
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.10 OCTOBER 2011
1

PAPER Special Section on Information-Based Induction Sciences and Machine Learning

A Short Introduction to Learning to Rank

Hang LI†, Nonmember

SUMMARY Learning to rank refers to machine learning
techniques for training the model in a ranking task. Learning
to rank is useful for many applications in Information Retrieval,
Natural Language Processing, and Data Mining. Intensive stud-
ies have been conducted on the problem and significant progress
has been made [1], [2]. This short paper gives an introduction
to learning to rank, and it specifically explains the fundamen-
tal problems, existing approaches, and future work of learning to
rank. Several learning to rank methods using SVM techniques
are described in details.
key words: Learning to rank, information retrieval, natural
language processing, SVM

1. Ranking Problem

Learning to rank can be employed in a wide variety
of applications in Information Retrieval (IR), Natural
Language Processing (NLP), and Data Mining (DM).
Typical applications are document retrieval, expert
search, definition search, collaborative filtering, ques-
tion answering, keyphrase extraction, document sum-
marization, and machine translation [2]. Without loss
of generality, we take document retrieval as example in
this article.

Document retrieval is a task as follows (Fig. 1).
The system maintains a collection of documents. Given
a query, the system retrieves documents containing the
query words from the collection, ranks the documents,
and returns the top ranked documents. The ranking
task is performed by using a ranking model f(q, d) to
sort the documents, where q denotes a query and d
denotes a document.

Traditionally, the ranking model f(q, d) is created
without training. In the BM25 model, for example, it
is assumed that f(q, d) is represented by a conditional
probability distribution P (r|q, d) where r takes on 1 or
0 as value and denotes being relevant or irreverent, and
q and d denote a query and a document respectively. In
Language Model for IR (LMIR), f(q, d) is represented
as a conditional probability distribution P (q|d). The
probability models can be calculated with the words
appearing in the query and document, and thus no
training is needed (only tuning of a small number of
parameters is necessary) [3].

Manuscript received December 31, 2010.
Manuscript revised June 1, 2011.

†The author is with Microsoft Research Asia
DOI: 10.1587/transinf.E94.D.1

documents

{ }NdddD ,,,
21
L=

ranking based on

relevance

Retrieval

System

qnq

q

q

d

d

d

,

2,

1,

M

q

query

ranking of documents

Fig. 1 Document Retrieval

A new trend has recently arisen in document re-
trieval, particularly in web search, that is, to employ
machine learning techniques to automatically construct
the ranking model f(q, d). This is motivated by a num-
ber of facts. At web search, there are many signals
which can represent relevance, for example, the anchor
texts and PageRank score of a web page. Incorporating
such information into the ranking model and automat-
ically constructing the ranking model using machine
learning techniques becomes a natural choice. In web
search engines, a large amount of search log data, such
as click through data, is accumulated. This makes it
possible to derive training data from search log data
and automatically create the ranking model. In fact,
learning to rank has become one of the key technolo-
gies for modern web search.

We describe a number of issues in learning for rank-
ing, including training and testing, data labeling, fea-
ture construction, evaluation, and relations with ordi-
nal classification.

1.1 Training and Testing

Learning to rank is a supervised learning task and thus
has training and testing phases (see Fig. 2).

The training data consists of queries and docu-
ments. Each query is associated with a number of docu-
ments. The relevance of the documents with respect to
the query is also given. The relevance information can
be represented in several ways. Here, we take the most
widely used approach and assume that the relevance of
a document with respect to a query is represented by

Copyright c⃝ 2011 The Institute of Electronics, Information and Communication Engineers

2
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.10 OCTOBER 2011

2,1

1,1

1

d

d

q

M

M

M

m

m

m

d

d

q

2,

1,

M

Learning

System

{ }NdddD ,,, 21 L=

1,1 n
d

mnm
d ,

Ranking

System

1+mq

),(

),(

),(

11 ,11,1

2,112,1

1,111,1

++ +++

+++

+++

mm nmmnm

mmm

mmm

dqfd

dqfd

dqfd

M

),(dqf

Fig. 2 Learning to Rank for Document Retrieval

a label, while the labels denote several grades (levels).
The higher grade a document has, the more relevant
the document is.

Suppose that Q is the query set and D is the doc-
ument set. Suppose that Y = {1, 2, · · · , l} is the la-
bel set, where labels represent grades. There exists a
total order between the grades l ≻ l − 1 ≻ · · · ≻ 1,
where ≻ denotes the order relation. Further suppose
that {q1, q2, · · · , qm} is the set of queries for training
and qi is the i-th query. Di = {di,1, di,2, · · · , di,ni}
is the set of documents associated with query qi and
yi = {yi,1, yi,2, · · · , yi,ni} is the set of labels associated
with query qi, where ni denotes the sizes of Di and
yi; di,j denotes the j-th document in Di; and yi,j ∈ Y
denotes the j-th grade label in yi, representing the rel-
evance degree of di,j with respect to qi. The original
training set is denoted as S = {(qi, Di),yi}mi=1.

A feature vector xi,j = ϕ(qi, di,j) is created from
each query-document pair (qi, di,j), i = 1, 2, · · · ,m; j =
1, 2, · · · , ni, where ϕ denotes the feature functions.
That is to say, features are defined as functions of
a query document pair. For example, BM25 and
PageRank are typical features [2]. Letting xi =
{xi,1, xi,2, · · · , xi,ni}, we represent the training data set
as S′ = {(xi,yi)}mi=1. Here x ∈ X and X ⊆ ℜd.

We aim to train a (local) ranking model f(q, d) =
f(x) that can assign a score to a given query docu-
ment pair q and d, or equivalently to a given feature
vector x. More generally, we can also consider train-
ing a global ranking model F (q,D) = F (x). The local
ranking model outputs a single score, while the global
ranking model outputs a list of scores.

Let the documents in Di be identified by the inte-
gers {1, 2, · · · , ni}. We define a permutation (ranking
list) πi on Di as a bijection from {1, 2, · · · , ni} to itself.
We use Πi to denote the set of all possible permutations
on Di, use πi(j) to denote the rank (or position) of the
j-th document (i.e., di,j) in permutation πi. Ranking
is nothing but to select a permutation πi ∈ Πi for the
given query qi and the associated documents Di using
the scores given by the ranking model f(qi, di).

The test data consists of a new query qm+1 and
associated documents Dm+1. T = {(qm+1, Dm+1)}.

We create feature vector xm+1, use the trained ranking
model to assign scores to the documents Dm+1, sort
them based on the scores, and give the ranking list of
documents as output πm+1.

The training and testing data is similar to, but dif-
ferent from the data in conventional supervised learning
such as classification and regression. Query and its as-
sociated documents form a group. The groups are i.i.d.
data, while the instances within a group are not i.i.d.
data. A local ranking model is a function of a query
and a document, or equivalently, a function of a feature
vector derived from a query and a document.

1.2 Data Labeling

Currently there are two ways to create training data.
The first one is by human judgments and the second
one is by derivation from search log data. We explain
the first approach here. Explanations on the second ap-
proach can be found in [2]. In the first approach, a set
of queries is randomly selected from the query log of a
search system. Suppose that there are multiple search
systems. Then the queries are submitted to the search
systems and all the top ranked documents are collected.
As a result, each query is associated with multiple docu-
ments. Human judges are then asked to make relevance
judgments on all the query document pairs. Relevance
judgments are usually conducted at five levels, for ex-
ample, perfect, excellent, good, fair, and bad. Human
judges make relevance judgments from the viewpoint of
average users. For example, if the query is ‘Microsoft’,
and the web page is microsoft.com, then the label is
‘perfect’. Furthermore, the Wikipedia page about Mi-
crosoft is ’excellent’, and so on. Labels representing rel-
evance are then assigned to the query document pairs.
Relevance judgment on a query document pair can be
performed by multiple judges and then majority voting
can be conducted. Benchmark data sets on learning to
rank have also been released [4].

1.3 Evaluation

The evaluation on the performance of a ranking model
is carried out by comparison between the ranking lists
output by the model and the ranking lists given as the
ground truth. Several evaluation measures are widely
used in IR and other fields. These include NDCG
(Normalized Discounted Cumulative Gain), DCG (Dis-
counted Cumulative Gain), MAP (Mean Average Pre-
cision), and Kendall’s Tau.

Given query qi and associated documents Di, sup-
pose that πi is the ranking list (permutation) on Di

and yi is the set of labels (grades) of Di. DCG [5] mea-
sures the goodness of the ranking list with the labels.
Specifically, DCG at position k is defined as:

DCG(k) =
∑

j:πi(j)≤k

G(j)D(πi(j)),

LI: A SHORT INTRODUCTION TO LEARNING TO RANK (ieice.cls)
3

where Gi(·) is a gain function and Di(·) is a position
discount function, and πi(j) is the position of di,j in πi.
The summation is taken over the top k positions in the
ranking list πi. DCG represents the cumulative gain of
accessing the information from position one to position
k with discounts on the positions. NDCG is normalized
DCG and NDCG at position k is defined as:

NDCG(k) = G−1
max,i(k)

∑
j:πi(j)≤k

G(j)D(πi(j)),

where Gmax,i(k) is the normalizing factor and is cho-
sen such that a perfect ranking π∗

i ’s NDCG score at
position k is 1. In a perfect ranking, the documents
with higher grades are always ranked higher. Note that
there can be multiple perfect rankings for a query and
associated documents.

The gain function is normally defined as an ex-
ponential function of grade. That is to say, the satis-
faction of accessing information exponentially increases
when the grade of relevance of information increases.

G(j) = 2yi,j − 1, (1)

where yi,j is the label (grade) of document di,j in rank-
ing list πi. The discount function is normally defined as
a logarithmic function of position. That is to say, the
satisfaction of accessing information logarithmically de-
creases when the position of access increases.

D(πi(j)) =
1

log2(1 + πi(j))
, (2)

where πi(j) is the position of document di,j in ranking
list πi.

Hence, DCG and NDCG at position k become

DCG(k) =
∑

j:πi(j)≤k

2yi,j − 1

log2(1 + πi(j))
, (3)

NDCG(k) = G−1
max,i(k)

∑
j:πi(j)≤k

2yi,j − 1

log2(1 + πi(j))
.(4)

In evaluation, DCG and NDCG values are further
averaged over queries.

Table 1 gives examples of calculating NDCG values
of two ranking lists. NDCG (DCG) has the effect of
giving high scores to the ranking lists in which relevant
documents are ranked high. For perfect rankings, the
NDCG value at each position is always one, while for
imperfect rankings, the NDCG values are usually less
than one.

MAP is another measure widely used in IR. In
MAP, it is assumed that the grades of relevance are
at two levels: 1 and 0. Given query qi, associated doc-
uments Di, ranking list πi on Di, and labels yi of Di,
Average Precision for qi is defined as:

AP =

∑ni

j=1 P (j) · yi,j∑ni

j=1 yi,j
,

Table 1 Examples of NDCG Calculation.

Perfect ranking Formula Explanation
(3, 3, 2, 2, 1, 1, 1) grades:3,2,1
(7, 7, 3, 3, 1, 1, 1) Eq.(1) gains
(1, 0.63, 0.5, · · ·) Eq.(2) discounts
(7, 11.41, 12.91, · · ·) Eq.(3) DCG
(1/7, 1/11.41, 1/12.91,· · ·) normalizers
(1,1,1,· · ·) Eq.(4) NDCG

Imperfect ranking Formula Explanation
(2, 3, 2, 3, 1, 1, 1) grades:3,2,1
(3, 7, 3, 7, 1, 1, 1) Eq.(1) gains
(1, 0.63, 0.5, · · ·) Eq.(2) discounts
(3, 7.41, 8.91, · · ·) Eq.(3) DCG
(1/7, 1/11.41, 1/12.91,· · ·) normalizers
(0.43, 0.65, 0.69, · · ·) Eq.(4) NDCG

where yi,j is the label (grade) of di,j and takes on 1 or
0 as a value, representing being relevant or irrelevant.
P (j) for query qi is defined as:

P (j) =

∑
k:πi(k)≤πi(j)

yi,k

πi(j)
,

where πi(j) is the position of di,j in πi. P (j) repre-
sents the precision until the position of di,j for qi. Note
that labels are either 1 or 0, and thus ‘precision’ can
be defined. Average Precision represents averaged pre-
cision over all the positions of documents with label 1
for query qi.

Average Precision values are further averaged over
queries to become Mean Average Precision (MAP).

1.4 Relation with Ordinal Classification

Ordinal classification (also known as ordinal regression)
is similar to ranking, but is also different. The input of
ordinal classification is a feature vector x and the out-
put is a label y representing a grade, where the grades
are classes in a total order. The goal of learning is to
construct a model which can assign a grade label y to
a given feature vector x. The model mainly consists
of a scoring function f(x). The model first assigns a
real number to x using f(x) and then determines the
grade y of x using a number of thresholds. Specifi-
cally, it partitions the real number axis into intervals
and aligns each interval to a grade. It takes the grade
of the interval that f(x) falls into as the grade of x.

In ranking, one cares more about accurate order-
ing of objects, while in ordinal classification, one cares
more about accurate ordered-categorization of objects.
A typical example of ordinal classification is product
rating. For example, given the features of a movie, we
are to assign a number of stars (ratings) to the movie.
In that case, correct assignment of the number of stars
is critical. In contrast, in ranking such as document re-
trieval, given a query, the objective is to correctly sort
related documents, although sometimes training data
and testing data are labeled at multiple grades as in
ordinal classification. The number of documents to be

4
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.10 OCTOBER 2011

ranked can vary from query to query. There are queries
for which more relevant documents are available in the
collection, and there are also queries for which only
weakly relevant documents are available.

2. Formulation

We formalize learning to rank as a supervised learning
task. Suppose that X is the input space (feature space)
consisting of lists of feature vectors, and Y is the out-
put space consisting of lists of grades. Further suppose
that x is an element of X representing a list of feature
vectors and y is an element of Y representing a list of
grades. Let P (X,Y) be an unknown joint probability
distribution where random variable X takes x as its
value and random variable Y takes y as its value.

Assume that F (·) is a function mapping from a list
of feature vectors x to a list of scores. The goal of the
learning task is to automatically learn a function F̂ (x)
given training data (x1,y1), (x2,y2), . . . , (xm,ym).
Each training instance is comprised of feature vectors xi

and the corresponding grades yi (i = 1, · · · ,m). Here
m denotes the number of training instances.

F (x) and y can be further written as F (x) =
(f(x1), f(x2), · · · , f(xn)) and y = (y1, y2, · · · , yn). The
feature vectors represent objects to be ranked. Here
f(x) denotes the local ranking function and n denotes
the number of feature vectors and grades.

A loss function L(·, ·) is utilized to evaluate the
prediction result of F (·). First, feature vectors x are
ranked according to F (x), then the top n results of
the ranking are evaluated using their corresponding
grades y. If the feature vectors with higher grades are
ranked higher, then the loss will be small. Otherwise,
the loss will be large. The loss function is specifically
represented as L(F (x),y). Note that the loss function
for ranking is slightly different from the loss functions
in other statistical learning tasks, in the sense that it
makes use of sorting.

We further define the risk function R(·) as the ex-
pected loss function with respect to the joint distribu-
tion P (X,Y),

R(F) =

∫
X×Y

L(F (x),y)dP (x,y).

Given training data, we calculate the empirical risk
function as follows,

R̂(F) =
1

m

m∑
i=1

L(F (xi),yi).

The learning task then becomes the minimization
of the empirical risk function, as in other learning tasks.
The minimization of the empirical risk function could
be difficult due to the nature of the loss function (it is
not continuous and it uses sorting). We can consider
using a surrogate loss function L′(F (x),y).

The corresponding empirical risk function is de-
fined as follows.

R̂′(F) =
1

m

m∑
i=1

L′(F (xi),yi).

We can also introduce a regularizer to conduct min-
imization of the regularized empirical risk. In such
cases, the learning problem becomes minimization of
the (regularized) empirical risk function based on the
surrogate loss.

Note that we adopt a machine learning formulation
here. In IR, the feature vectors x are derived from
a query and its associated documents. The grades y
represent the relevance degrees of the documents with
respect to the query. We make use of a global ranking
function F (·). In practice, it can be a local ranking
function f(·). The possible number of feature vectors in
x can be very large, even infinite. The evaluation (loss
function) is, however, only concerned with n results.

In IR, the true loss functions can be those defined
based on NDCG (Normalized Discounted Cumulative
Gain) and MAP (Mean Average Precision). For exam-
ple, we can have

L(F (x),y) = 1.0−NDCG.

Note that the true loss functions (NDCG loss and MAP
loss) makes use of sorting based on F (x).

For the surrogate loss function, there are also dif-
ferent ways to define it, which lead to different ap-
proaches to learning to rank. For example, one can
define pointwise loss, pairwise loss, and listwise loss
functions.

The squared loss used in Subset Regression is a
pointwise surrogate loss [6]. We call it pointwise loss,
because it is defined on single objects.

L′(F (x),y) =
n∑

i=1

(f(xi)− yi)
2.

It is actually an upper bound of 1.0−NDCG.
Pairwise losses can be the hinge loss, exponen-

tial loss, and logistic loss on pairs of objects, which
are used in Ranking SVM [7], RankBoost [8], and
RankNet [9], respectively. They are also upper bounds
of 1.0−NDCG [10].

L′(F (x),y) =
n−1∑
i=1

n∑
j=i+1

ϕ(sign(yi − yj), f(xi)− f(xj)),

where it is assumed that L′ = 0 when yi = yj and ϕ is
the hinge loss, exponential loss, or logistic loss function.

Listwise loss functions are defined on lists of ob-
jects, just like the true loss functions, and thus are more
directly related to the true loss functions. Different list-
wise loss functions are exploited in the listwise methods.
For example, the loss function in AdaRank is a listwise

LI: A SHORT INTRODUCTION TO LEARNING TO RANK (ieice.cls)
5

loss.

L′(F (x),y) = exp(−NDCG),

where NDCG is calculated on the basis of F (x) and y.
Obviously, it is also an upper bound of 1.0−NDCG.

3. Pointwise Approach

In the pointwise approach, the ranking problem (rank-
ing creation) is transformed to classification, regression,
or ordinal classification, and existing methods for classi-
fication, regression, or ordinal classification are applied.
Therefore, the group structure of ranking is ignored in
this approach.

The pointwise approach includes Subset Rank-
ing [6], McRank [11], Prank [12], and OC SVM [13].
We take the last one as an example and describe it in
detail.

3.1 SVM for Ordinal Classification

The method proposed by Shashua & Levin [13] utilizes
a number of parallel hyperplanes as a ranking model.
Their method, referred to as OC SVM in this arti-
cle, learns the parallel hyperplanes by the large mar-
gin principle. In one implementation, the method tries
to maximize a fixed margin for all the adjacent classes
(grades).†

Suppose that X ⊆ ℜd and Y = {1, 2, · · · , l} where
there exists a total order on Y. x ∈ X is an object
(feature vector) and y ∈ Y is a label representing a
grade. Given object x, we aim to predict its label
(grade) y. That is to say, this is an ordinal classifi-
cation problem. We employ a number of linear models
(parallel hyperplanes) ⟨w, x⟩ − br, (r = 1, · · · , l − 1) to
make the prediction, where w ∈ ℜd is a weight vec-
tor and br ∈ ℜ, (r = 1, · · · , l) are biases satisfying
b1 ≤ · · · ≤ bl−1 ≤ bl = +∞. The models corre-
spond to parallel hyperplanes ⟨w, x⟩−br = 0 separating
grades r and r + 1, (r = 1, · · · , l − 1). Figure 3 illus-
trates the model. If x satisfies ⟨w, x⟩ − br−1 ≥ 0 and
⟨w, x⟩−br < 0, then y = r, (r = 1, · · · , l). We can write
it as minr∈{1,···,l}{r|⟨w, x⟩ − br < 0}.

Suppose that the training data is given as follows.
For each grade r = 1, · · · , l, there are mr instances:
xr,i, i = 1, · · · ,mr. The learning task is formalized as
the following Quadratic Programming (QP) problem.

minw,b,ξ
1
2 ||w||

2 + C
∑l−1

r=1

∑mr

i=1(ξr,i + ξ∗r+1,i)
s. t. ⟨w, xr,i⟩+ br ≥ 1− ξr,i
⟨w, xr+1,i⟩+ br ≤ 1− ξ∗r+1,i

ξr,i ≥ 0, ξ∗r+1,i ≥ 0
i = 1, · · · ,mr, r = 1, · · · , l − 1

m = m1 + · · ·+ml,

where xr,i denotes the i-th instance in the r-th grade,

†The other method maximizes the sum of all margins.

w

r=2

r=3

r=1

Fig. 3 SVM for Oridinal Classification

ξr+1,i and ξ∗r+1,i denote the corresponding slack vari-
ables, || · || denotes L2 norm, m denotes the number
of training instances, and C > 0 is a coefficient. The
method tries to separate the instances in the neighbor-
ing grades with the same margin.

4. Pairwise Approach

In the pairwise approach, ranking is transformed into
pairwise classification or pairwise regression. In the for-
mer case, a classifier for classifying the ranking orders
of document pairs is created and is employed in the
ranking of documents. In the pairwise approach, the
group structure of ranking is also ignored.

The pairwise approach includes Ranking SVM [7],
RankBoost [8], RankNet [9], GBRank [14], IR
SVM [15], Lambda Rank [16], and LambdaMART [17].
We introduce Ranking SVM and IR SVM in this article.

4.1 Ranking SVM

We can learn a classifier, such as SVM, for classifying
the order of pairs of objects and utilize the classifier in
the ranking task. This is the idea behind the Ranking
SVM method proposed by Herbrich et al. [7].

Figure 4 shows an example of the ranking problem.
Suppose that there are two groups of objects (docu-
ments associated with two queries) in the feature space.
Further suppose that there are three grades (levels).
For example, objects x1, x2, and x3 in the first group
are at three different grades. The weight vector w cor-
responds to the linear function f(x) = ⟨w, x⟩ which can
score and rank the objects. Ranking objects with the
function is equivalent to projecting the objects into the
vector and sorting the objects according to the projec-
tions on the vector. If the ranking function is ‘good’,
then there should be an effect that objects at grade 3
are ranked ahead of objects at grade 2, etc. Note that
objects belonging to different groups are incomparable.

Figure 5 shows that the ranking problem in Fig-
ure 4 can be transformed to Linear SVM classification.
The differences between two feature vectors at different

6
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.10 OCTOBER 2011

w

1
x

2
x

w

rank 1

rank 2

rank 3

3
x

Fig. 4 Example of Ranking Problem

);(wxf31 xx −

32 xx −

xx −

Positive Instances

21 xx −

+1

-1

12 xx −

23 xx −

13 xx −

Negative Instances

Fig. 5 Transformation to Pairwise Classification

grades in the same group are treated as new feature vec-
tors, e.g., x1 − x2, x1 − x3, and x2 − x3. Furthermore,
labels are also assigned to the new feature vectors. For
example, x1−x2, x1−x3, and x2−x3 are positive. Note
that feature vectors at the same grade or feature vec-
tors from different groups are not utilized to create new
feature vectors. One can train a Linear SVM classifier
which separates the new feature vectors as shown in
Figure 5. Geometrically, the margin in the SVM model
represents the closest distance between the projections
of object pairs in two grades. Note that the hyperplane
of the SVM classifier passes the original and the pos-
itive and negative instances form corresponding pairs.
For example, x1−x2 and x2−x1 are positive and nega-
tive instances respectively. The weight vector w of the
SVM classifier corresponds to the ranking function. In
fact, we can discard the negative instances in learning,
because they are redundant.

Training data is given as {((x(1)
i , x

(2)
i), yi)}, i =

1, · · · ,m where each instance consists of two feature

vectors (x
(1)
i , x

(2)
i) and a label yi ∈ {+1,−1} denoting

which feature vector should be ranked ahead.
The learning of Ranking SVM is formalized as the

following QP problem.

Grade: 3, 2, 1
Documents are represented by their grades
Example 1:

ranking-1: 2 3 2 1 1 1 1
ranking-2: 3 2 1 2 1 1 1

Example 2:
ranking for query-1: 3 2 2 1 1 1 1
ranking for query-2: 3 3 2 2 2 1 1 1 1 1

Fig. 6 Example Ranking Lists

minw,ξ
1
2 ||w||

2 + C
∑m

i=1 ξi
s. t. yi⟨w, x(1)

i − x
(2)
i ⟩ ≥ 1− ξi

ξi ≥ 0
i = 1, . . . ,m,

where x
(1)
i and x

(2)
i denote the first and second feature

vectors in a pair of feature vectors, || · || denotes L2

norm, m denotes the number of training instances, and
C > 0 is a coefficient.

It is equivalent to the following non-constrained
optimization problem, i.e., the minimization of the reg-
ularized hinge loss function.

min
w

m∑
i=1

[1− yi⟨w, x(1)
i − x

(2)
i ⟩]+ + λ||w||2, (5)

where [x]+ denotes function max(x, 0) and λ = 1
2C .

4.2 IR SVM

IR SVM proposed by Cao et al. [15] is an extension
of Ranking SVM for Information Retrieval (IR), whose
idea can be applied to other applications as well.

Ranking SVM transforms ranking into pairwise
classification, and thus it actually makes use of the 0-1
loss in the learning process. There exists a gap between
the loss function and the IR evaluation measures. IR
SVM attempts to bridge the gap by modifying 0-1 loss,
that is, conducting cost sensitive learning of Ranking
SVM.

We first look at the problems caused by straight-
forward application of Ranking SVM to document re-
trieval, using examples in Figure 6.

One problem with the direction application of
Ranking SVM is that Ranking SVM equally treats doc-
ument pairs across different grades. Example 1 indi-
cates the problem. There are two rankings for the same
query. The documents at positions 1 and 2 are swapped
in ranking-1 from the perfect ranking, while the doc-
uments at positions 3 and 4 are swapped in ranking-2
from the perfect ranking. There is only one error for
each ranking in terms of the 0-1 loss, or difference in
order of pairs. They have the same effect on the train-
ing of Ranking SVM, which is not desirable. Ranking-2
should be better than ranking-1, from the viewpoint of
IR, because the result on its top is better. Note that to
have high accuracy on top-ranked documents is crucial
for an IR system, which is reflected in the IR evaluation

LI: A SHORT INTRODUCTION TO LEARNING TO RANK (ieice.cls)
7

measures.
Another issue with Ranking SVM is that it equally

treats document pairs from different queries. In exam-
ple 2, there are two queries and the numbers of docu-
ments associated with them are different. For query-
1 there are 2 document pairs between grades 3-2, 4
document pairs between grades 3-1, 8 document pairs
between grades 2-1, and in total 14 document pairs.
For query-2, there are 31 document pairs. Ranking
SVM takes 14 instances (document pairs) from query-
1 and 31 instances (document pairs) from query-2 for
training. Thus, the impact on the ranking model from
query-2 will be larger than the impact from query-1.
In other words, the model learned will be biased to-
ward query-2. This is in contrast to the fact that in
IR evaluation queries are evenly important. Note that
the numbers of documents usually vary from query to
query.

1=τµ

2=τµ

Loss

0.5=τµ

1+)(xyf

Fig. 7 Modified Hinge Loss Functions

IR SVM addresses the above two problems by
changing the 0-1 pairwise classification into a cost sen-
sitive pairwise classification. It does so by modifying
the hinge loss function of Ranking SVM. Specifically, it
sets different losses for document pairs across different
grades and from different queries. To emphasize the im-
portance of correct ranking on the top, the loss function
heavily penalizes errors related to the top. To increase
the influence of queries with less documents, the loss
function heavily penalizes errors from the queries.

Figure 7 plots the shapes of different hinge loss
functions with different penalty parameters. The x-
axis represents yf(x) and the y-axis represents loss.

When yf(x
(1)
i − x

(2)
i) ≥ 1 , the losses are zero. When

yf(x
(1)
i − x

(2)
i) < 1, the losses are represented by lin-

early decreasing functions with different slopes. If the
slope equals −1, then the function is the normal hinge
loss function. IR SVM modifies the hinge loss function,
specifically modifies the slopes for different grade pairs
and different queries. It assigns higher weights to doc-
ument pairs across important grade pairs and assigns
normalization weights to document pairs according to

queries.
The learning of IR SVM is equivalent to the follow-

ing optimization problem. Specifically, the minimiza-
tion of the modified regularized hinge loss function,

min
w

m∑
i=1

τk(i)µq(i)[1− yi⟨w, x(1)
i − x

(2)
i ⟩]+ + λ||w||2,

where [x]+ denotes max(x, 0), λ = 1
2C , and τk(i) and

µq(i) are weights. See the loss function of Ranking SVM
(5).

Here τk(i) represents the weight of instance (docu-
ment pair) i whose label pair belongs to the k-th type.
Xu et al. propose a heuristic method to determine
the value of τk. The method takes the average drop
in NDCG@1 when randomly changing the positions of
documents belonging to the grade pair as the value of a
grade pair τk. Moreover, µq(i) represents the weight of
instance (document pair) i which is from query q. The
value of µq(i) is simply determined by 1

|nq| , where nq is

the number of document pairs for query q.
The equivalent QP problem is as below.

minw,ξ
1
2 ||w||

2 + Ci

∑m
i=1 ξi

s. t. yi⟨w, x(1)
i − x

(2)
i ⟩ ≥ 1− ξi,

Ci =
τk(i)µq(i)

2λ
ξi ≥ 0,
i = 1, . . . ,m.

5. Listwise Approach

The listwise approach addresses the ranking problem
in a more straightforward way. Specifically, it takes
ranking lists as instances in both learning and predic-
tion. The group structure of ranking is maintained and
ranking evaluation measures can be more directly in-
corporated into the loss functions in learning.

The listwise approach includes ListNet [18],
ListMLE [19], AdaRank [20], SVM MAP [21], and Soft
Rank [22]. SVM MAP and related methods are ex-
plained in this article.

5.1 SVM MAP

The algorithm SVM MAP developed by Yue et al. [21]
is designed to directly optimize MAP [2], but it can
be easily extended to optimize NDCG. Xu et al. [23]
further generalize it to a group of algorithms.

In ranking, for query qi the ranking model f(xij)
assigns a score to each associated document dij or fea-
ture vector xij where xij is the feature vector derived
from qi and dij . The documents di (feature vectors xi)
are then sorted based on their scores and a permutation
denoted as πi is obtained. For simplicity, suppose that
the ranking model f(xij) is a linear model:

f(xij) = ⟨w, xij⟩, (6)

8
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.10 OCTOBER 2011

where w denotes a weight vector.
Suppose that labels for the feature vectors xi are

also given as yi. We consider using a scoring func-
tion S(xi, πi) to measure the goodness of ranking πi.
S(xi, πi) is defined as

S(xi, πi) = ⟨w, σ(xi, πi)⟩,

where w is still the weight vector and vector σ(xi, πi)
is defined as

σ(xi, πi) =
2

ni(ni − 1)

∑
k,l:k<l

[zkl(xik − xil)],

where zkl = +1, if πi(k) < πi(l) (xik is ranked ahead
of xil in πi), and zkl = −1, otherwise. Recall that ni is
the number of documents associated with query qi.

For query qi, we can calculate S(xi, πi) for each
permutation πi and select the permutation π̃i with the
largest score:

π̃i = arg max
πi∈Πi

S(xi, πi), (7)

where Πi denotes the set of all possible permutations
for xi.

It can be easily shown that the ranking π̃i selected
by Eq.(7) is equivalent to the ranking created by the
ranking model f(xij) (when both of them are linear
functions). Figure 8 gives an example. It is easy to
verify that both f(x) and S(xi, π) will output ABC as
the most preferable ranking (permutation).

Objects: A, B, C
fA = ⟨w, xA⟩, fB = ⟨w, xB⟩, fC = ⟨w, xC⟩
Suppose fA > fB > fC
For example:
Permutation1: ABC
Permutation2: ACB

SABC = 1
6
⟨w, ((xA − xB) + (xB − xC) + (xA − xC))⟩

SACB = 1
6
⟨w, ((xA − xC) + (xC − xB) + (xA − xB))⟩

SABC > SACB

Fig. 8 Example of Scoring Function

In learning, we would ideally create a ranking
model that can maximize the accuracy in terms of a
listwise evaluation measure on training data, or equiv-
alently, minimizes the loss function defined below,

L(f) =

m∑
i=1

(E(π∗
i ,yi)− E(πi,yi)), (8)

where πi is the permutation on feature vector xi by
ranking model f and yi is the corresponding list of
grades. E(πi,yi) denotes the evaluation result of πi in
terms of an evaluation measure (e.g., NDCG). Usually
E(π∗

i ,yi) = 1.
We view the problem of learning a ranking model

as the following optimization problem in which the fol-
lowing loss function is minimized.

∑m
i=1 maxπ∗

i
∈Π∗

i
;πi∈Πi\Π∗

i
(E(π∗

i ,yi)− E(πi,yi))

· [[S(xi, π
∗
i) ≤ S(xi, πi)]],

(9)

where [[c]] is one if condition c is satisfied, otherwise
it is zero. π∗

i ∈ Π∗
i ⊆ Πi denotes any of the perfect

permutations for qi.
The loss function measures the loss when the most

preferred ranking list by the ranking model is not the
perfect ranking list. One can prove that the true loss
function such as that in (8) is upper-bounded by the
new loss function in (9).

The loss function (9) is still not continuous and
differentiable. We can consider using continuous, dif-
ferentiable, and even convex upper bounds of the loss
function (9).

1) The 0-1 function in (9) can be replaced with its
upper bounds, for example, hinge functions, yielding∑m

i=1 maxπ∗
i
∈Π∗

i
,πi∈Πi\Π∗

i
(E(π∗

i ,yi)− E(πi,yi)) ·
[1− (S(xi, π

∗
i)− S(xi, πi))]+∑m

i=1

[
maxπ∗

i
∈Π∗

i
,πi∈Πi\Π∗

i
((E(π∗

i ,yi)− E(πi,yi))

− (S(xi, π
∗
i)− S(xi, πi)))]+ ,

2) The max function can also be replaced with
its upper bound, the sum function. This is because∑

i xi ≥ maxi xi if xi ≥ 0 holds for all i.
3) Relaxations 1 and 2 can be applied simultane-

ously.
For example, using the hinge function and taking

the true loss as 1.0−MAP , we obtain SVMMAP. More
precisely, SVM MAP solves the following QP problem:

minw;ξ≥0
1
2 ||w||

2 + C
m

∑m
i=1 ξi

s.t. ∀i,∀π∗
i ∈ Π∗

i ,∀πi ∈ Πi \Π∗
i :

S(xi, π
∗
i)− S(xi, πi) ≥ E(π∗

i ,yi)− E(πi,yi)− ξi,
(10)

where C is a coefficient and ξi is the maximum loss
among all the losses for permutations of query qi.

Equivalently, SVM MAP minimizes the following
regularized hinge loss function∑m

i=1

[
maxπ∗

i
∈Π∗

i
;πi∈Πi\Π∗

i
(E(π∗

i ,yi)− E(πi,yi))

− (S(xi, π
∗
i)− S(xi, πi))]+ + λ||w||2.

(11)

Intuitively, the first term calculates the total maximum
loss when selecting the best permutation for each of
the queries. Specifically, if the difference between the
permutations S(xi, π

∗
i) − S(xi, πi) is less than the dif-

ference between the corresponding evaluation measures
E(π∗

i ,yi) − E(πi,yi), then there will be a loss, other-
wise not. Next, the maximum loss is selected for each
query and they are summed up over all the queries.

Since c · [[x ≤ 0]] < [c − x]+ holds for all c ∈ ℜ+

and x ∈ ℜ, it is easy to see that the loss in (11) also
bounds the true loss function in (8).

6. Ongoing and Future Work

It is still necessary to develop more advanced technolo-
gies for learning to rank. There are also many open

LI: A SHORT INTRODUCTION TO LEARNING TO RANK (ieice.cls)
9

questions with regard to theory and applications of
learning to rank [2], [24]. Current and future research
directions include

• training data creation
• semi-supervised learning and active learning
• feature learning
• scalable and efficient training
• domain adaptation and multi-task learning
• ranking by ensemble learning
• global ranking
• ranking of nodes in a graph.

References

[1] T.Y. Liu, “Learning to rank for information retrieval,”
Foundations and Trends in Information Retrieval, vol.3,
no.3, pp.225–331, 2009.

[2] H. Li, “Learning to rank for information retrieval and nat-
ural language processing,” Synthesis Lectures on Human
Language Technologies, 2011, Morgan & Claypool Publish-
ers.

[3] W.B. Croft, D. Metzler, and T. Strohman, Search Engines -
Information Retrieval in Practice, Pearson Education, 2009.

[4] T.Y. Liu, J. Xu, T. Qin, W. Xiong, and H. Li, “LETOR:
Benchmark dataset for research on learning to rank for in-
formation retrieval,” Proceedings of SIGIR 2007 Workshop
on Learning to Rank for Information Retrieval, 2007.

[5] K. Järvelin and J. Kekäläinen, “IR evaluation methods for
retrieving highly relevant documents,” Proceedings of the
23rd annual international ACM SIGIR conference on Re-
search and development in information retrieval, SIGIR ’00,
New York, NY, USA, pp.41–48, ACM, 2000.

[6] D. Cossock and T. Zhang, “Subset ranking using regres-
sion.,” COLT ’06: Proceedings of the 19th Annual Confer-
ence on Learning Theory, pp.605–619, 2006.

[7] R. Herbrich, T. Graepel, and K. Obermayer, Large Margin
rank boundaries for ordinal regression, MIT Press, Cam-
bridge, MA, 2000.

[8] Y. Freund, R.D. Iyer, R.E. Schapire, and Y. Singer, “An
efficient boosting algorithm for combining preferences.,”
Journal of Machine Learning Research, vol.4, pp.933–969,
2003.

[9] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds,
N. Hamilton, and G. Hullender, “Learning to rank using
gradient descent,” ICML ’05: Proceedings of the 22nd in-
ternational conference on Machine learning, pp.89–96, 2005.

[10] W. Chen, T.Y. Liu, Y. Lan, Z.M. Ma, and H. Li, “Ranking
measures and loss functions in learning to rank,” NIPS ’09,
2009.

[11] P. Li, C. Burges, and Q. Wu, “McRank: Learning to
rank using multiple classification and gradient boosting,”
in Advances in Neural Information Processing Systems 20,
ed. J. Platt, D. Koller, Y. Singer, and S. Roweis, pp.897–
904, MIT Press, Cambridge, MA, 2008.

[12] K. Crammer and Y. Singer, “Pranking with ranking.,”
NIPS, pp.641–647, 2001.

[13] A. Shashua and A. Levin, “Ranking with large margin prin-
ciple: Two approaches,” in Advances in Neural Information
Processing Systems 15, ed. S.T. S. Becker and K. Ober-
mayer, MIT Press.

[14] Z. Zheng, H. Zha, T. Zhang, O. Chapelle, K. Chen, and
G. Sun, “A general boosting method and its application
to learning ranking functions for web search,” in Advances
in Neural Information Processing Systems 20, ed. J. Platt,

D. Koller, Y. Singer, and S. Roweis, pp.1697–1704, MIT
Press, Cambridge, MA, 2008.

[15] Y. Cao, J. Xu, T.Y. Liu, H. Li, Y. Huang, and H.W. Hon,
“Adapting ranking SVM to document retrieval,” SIGIR’ 06,
pp.186–193, 2006.

[16] C. Burges, R. Ragno, and Q. Le, “Learning to rank with
nonsmooth cost functions,” in Advances in Neural Informa-
tion Processing Systems 18, pp.395–402, MIT Press, Cam-
bridge, MA, 2006.

[17] Q. Wu, C.J.C. Burges, K.M. Svore, and J. Gao, “Adapt-
ing boosting for information retrieval measures,” Inf. Retr.,
vol.13, no.3, pp.254–270, 2010.

[18] Z. Cao, T. Qin, T.Y. Liu, M.F. Tsai, and H. Li, “Learn-
ing to rank: from pairwise approach to listwise approach,”
ICML ’07: Proceedings of the 24th international conference
on Machine learning, pp.129–136, 2007.

[19] F. Xia, T.Y. Liu, J. Wang, W. Zhang, and H. Li, “List-
wise approach to learning to rank: theory and algorithm,”
ICML ’08: Proceedings of the 25th international conference
on Machine learning, New York, NY, USA, pp.1192–1199,
ACM, 2008.

[20] J. Xu and H. Li, “AdaRank: a boosting algorithm for in-
formation retrieval,” SIGIR ’07: Proceedings of the 30th
annual international ACM SIGIR conference on Research
and development in information retrieval, New York, NY,
USA, pp.391–398, ACM, 2007.

[21] Y. Yue, T. Finley, F. Radlinski, and T. Joachims, “A sup-
port vector method for optimizing average precision,” Pro-
ceedings of the 30th annual international ACM SIGIR con-
ference, pp.271–278, 2007.

[22] M. Taylor, J. Guiver, S. Robertson, and T. Minka, “Soft-
Rank: optimizing non-smooth rank metrics,” WSDM ’08:
Proceedings of the international conference on Web search
and web data mining, New York, NY, USA, pp.77–86,
ACM, 2008.

[23] J. Xu, T.Y. Liu, M. Lu, H. Li, and W.Y. Ma, “Directly opti-
mizing evaluation measures in learning to rank,” SIGIR ’08:
Proceedings of the 31st annual international ACM SIGIR
conference on Research and development in information re-
trieval, New York, NY, USA, pp.107–114, ACM, 2008.

[24] O. Chapelle, Y. Chang, and T.Y. Liu, “Future directions in
learning to rank,” Journal of Machine Learning Research -
Proceedings Track, vol.14, pp.91–100, 2011.

Hang Li Senior researcher and re-
search manager in Web Search and Min-
ing Group at Microsoft Research Asia. He
joined Microsoft Research in June 2001.
Prior to that, He worked at the Research
Laboratories of NEC Corporation. He
obtained a B.S. in Electrical Engineer-
ing from Kyoto University in 1988 and
a M.S. in Computer Science from Kyoto
University in 1990. He earned his Ph.D.
in Computer Science from the University

of Tokyo in 1998. He is interested in statistical learning, infor-
mation retrieval, data mining, and natural language processing.

