November 4, 2015

CS6220: Data mining techniques Unsupervised analysis methods

Olga Vitek

November 4, 2015

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Outline

Principle component analysis

Heatmaps and hierarchical clustering

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

K-means

Can look for patterns in both samples and variables

Gehlenborg et al, Nature Methods, 2010

Principle component analysis

・ロト・日本・モト・モー ショー もくら

Overvew

<ロト <回ト < 注ト < 注ト

æ

Ringnér, Nature Biotechnology, 2008

Overview

Each sample as an observation in a

G-dimensional space

- Use the 'traditional' representation of the data (rows=observations; columns=variables)
- X is the $I \times G$ matrix of centered variable expressions

 Goal: find at most / linear combinations of variables that best characterize the total between-sample variation

With PCA, signal is lost when data has many unrelated dimensions

A simulation study

- Simulate n = 100 observations from 2 classes
- Each observation is a point in m = 2, 40, 200, 1000 dimensions
- Only first 10 dimensions are informative
- Plot first 2 principle components (i.e., eigenvectors)
- Informative data should show a good separation between the two classes

With PCA, signal is lost when data has many unrelated dimensions

(日)

э

Conclusion: As we add new unrelated variables, we lose information

Heatmaps and hierarchical clustering

・ロト・西ト・ヨト・ヨー つへぐ

Define dissimilarity between multivariate data points

$$\blacktriangleright \mathbf{x} = (x_1, \ldots, x_P), \ \mathbf{y} = (y_1, \ldots, y_P)$$

• Eucledian distance

$$d_{euc}(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^{P} (x_i - y_i)^2}$$

► Pearson sample correlation distance $d_{cor}(\mathbf{x}, \mathbf{y}) = 1 - r(\mathbf{x}, \mathbf{y}) = 1 - \frac{\sum_{i=1}^{P} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{m} (x_i - \bar{x})^2 \sum_{i=1}^{P} (y_i - \bar{y})^2}}$

► Spearman sample correlation distance $d_{spear}(\mathbf{x}, \mathbf{y}) = \frac{\sum_{i=1}^{P} (x'_i - \bar{x}')(y'_i - \bar{y}')}{\sqrt{\sum_{i=1}^{P} (x'_i - \bar{x}')^2 \sum_{i=1}^{P} (y'_i - \bar{y}')^2}}$ where $x'_i = rank(x_i)$ and $y'_i = rank(y_i)$

Important points of the algorithm

- Agglomerative vs divisive
 - Agglomerative: group smaller clusters
 - Divisive: split clusters (more comp. intensive)
- Linkage
 - Single (min. pairwise distance)
 - Complete (max pairwise distance)
 - Average (average of pairwise distances)
- Standardizations
 - Standardize variables: values in each variable on a same scale.
 Affects dendrograms (i.e. order of rows and columns).
 - Standardize colors: colors in each variable on a same scale. Affects the color distribution of the matrix.
 - In many implementations. the option 'scale' affects colors but not expression values

Effect of choice of distance

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Conclusion:

Eucledian: cluster variables with similar values

Pearson: cluster variables with similar profile patterns

Caution:

The dendrograms are not unique

Effect of standardization

Conclusions:

- Original scale: A and C are closest in location, while A and B are most correlated.
- Standardized scale: correlation distance does not change. A and B have similar standardized values.
- D has a large negative correlation with the A and B, so its correlation distance is low
- M. Key, BMC Bioinformatics, 2012

Role of color mapping

(日) (四) (日) (日) (日)

- (a): clusters & colors are applied to original data
- (b): clusters & colors are applied to row-scaled data

Conclusion: With row-scaled data, it is easier to see that the patterns in A and B are the same. **Conclusion:** Need to make standardization decisions for both values and colors

M. Key, BMC Bioinformatics, 2012

Role of linkage

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆

Conclusion: Average linkage leads to most 'balanced' dendrograms Hastie, Tibshirani, Friedman, *The elements of*

Statistical Learning 2008

K-means

(ロ) (型) (主) (主) (三) のへで

Algorithm 'pseudocode'

- Input:
 - K (the number of clusters)
 - I observations in P quantitative dimensions
 - I.e. subjects in the space of variables, or variables in the space of subjects
- ► Randomly assign a number from 1 to *K* to the observations. These are initial clusters.
- Iterate until no more changes in clusters
 - ► For each of the *K* clusters, compute its *centroid*, i.e. the mean vector of all the observations in the cluster
 - Assign each observation to the cluster whose centroid is the closest
 - 'Closest' is defined with respect to a metric, typically Eucledian distance

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

- Output:
 - Allocation of each multivariate observation to a cluster

Example

Hastie, Tibshirani, Friedman, The elements of Statistical Learning 2008

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

More formal details

• Dissimilarity $d(\mathbf{x}_i, \mathbf{x}_{i'})$ between \mathbf{x}_i and $\mathbf{x}_{i'}$

• Assume *d* additive in features: $d(\mathbf{x}_i, \mathbf{x}_{i'}) = \sum_{j=1}^{P} d_{i,i',j}$

- E.g. Euclidean distance: $d_{i,i',j} = (x_{ij} x_{i'j})^2$
- K-means partitions observations into K sets
 - minimize the sum of average within-cluster dissimilarities:

$$W_{K} = \sum_{k=1}^{K} \frac{1}{2 n_{k}} \sum_{i,i' \in C_{k}} d(\mathbf{x}_{i}, \mathbf{x}_{i'}), \text{ where } i, i' \text{ are in cluster } k$$

and n_{k} is the $\#$ of observations in cluster k

Equivalently, minimizes pooled within-cluster sum of squares:

$$WCSS_{K} = \sum_{k=1}^{K} \sum_{i:i \in C_{k}} \sum_{p=1}^{P} (x_{ip} - \bar{x}_{\cdot p}^{k})^{2}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

If observations are multivariate Normal, then
 W_k = -logLikelihood