 40% of grade (depends on type of project)
- Can use any language (within reason)
- Discussion is encouraged, but submissions must be completed individually (absolutely no sharing of code)
- Submission via <u>zip</u> file by **11.59pm** on day of deadline (no late submissions)
- Please follow <u>submission guidelines</u> on website (TA's have authority to deduct points)

Vote next week

- 1. Freeform: Develop your own project proposals
 - 30% of grade (homework 30%)
 - Present proposals after midterm
 - Peer-review reports
- 2. Predefined: Same project for whole class
 - 20% of grade (homework 40%)
 - More like a "super-homework"
 - Teaching assistants and instructors

Participation

Attend the Lectures
 Ask questions!
 Help Others

Self-evaluation

For Homework Problems

- Indicate time spent
- What was easy / hard?
- What did you learn?

After Midterm and Final Exams

- What was your favorite topic?
- What parts were easier / more difficult to follow?
- List 3 students that contributed to your understanding

Grading

Freeform Project

- Homework: **30%**
- Midterm: 20%
- Final: 20%
- Project: **30%**
- Participation (bonus): 10%

Predefined Project

- Homework: 40%
- Midterm: 20%
- Final: 20%
- Project: **20%**
- Participation (bonus): 10%

What is Data Mining?

Intersection of Disciplines

Knowledge Discovery in Databases

(a.k.a. database system / data warehouse perspective)

Data Mining ~ Data Science

(a.k.a. machine learning and statistics perspective)

1. Types of Data

Matrix Data

ID	age	sex	time	Jitter(%)	Shimmer	NHR	HNR	RPDE	DFA	PPE	motor UPDRS	total UPDRS
1	55	0	5.64	6.62E-03	0.02565	0.01	21.64	0.42	0.55	0.16	28.199	34.398
2	67	0	12.67	3.00E-03	0.02024	0.01	27.18	0.43	0.56	0.11	28.447	34.894
3	77	0	19.68	4.81E-03	0.01675	0.02	23.05	0.46	0.54	0.21	28.695	35.389
4	59	0	25.65	5.28E-03	0.02309	0.03	24.45	0.49	0.58	0.33	28.905	35.81
5	64	0	33.64	3.35E-03	0.01703	0.01	26.13	0.47	0.56	0.19	29.187	36.375
6	40	0	40.65	3.53E-03	0.02227	0.01	22.95	0.54	0.57	0.20	29.435	36.87
7	45	0	47.65	4.22E-03	0.04352	0.01	22.51	0.49	0.55	0.18	29.682	37.363
8	66	0	54.64	4.76E-03	0.02191	0.03	22.93	0.48	0.54	0.24	29.928	37.857
9	50	0	61.67	4.32E-03	0.04296	0.01	22.08	0.52	0.62	0.20	30.177	38.353

Set Data

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Sequence Data

SYNTENIC ASSEMBLIES FOR CG15386					
MD106	ATGCTTAGTAATCCCTACTTTAAGTCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG				
NEWC	ATGCTTAGTAATCCTTACTTTAAATCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG				
W501	ATGCTTAGTAATCCCTACTTTAAGTCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG				
MD199	ATGCTTAGTAATCCCTACTTTAAGTCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG				
C1674	ATGCTTAGTAATCCCTACTTTAAGTCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG				
SIM4	ATGCTTAGTAATCCCTACTTTAAGTCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG				
MD106	CTACGGCCTAATGGTGCTAACAGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT				
NEWC	CTACGGCCTAATGGTGCTAACCGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT				
W501	CTACGGCCTAATGGTGCTAACCGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT				
MD199	CTACGGCCTAATGGTGCTAACCGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT				
C1674	CTACGGCCTAATGGTGCTAACCGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT				
SIM4	CTACGGCCTAATGGTGCTAACCGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT				
MD106	CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG				
NEWC	CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG				
W501	CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG				
MD199	CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG				
C1674	CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG				
SIM4	CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG				
MD106	CTGCAGGAGGCGTCCACCACCAGTGCCCCAATCTACAGGTCAGCGGCCGAGAAATAG				
NEWC	CTGCAGGAGGCGTCCACCACCAGTGCCCCAATCTACAGGTCATCGGCCGAGAAATAG				
W501	CTGCAGGAGGCGTCCACCACCACTGCCCCAATCTACAGGTCATCGGCCGAGAAATAG				
MD199	CTGCAGGAGGCGTCCACCACCAGTGCCCCAATCTACAGGTCAGCGGCCGAGAAATAG				
C1674	CTGCAGGAGGCGTCCACCAGTGCCCCAATCTACAGGTCAGCGGCCGAGAAATAG				
SIM4	CTGCAGGAGGCGTCCACCACCAGTGCCCCAATCTACAGGTCAGCGGCCGAGAAATAG				

Time Series Data

Graph / Network Data

2. Types of Methods

Regression

(a.k.a. predicting continuous things)

Advertisement Spending

Regression

(a.k.a. predicting continuous things)

Methods

- Linear Regression
- Gaussian Processes
- Autoregressive Models

Classification

(a.k.a. predicting discrete things)

Refund	Marital Status	Taxable Income	Cheat
Yes	Single	125K	No
No	Married	100K	No
No	Single	70K	No
Yes	Married	120K	No
No	Divorced	95K	Yes
No	Married	60K	No
Yes	Divorced	220K	No
No	Single	85K	Yes
No	Married	75K	No
No	Single	90K	Yes

Methods

- Naive Bayes
- Decision Trees
 - Boosting
 - Random Forests
- Support Vector Machines
- Logistic Regression
- k-Nearest Neighbors

Regression/Classification Applications

Recommender Systems

Character Recognition

Healthcare

Clustering

(a.k.a. grouping things)

Methods

- K-means, K-medioids
- DBSCAN
- Gaussian Mixture Models (expectation maximization)

Clustering Applications

Medical Imaging

Market Research

Genotyping

Association Rules Mining

(a.k.a. predicting sets of things)

Frequent Itemsets

What items are purchased together?

Association, correlation vs causality

Diaper -> Beer [0.5% support, 75% confidence]

Methods

- Apriori
- FP-Growth

Association Rules Applications

Market Basket Analysis

- Cross-selling
- Promotions
- Catalog design

Customer Relationship Management

- Identify customer preference
- Identify new product tailored to customer's liking (e.g. credit card)
- Census Data Analysis
 - Plan public services (education, health, transportation, etc.)
 - Create new public business (banks, shopping malls, etc.)

Sequence Mining

(a.k.a. predicting *ordered* sets of things)

Methods

- Generalized Sequential Patterns
- PrefixSpan
- Hidden Markov Models

Sequence Mining Applications

- Telephone calling/webpage click patterns
- Speech Recognition / Speech synthesis
- Natural Language Processing (part of speech tagging)
- Computational biology
 - Profile comparison: identifying similarities between proteins
 - *Gene prediction*: identifying the regions of genomic DNA that encode genes.
 - **Sequence alignment**: identify homologous DNA sequences in a database.

Course Outline

Regression

Bias-variance tradeoff, overfitting, cross-validation

Classification

Naive Bayes, Logistic Regression, SVMs, Random Forests

 Clustering K-means, K-medioids, DBSCAN, EM for Mixture Models

• **Dimensionality Reduction** PCA, ICA, Random Projections

- Time Series ARIMA, HMMs
- Recommender systems
- Frequent Pattern Mining Apriori, FP-Growth

Networks Page-rank, Spectral Clustering

Course Outline

 Regression Bias-variance tradeoff, overfitting, cross-validation 	Supervised
 Classification Naive Bayes, Logistic Regression, SVMs, Random Forests 	Learning
 Clustering K-means, K-medioids, DBSCAN, EM for Mixture Models 	Unsupervised Learning
Dimensionality Reduction PCA, ICA, Random Projections	
• Time Series ARIMA, HMMs	
Recommender systems	Data Mining
Frequent Pattern Mining Apriori, FP-Growth	
 Networks Page-rank, Spectral Clustering 	

Textbooks

El Manager

Bishop

Machine Learning

.

On reserve at Snell Hastie

Statistics

PDF freely available

.

Ebook available through library

Data Mining

Han

PDF available on campus network

Aggarwal

Question What would *you* like to get out of this course?