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Can look for patterns in both samples and variables

Gehlenborg et al, Nature Methods, 2010



Principle component analysis
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Overview

I Each sample as an observation in a

G-dimensional space
I Use the ’traditional’ representation of the data

(rows=observations; columns=variables)
I X is the I × G matrix of centered variable expressions

g1 . . . gG

S1 x11 − x̄·1 . . . x1G − x̄·G
· · · · · ·
SI xI1 − x̄·1 . . . xIG − x̄·G

S· x̄·1 . . . x̄·G

I Goal: find at most I linear combinations of variables that best
characterize the total between-sample variation



With PCA, signal is lost when data has many unrelated
dimensions

REVIEW Fan, Han and Liu 299

Figure 1. Scatter plots of projections of the observed data (n= 100 from each class) onto the first two principal components of the bestm-dimensional
selected feature space. A projected data with the filled circle indicates the first class and the filled triangle indicates the second class.

important variables can be highly correlated with
several spurious variables which are scientifically
unrelated.We consider a simple example to illustrate
this phenomenon. Let x1, . . . , xn be n indepen-
dent observations of a d-dimensional Gaussian ran-
dom vector X = (X1, . . . , Xd )T ∼ Nd (0, Id ). We
repeatedly simulate thedatawithn=60 andd=800

and 6400 for 1000 times. Figure 2a shows the em-
pirical distribution of themaximum absolute sample
correlation coefficient between thefirst variablewith
the remaining ones defined as

r̂ = max
j≥2
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)
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A simulation study

I Simulate n = 100 observations from 2 classes

I Each observation is a point in m = 2, 40, 200, 1000 dimensions

I Only first 10 dimensions are informative

I Plot first 2 principle components (i.e., eigenvectors)

I Informative data should show a good separation between the two classes
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dimensions
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Figure 1. Scatter plots of projections of the observed data (n= 100 from each class) onto the first two principal components of the bestm-dimensional
selected feature space. A projected data with the filled circle indicates the first class and the filled triangle indicates the second class.
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Conclusion: As we add new unrelated
variables, we lose information



Heatmaps and hierarchical clustering



Define dissimilarity between

multivariate data points

I x = (x1, . . . , xP), y = (y1, . . . , yP)

I Eucledian distance

deuc (x, y) =

√
P∑
i=1

(xi − yi )2

I Pearson sample correlation distance
dcor (x, y) = 1 − r(x, y) = 1 −

∑P
i=1(xi−x̄)(yi−ȳ)√∑m

i=1
(xi−x̄)2

∑P
i=1

(yi−ȳ)2

I Spearman sample correlation distance
dspear (x, y) =

∑P
i=1(x′i −x̄′)(y′i −ȳ′)√∑P

i=1
(x′

i
−x̄′)2

∑P
i=1

(y′
i
−ȳ′)2

where x ′i = rank(xi ) and y ′i = rank(yi )



Important points of the algorithm

I Agglomerative vs divisive
I Agglomerative: group smaller clusters
I Divisive: split clusters (more comp. intensive)

I Linkage
I Single (min. pairwise distance)
I Complete (max pairwise distance)
I Average (average of pairwise distances)

I Standardizations
I Standardize variables: values in each variable on a same scale.

Affects dendrograms (i.e. order of rows and columns).
I Standardize colors: colors in each variable on a same scale.

Affects the color distribution of the matrix.
I In many implementations. the option ’scale’ affects colors but

not expression values



Effect of choice of distance
Hierarchical clustering is sensitive 

to measures of similarity and distances
59
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Synthetic example:

Conclusion:
Eucledian: cluster variables with similar values

Pearson: cluster variables with similar profile patterns

Caution:
The dendrograms are not unique



Effect of standardization

Conclusions:
I Original scale: A and C are closest in location, while A and B are most

correlated.
I Standardized scale: correlation distance does not change. A and B have similar

standardized values.
I D has a large negative correlation with the A and B, so its correlation distance is

low

M. Key, BMC Bioinformatics, 2012



Role of color mapping

I (a): clusters & colors are applied to original data

I (b): clusters & colors are applied to row-scaled data

Conclusion: With row-scaled data, it is easier to
see that the patterns in A and B are the same.

Conclusion: Need to make standardization decisions
for both values and colors

M. Key, BMC Bioinformatics, 2012



Role of linkage
524 14. Unsupervised Learning

Average Linkage Complete Linkage Single Linkage

FIGURE 14.13. Dendrograms from agglomerative hierarchical clustering of hu-
man tumor microarray data.

observations within them are relatively close together (small dissimilarities)
as compared with observations in different clusters. To the extent this is
not the case, results will differ.

Single linkage (14.41) only requires that a single dissimilarity dii′ , i ∈ G
and i′ ∈ H, be small for two groups G and H to be considered close
together, irrespective of the other observation dissimilarities between the
groups. It will therefore have a tendency to combine, at relatively low
thresholds, observations linked by a series of close intermediate observa-
tions. This phenomenon, referred to as chaining, is often considered a de-
fect of the method. The clusters produced by single linkage can violate the
“compactness” property that all observations within each cluster tend to
be similar to one another, based on the supplied observation dissimilari-
ties {dii′}. If we define the diameter DG of a group of observations as the
largest dissimilarity among its members

DG = max
i∈G
i′∈G

dii′ , (14.44)

then single linkage can produce clusters with very large diameters.
Complete linkage (14.42) represents the opposite extreme. Two groups

G and H are considered close only if all of the observations in their union
are relatively similar. It will tend to produce compact clusters with small
diameters (14.44). However, it can produce clusters that violate the “close-
ness” property. That is, observations assigned to a cluster can be much

Conclusion: Average linkage leads to most
’balanced’ dendrograms
Hastie, Tibshirani, Friedman, The elements of

Statistical Learning 2008



K-means



Algorithm ’pseudocode’

I Input:
I K (the number of clusters)
I I observations in P quantitative dimensions
I I.e. subjects in the space of variables, or variables in the space

of subjects

I Randomly assign a number from 1 to K to the observations.
These are initial clusters.

I Iterate until no more changes in clusters

I For each of the K clusters, compute its
centroid, i.e. the mean vector of all the observations in the
cluster

I Assign each observation to the cluster whose centroid is the
closest

I ’Closest’ is defined with respect to a metric, typically
Eucledian distance

I Output:
I Allocation of each multivariate observation to a cluster



Example

14.3 Cluster Analysis 511
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FIGURE 14.6. Successive iterations of the K-means clustering algorithm for
the simulated data of Figure 14.4.

Hastie, Tibshirani, Friedman, The elements of Statistical Learning 2008



More formal details

I Dissimilarity d(xi , xi ′) between xi and xi ′

I Assume d additive in features: d(xi , xi ′) =
∑P

j=1 di,i ′,j
I E.g. Euclidean distance: di,i ′,j = (xij − xi ′j)

2

I K -means partitions observations into K sets
I minimize the sum of average within-cluster dissimilarities:

WK =
K∑

k=1

1

2 nk

∑
i,i ′∈Ck

d(xi , xi ′), where i , i ′ are in cluster k

and nk is the # of observations in cluster k

I Equivalently, minimizes pooled within-cluster sum of squares:

WCSSK =
K∑

k=1

∑
i :i∈Ck

P∑
p=1

(xip − x̄k·p)2

I If observations are multivariate Normal, then
Wk = −logLikelihood
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