Search Engines

- Provide a ranked list of documents.
- May provide relevance scores.
- May have performance information.

External Metasearch

Internal Metasearch

Metasearch Engines

- Query multiple search engines.
- May or may not combine results.

Outline

- Introduce problem
- Characterize problem
- Survey techniques
- Upper bounds for metasearch

Characterizing Metasearch

- Three axes:
 - common vs. disjoint database,
 - relevance scores vs. ranks,
 - training data vs. no training data.

Axis 1: DB Overlap

- High overlap
 - data fusion.
- Low overlap
 - collection fusion (distributed retrieval).
- Very different techniques for each...
- Today: data fusion.

Classes of Metasearch Problems

	no training data	training data	
ranks only	Borda, Condorcet, rCombMNZ	Bayes	
relevance scores	CombMNZ	LC model	

Outline

- Introduce problem
- Characterize problem
- Survey techniques
- Upper bounds for metasearch

Classes of Metasearch Problems

	no training data	training data
ranks only	Borda, Condorcet, rCombMNZ	Bayes
relevance scores	CombMNZ	LC model

CombSUM [Fox, Shaw, Lee, et al.]

- Normalize scores: [0,1].
- For each doc:
 - sum relevance scores given to it by each system (use 0 if unretrieved).
- Rank documents by score.
- Variants: MIN, MAX, MED, ANZ, MNZ

CombMNZ [Fox, Shaw, Lee, et al.]

- Normalize scores: [0,1].
- For each doc:
 - sum relevance scores given to it by each system (use 0 if unretrieved), and
 - multiply by number of systems that retrieved it (MNZ).
- Rank documents by score.

How well do they perform?

- Need performance metric.
- Need benchmark data.

Ν

22

Benchmark Data: TREC

- Annual Text Retrieval Conference.
- Millions of documents (AP, NYT, etc.)
- **50** queries.
- Dozens of retrieval engines.
- Output lists available.
- Relevance judgments available.

Data Sets

Data set	Number systems	Number queries	Number of docs		
TREC3	40	50	1000		
TREC5	61	50	1000		
Vogt	10	10	1000		
TREC9	105	50	1000		

CombX on TREC5 Data

CombX on TREC5 Data, II

Experiments

- Randomly choose *n* input systems.
- For each query:
 - combine, trim, calculate avg precision.
- Calculate mean avg precision.
- Note best input system.
- Repeat (statistical significance).

CombMNZ on TREC3

TREC 3: avg precision over 200 random sets of systems.

28

CombMNZ on TREC5

TREC 5: avg precision over 200 random sets of systems.

29

CombMNZ on Vogt

TREC 5 subset: avg precision over between 1 and 200 random sets of systems.

CombMNZ on TREC9

TREC 9: avg precision over 200 random sets of systems.

31

Metasearch via Voting [Aslam, Montague]

Analog to *election strategies*.

- Requires only rank information.
- No training required.

Classes of Metasearch Problems

	no training data	training data
ranks only	Borda, Condorcet, rCombMNZ	Bayes
relevance scores	CombMNZ	LC model

33

Election Strategies

- Plurality vote.
- Approval vote.
- Run-off.
- Preferential rankings:
 - instant run-off,
 - Borda count (positional),
 - Condorcet method (head-to-head).

Metasearch Analogy

- Documents are candidates.
- Systems are *voters* expressing preferential rankings among candidates.

Borda Count

- Consider an n candidate election.
- One method for choosing winner is the Borda count. [Borda, Saari]
 - For each voter *i*
 - Assign n points to top candidate.
 - Assign *n*-1 points to next candidate.
 - • •
 - Rank candidates according to point sum.

Election 2000: Florida

NATIONAL > FLORIDA

VOTER RESULTS IN FLORIDA | EXIT POLLS | HOUSE AND SENATE

Last updated: 12:32 a.m. EST, 12/14 | refresh this page | print this page

FLORIDA VOTE COUNT			PRESIDENT DEC. 13			1	100% of precincts			
	<u>Nov. 7</u>	Recount	Certified	12/8 Ruling					States	
Bush 🗹	1,725	930	537	<u>193</u>	Ca	ndidates	Votes	Vote %	Won	EV
Source: Associated Press			R	Bush 🗹	2,909,176	49 %	29	0		
			25 electo	oral votes at stake	D	Gore	2,907,451	49 %	20	0
					G	Nader	96,837	2 %	0	0
						Browne	18,856	0 %	0	0
					RF	<u>Buchanan</u>	17,356	0 %	0	0
						Phillips	4,280	0 %	0	0
						Hagelin	2,287	0 %	0	0
					wi	nner declared			exit p	oolls
results as of 5:46 p.m				n. EST						

Borda Count: Election 2000

- Ideological order: Nader, Gore, Bush.
- Ideological voting:
 - Bush voter: Bush, Gore, Nader.
 - Nader voter: Nader, Gore, Bush.
 - Gore voter:
 - Gore, Bush, Nader.
- 50/50, 100/0
- Gore, Nader, Bush.

Election 2000: Ideological Florida Voting

	Gore	Bush	Nader		
50/50	14,734,379	13,185,542	7,560,864		
100/0	14,734,379	14,639,267	6,107,138		

Gore Wins

Borda Count: Election 2000

- Ideological order: Nader, Gore, Bush.
- Manipulative voting:
 - Bush voter: Bush, Nader, Gore.
 - Gore voter: Gore, Nader, Bush.
 - Nader voter: Nader, Gore, Bush.

Election 2000: Manipulative Florida Voting

Gore	Bush	Nader		
11,825,203	11,731,816	11,923,765		

Nader Wins

Metasearch via Borda Counts

- Metasearch analogy:
 - Documents are *candidates*.
 - Systems are *voters* providing preferential rankings.
- Issues:
 - Systems may rank different document sets.
 - How to deal with unranked documents?

Borda on TREC5 Data, I

Borda on TREC5 Data, II

Borda on TREC5 Data, III

45

Condorcet Voting

- Each ballot ranks all candidates.
- Simulate head-to-head run-off between each pair of candidates.
- Condorcet winner: candidate that beats all other candidates, head-to-head.

Election 2000: Florida

NATIONAL > FLORIDA

VOTER RESULTS IN FLORIDA | EXIT POLLS | HOUSE AND SENATE

Last updated: 12:32 a.m. EST, 12/14 | refresh this page | print this page

FLORIDA VOTE COUNT			PRESIDENT DEC. 13			1	100% of precincts			
	<u>Nov. 7</u>	Recount	Certified	12/8 Ruling					States	
Bush 🗹	1,725	930	537	<u>193</u>	Ca	ndidates	Votes	Vote %	Won	EV
Source: Assoc	iated Press				R	Bush 🗹	2,909,176	49 %	29	0
			25 electo	oral votes at stake	D	Gore	2,907,451	49 %	20	0
					G	Nader	96,837	2 %	0	0
						Browne	18,856	0 %	0	0
					RF	<u>Buchanan</u>	17,356	0 %	0	0
						Phillips	4,280	0 %	0	0
						<u>Hagelin</u>	2,287	0 %	0	0
					wi	nner declared			exit (oolls
								results as (of 5:46 p.r	m. EST

Condorcet Paradox

- Voter 1: A, B, C
- Voter 2: B, C, A
- Voter 3: C, A, B

- Cyclic preferences: cycle in Condorcet graph.
- Condorcet consistent path: Hamiltonian.
- For metasearch: any CC path will do.

Condorcet Consistent Path

Hamiltonian Path Proof

Condorcet-fuse: Sorting

- Insertion-sort suggested by proof.
- Quicksort too; O(n log n) comparisons.
 - n documents.
- Each comparison: O(m).
 - *m* input systems.
- Total: *O*(*m n* log *n*).
- Need not compute entire graph.

Condorcet-fuse on TREC3

TREC 3: avg precision over 200 random sets of systems.

Number of randomly chosen input systems

Condorcet-fuse on TREC5

TREC 5: avg precision over 200 random sets of systems.

53

Condorcet-fuse on Vogt

TREC 5 subset: avg precision over between 1 and 200 random sets of systems.

Condorcet-fuse on TREC9

TREC 9: avg precision over 200 random sets of systems.

Outline

- Introduce problem
- Characterize problem
- Survey techniques
- Upper bounds for metasearch

Upper Bounds on Metasearch

- How good can metasearch be?
- Are there fundamental limits that methods are approaching?

Upper Bounds on Metasearch

- Constrained oracle model:
 - omniscient metasearch oracle,
 - constraints placed on oracle that any reasonable metasearch technique must obey.
- What are "reasonable" constraints?

Naïve Constraint

- Naïve constraint:
 - Oracle may only return docs from underlying lists.
 - Oracle may return these docs in any order.
 - Omniscient oracle will return relevant docs above irrelevant docs.

TREC5: Naïve Bound

TREC 5: avg precision over 200 random sets of systems.

Pareto Constraint

Pareto constraint:

- Oracle may only return docs from underlying lists.
- Oracle must respect *unanimous* will of underlying systems.
- Omniscient oracle will return relevant docs above irrelevant docs, subject to the above constraint.

TREC5: Pareto Bound

TREC 5: avg precision over 200 random sets of systems.

Majoritarian Constraint

Majoritarian constraint:

- Oracle may only return docs from underlying lists.
- Oracle must respect *majority* will of underlying systems.
- Omniscient oracle will return relevant docs above irrelevant docs and break cycles optimally, subject to the above constraint.

TREC5: Majoritarian Bound

TREC 5: avg precision over 200 random sets of systems.

Upper Bounds: TREC3

TREC 3: avg precision over 200 random sets of systems.

Upper Bounds: Vogt

TREC 5 subset: avg precision over between 1 and 200 random sets of systems.

Upper Bounds: TREC9

TREC 9: avg precision over 200 random sets of systems.

67