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Principle component analysis

Heatmaps and hierarchical clustering

K-means



Can look for patterns in both samples and variables

a . Cc =
4 30 ° R -
2 o by . [ BN |
o & ==
; I S-S =
Fol Leoud - . == =7 B=
5 P ) o ==
- ! | - e ——-—
g-2 - 4 — i
H . 3 =g =
. | ==
4 S | —=—] -
T T
2 3 2
Principal Component 1

Gehlenborg et al, Nature Methods, 2010



Principle component analysis
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Overview

» Each sample as an observation in a

G-dimensional space
» Use the 'traditional’ representation of the data
(rows=observations; columns=variables)
» X is the | x G matrix of centered variable expressions

81 8G
S X11 — X1 X16 — X.G
S Xj1 — X1 X|G — X.G
S. X.1 X.G

» Goal: find at most / linear combinations of variables that best
characterize the total between-sample variation



With PCA, signal is lost when data has many unrelated
dimensions
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A simulation study
» Simulate n = 100 observations from 2 classes

» Each observation is a point in m = 2,40, 200, 1000 dimensions

»> Only first 10 dimensions are informative

> Plot first 2 principle components (i.e., eigenvectors)

| 4

Informative data should show a good separation between the two classes



With PCA, signal is lost when data has many unrelated

dimensions

(c) m=200 (d) m=1,000
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Conclusion: As we add new unrelated
variables, we lose information



Heatmaps and hierarchical clustering



Define dissimilarity between

multivariate data points

v

x=(x1,...,xp), y=(1,.--.,yp)
Eucledian distance

P
deuc(x,y) = Zl(Xi — yi)?

Pearson sample correlation distance
P (x—%)(yi—7
dcor(xay) —1— r(x, y) —1— Z,-zl( i Wyi—y)

VEm G—x)2 =P (i)

Spearman sample correlation distance
S22 -7")

d. (x,y) = =1 i

e VP =22 S, ()2

where x! = rank(x;) and y/ = rank(y;)




Important points of the algorithm

> Agglomerative vs divisive

» Agglomerative: group smaller clusters
» Divisive: split clusters (more comp. intensive)

» Linkage
» Single (min. pairwise distance)
» Complete (max pairwise distance)
» Average (average of pairwise distances)

» Standardizations

» Standardize variables: values in each variable on a same scale.
Affects dendrograms (i.e. order of rows and columns).

» Standardize colors: colors in each variable on a same scale.
Affects the color distribution of the matrix.

» In many implementations. the option 'scale’ affects colors but
not expression values



Effect of choice of distance
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Conclusion:
Eucledian: cluster variables with similar values

Pearson: cluster variables with similar prof
Caution:

The dendrograms are not unique

ile patterns



Effect of standardization

cowe
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(a) original scale (b) standardized scale

Euclidean distance ~ Correlation distance

Measurement 1. Measurement 2 original standard original  standard

A B 11.4058 04980 00177 00177
A C 54447 47830 03659  0.3659
A D 10.9919 52709 00155  0.0155
B c 13.1881 47092 04159 04159
B D 212118 52096 00615  0.0615
c D 85689 23094 03809  0.3809
Conclusions:
» Original scale: A and C are closest in location, while A and B are most

correlated.

> Standardized scale: correlation distance does not change. A and B have similar
standardized values.

» D has a large negative correlation with the A and B, so its correlation distance is
low

M. Key, BMC Bioinformatics, 2012



Role of color mapping
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(a) original scale (b) standardized scale

> (a): clusters & colors are applied to original data
> (b): clusters & colors are applied to row-scaled data

Conclusion: With row-scaled data, it is easier to
see that the patterns in A and B are the same.
Conclusion: Need to make standardization decisions
for both values and colors

M. Key, BMC Bioinformatics, 2012



Role of linkage

Average Linkage Complete Linkage

Single Linkage
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Conclusion: Average linkage leads to most
'balanced’ dendrograms
Hastie, Tibshirani, Friedman, The elements of

Statistical Learning 2008




K-means



Algorithm 'pseudocode’

> Input:
» K (the number of clusters)
» | observations in P quantitative dimensions
> l.e. subjects in the space of variables, or variables in the space

of subjects
» Randomly assign a number from 1 to K to the observations.
These are initial clusters.

> lterate until no more changes in clusters

» For each of the K clusters, compute its
centroid, i.e. the mean vector of all the observations in the

cluster
> Assign each observation to the cluster whose centroid is the

closest
> 'Closest’ is defined with respect to a metric, typically
Eucledian distance

» Output:
» Allocation of each multivariate observation to a cluster



Example

Initial Centroids Initial Partition

Iteration Number 2 Iteration Number 20

Hastie, Tibshirani, Friedman, The elements of Statistical Learning 2008



More formal details

» Dissimilarity d(x;,x;/) between x; and x;/

> Assume d additive in features: d(x;,x;/) = >.7

=1 diir j

» E.g. Euclidean distance: d; s j = (x; — x,-/j)2
> K-means partitions observations into K sets
» minimize the sum of average within-cluster dissimilarities:

K
1 - .
= E 2— g d(x;,x;7), where i,i" are in cluster k
ii"€Cy

and ny is the # of observations in cluster k
» Equivalently, minimizes pooled within-cluster sum of squares:
K P
Wess =3 3 3 (-
k=1 isieCy p=1

» |f observations are multivariate Normal, then
W = —logLikelihood
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