Log-Linear Models with Structured Outputs

Natural Language Processing CS 4120/6120—Spring 2017
Northeastern University

David Smith
(some slides from Andrew McCallum)

Overview

- Sequence labeling task (cf. POS tagging)
- Independent classifiers
- HMMs
- (Conditional) Maximum Entropy Markov Models
- Conditional Random Fields
- Beyond Sequence Labeling

Sequence Labeling

- Inputs: $x=\left(x_{1}, \ldots, x_{n}\right)$
- Labels: $y=\left(y_{1}, \ldots, y_{n}\right)$
- Typical goal: Given x, predict y
- Example sequence labeling tasks
- Part-of-speech tagging
- Named-entity-recognition (NER)
- Label people, places, organizations

NER Example:

Red Sox and Their Fans Let Loose

Fans of the slugger David Ortiz in Boston's Copley Square.
By PETE THAMEL
Published: October 31, 2007
E EMAIL
BOSTON, Oct. 30 - Jonathan Papelbon turned Boston's World Series victory parade into a full-scale dance party Tuesday as the Red Sox put an exclamation point on the 2007 season

[^0]
First Solution:

Maximum Entropy Classifier

- Conditional model $p(y \mid x)$.
- Do not waste effort modeling $p(x)$, since x is given at test time anyway.
- Allows more complicated input features, since we do not need to model dependencies between them.
- Feature functions $f(x, y)$:
$-f_{1}(x, y)=\{$ word is Boston \& $y=$ Location $\}$
$-f_{2}(x, y)=\{$ first letter capitalized \& $y=$ Name $\}$
$-f_{3}(x, y)=\{x$ is an HTML link \& $y=$ Location $\}$

First Solution: MaxEnt Classifier

- How should we choose a classifier?
- Principle of maximum entropy
- We want a classifier that:
- Matches feature constraints from training data.
- Predictions maximize entropy.
- There is a unique, exponential family distribution that meets these criteria.

First Solution: MaxEnt Classifier

- Problem with using a maximum entropy classifier for sequence labeling:
- It makes decisions at each position independently!

Second Solution: HMM

$$
P(\mathbf{y}, \mathbf{x})=\prod_{t} P\left(y_{t} \mid y_{t-1}\right) P\left(x \mid y_{t}\right)
$$

- Defines a generative process.
- Can be viewed as a weighted finite state machine.

Second Solution: HMM

- How can represent we multiple features in an HMM?
- Treat them as conditionally independent given the class label?
- The example features we talked about are not independent.
- Try to model a more complex generative process of the input features?
- We may lose tractability (i.e. lose a dynamic programming for exact inference).

Second Solution: HMM

- Let's use a conditional model instead.

Third Solution: MEMM

- Use a series of maximum entropy classifiers that know the previous label.
- Define a Viterbi algorithm for inference.

$$
P(\mathbf{y} \mid \mathbf{x})=\prod_{t} P_{y_{t-1}}\left(y_{t} \mid \mathbf{x}\right)
$$

Third Solution: MEMM

- Use a series of maximum entropy classifiers that know the previous label.
- Define a Viterbi algorithm for inference.

$$
P(\mathbf{y} \mid \mathbf{x})=\prod P_{y_{t-1}}\left(y_{t} \mid \mathbf{x}\right)
$$

Cf. recurrent neural nets but w/o exact Viterbi decoding

Third Solution: MEMM

- Combines the advantages of maximum entropy and HMM!
- But there is a problem...

Problem with MEMMs: Label Bias

- In some state space configurations, MEMMs essentially completely ignore the inputs.

- This is not a problem for HMMs, because the input sequence is generated by the model.

Fourth Solution: Conditional Random Field

- Conditionally-trained, undirected graphical model.
- For a standard linear-chain structure:

$$
\begin{aligned}
& P(\mathbf{y} \mid \mathbf{x})=\prod_{t} \Psi_{k}\left(y_{t}, y_{t-1}, \mathbf{x}\right) \\
& \Psi_{k}\left(y_{t}, y_{t-1}, \mathbf{x}\right)=\exp \left(\sum_{k} \lambda_{k} f\left(y_{t}, y_{t-1}, \mathbf{x}\right)\right)
\end{aligned}
$$

Fourth Solution: CRF

- Have the advantages of MEMMs, but avoid the label bias problem.
- CRFs are globally normalized, whereas MEMMs are locally normalized.
- Widely used and applied. CRFs give state-the-art results in many domains.

Fourth Solution: CRF

- Have the advantages of MEMMs, but avoid the label bias problem.
- CRFs are globally normalized, whereas MEMMs are locally normalized.
- Widely used and applie state-the-art results in r

Remember, Z is the normalization constant. How do we compute it?

CRF Applications

- Part-of-speech tagging
- Named entity recognition
- Document layout (e.g. table) classification
- Gene prediction
- Chinese word segmentation
- Morphological disambiguation
- Citation parsing
- Etc., etc.

NER as Sequence Tagging

The Phoenicians came from the Red Sea

NER as Sequence Tagging

The Phoenicians came from the Red Sea

NER as Sequence Tagging

Capitalized word

I-L

The Phoenicians came from the Red Sea

NER as Sequence Tagging

The Phoenicians came from the Red Sea

NER as Sequence Tagging

The Phoenicians came from the Red Sea

NER as Sequence Tagging

The Phoenicians came from the Red Sea

NER as Sequence Tagging

The Phoenicians came from the Red Sea

NER as Sequence Tagging

The Phoenicians came from the Red Sea

NER as Sequence Tagging

The Phoenicians came from the Red Sea

NER as Sequence Tagging

The Phoenicians came from the Red Sea

NER as Sequence Tagging

The Phoenicians came from the Red Sea

NER as Sequence Tagging

NER as Sequence Tagging

The Phoenicians came from the Red Sea

NER as Sequence Tagging

The Phoenicians came from the Red Sea

NER as Sequence Tagging

The Phoenicians came from the Red Sea

Overview

- What computations do we need?
- Smoothing log-linear models
- MEMMs vs. CRFs again
- Action-based parsing and dependency parsing

Recipe for Conditional Training of $p(y \mid x)$

I.Gather constraints/features from training data

$$
\alpha_{i y}=\tilde{E}\left[f_{i y}\right]=\sum_{x_{j}, y_{j} \in D} f_{i y}\left(\bar{x}_{j}, y_{j}\right)
$$

2. Initialize all parameters to zero
3. Classify training data with current parameters; calculate expectations

$$
E_{\Theta}\left[f_{i y}\right]=\sum_{x_{j} \in D} \sum_{y^{\prime}} p_{\Theta}\left(y^{\prime} \mid x_{j}\right) f_{i y}\left(x_{j}, y^{\prime}\right)
$$

4. Gradient is $\quad \tilde{E}\left[f_{i y}\right]-E_{\Theta}\left[f_{i y}\right]$
5. Take a step in the direction of the gradient
6. Repeat from 3 until convergence

Recipe for Conditional Training of $p(y \mid x)$

I.Gather constraints/features from training data

$$
\alpha_{i y}=\tilde{E}\left[f_{i y}\right]=\sum_{x_{j}, y_{j} \in D} f_{i y}\left(\bar{x}_{j}, y_{j}\right)
$$

2. Initialize all parameters to zero
3. Classify training data with current parameters; calculate expectations

$$
E_{\Theta}\left[f_{i y}\right]=\sum_{x_{j} \in D} \sum_{y^{\prime}} p_{\Theta}\left(y^{\prime} \mid x_{j}\right) f_{i y}\left(x_{j}, y^{\prime}\right)
$$

4. Gradient is

$$
\tilde{E}\left[f_{i y}\right]-E_{\Theta}\left[f_{i y}\right]
$$

5. Take a step in the direction of th eradient
6. Repeat from 3 until convergence

Recipe for Conditional Training of $p(y \mid x)$

I.Gather constraints/features from training data

$$
\alpha_{i y}=\tilde{E}\left[f_{i y}\right]=\sum_{x_{j}, y_{j} \in D} f_{i y}\left(\bar{x}_{j}, y_{j}\right)
$$

2. Initialize all parameters to zero
3. Classify training data with current parameters; calculate expectations

$$
E_{\Theta}\left[f_{i y}\right]=\sum_{x_{j} \in D} \sum_{y^{\prime}} p_{\Theta}\left(y^{\prime} \mid x_{j}\right) f_{i y}\left(x_{j}, y^{\prime}\right)
$$

4. Gradient is $\quad \tilde{E}\left[f_{i y}\right]-E_{\Theta}\left[f_{i y}\right]$
5. Take a step in the direction of th aradient
6. Repeat from 3 until convergence

Where have we seen

Gradient-Based Training

- $\lambda:=\lambda+$ rate $* \operatorname{Gradient}(F)$
- After all training examples? (batch)
- After every example? (on-line)
- Use second derivative for faster learning?
- A big field: numerical optimization

Parsing as Structured Prediction

Shift-reduce parsing

Stack	Input remaining	Action
()	Book that flight	shift
(Book)	that flight	reduce, Verb \rightarrow book, (Choice \#1 of 2)
(Verb)	that flight	shift
(Verb that)	flight	reduce, Det \rightarrow that
(Verb Det)	flight	shift
(Verb Det flight)		reduce, Noun \rightarrow flight
(Verb Det Noun)		reduce, NOM \rightarrow Noun
(Verb Det NOM)		reduce,NP \rightarrow Det NOM
(Verb NP)	reduce, VP \rightarrow Verb NP	
(Verb)	reduce, \rightarrow V	
(S)	SUCCESS!	

Ambiguity may lead to the need for backtracking.

Shift-reduce parsing

Stack	Input remaining	Action
()	Book that flight	shift
(Book)	that flight	reduce, Verb \rightarrow book, (Choice \#1 of 2)
(Verb)	that flight	shift
(Verb that)	flight	reduce, Det \rightarrow that
(Verb Det)	flight	shift
(Verb Det flight)		reduce, Noun \rightarrow flight
(Verb Det Noun)		reduce, NOM \rightarrow Noun
(Verb Det NOM)		reduce,NP \rightarrow Det NOM
(Verb NP)	reduce, VP \rightarrow Verb NP	
(Verb)	reduce, S \rightarrow V	
(S)	SUCCESS!	

Shift-reduce parsing

Stack	Input remaining	Action
()	Book that flight	shift
(Book)	that flight	reduce, Verb \rightarrow book, (Choice \#1 of 2)
(Verb)	that flight	shift
(Verb that)	flight	reduce, Det \rightarrow that
(Verb Det)	flight	shift
(Verb Det flight)		reduce, Noun \rightarrow flight
(Verb Det Noun)		reduce, NOM \rightarrow Noun
(Verb Det NOM)		reduce, NP \rightarrow Det NOM
(Verb NP)		reduce, VP \rightarrow Verb NP
(Verb)		reduce, $\mathrm{S} \rightarrow \mathrm{V}$
(S)		SUCCESS!

Train log-linear model of p(action | context)

Compare to an MEMM

Shift-reduce parsing

Stack	Input remaining	Action
()	Book that flight	shift
(Book)	that flight	reduce, Verb \rightarrow book, (Choice \#1 of 2)
(Verb)	that flight	shift
(Verb that)	flight	reduce, Det \rightarrow that
(Verb Det)	flight	shift
(Verb Det flight)		reduce, Noun \rightarrow flight
(Verb Det Noun)		reduce, NOM \rightarrow Noun
(Verb Det NOM)		reduce, NP \rightarrow Det NOM
(Verb NP)	reduce, VP \rightarrow Verb NP	
(Verb)	reduce, $\mathrm{S} \rightarrow \mathrm{V}$	
(S)	SUCCESS!	

Anmiguity may lead to the need for backtracking.

Train log-linear model of p(action | context)

Structured Log-Linear Models

Structured Log-Linear Models

- Linear model for scoring structures

$$
\operatorname{score}(\text { out }, i n)=\theta \cdot \text { features }(\text { out }, \text { in })
$$

Structured Log-Linear Models

- Linear model for scoring structures
- Get a probability distribution by normalizing

$$
\begin{gathered}
\text { score }(\text { out }, \text { in })=\theta \cdot \text { features }(\text { out }, \text { in }) \\
p(\text { out } \mid \text { in })=\frac{1}{Z} e^{\text {score }(\text { out }, \text { in })} \quad Z=\sum_{\text {out }^{\prime} \in G E N(\text { in })} e^{\text {score }\left(\text { out }{ }^{\prime}, \text { in }\right)}
\end{gathered}
$$

Structured Log-Linear Models

- Linear model for scoring structures
- Get a probability distribution by normalizing
* Viz. logistic regression, Markov random fields, undirected graphical models

$$
\begin{gathered}
\text { score }(\text { out }, \text { in })=\theta \cdot \text { features }(\text { out }, \text { in }) \\
p(\text { out } \mid \text { in })=\frac{1}{Z} e^{\text {score }(\text { out }, \text { in })} \quad Z=\sum_{\text {out }^{\prime} \in G E N(\text { in })} e^{\text {score }\left(\text { out }{ }^{\prime}, \text { in }\right)}
\end{gathered}
$$

Structured Log-Linear Models

- Linear model for scoring structures
- Get a probability distribution by normalizing
* Viz. logistic regression, Markov random fields, undirected graphical models

Structured Log-Linear Models

- Linear model for scoring structures
- Get a probability distribution by normalizing
* Viz. logistic regression, Markov random fields, undirected graphical models
- Inference: sampling, variational methods, dynamic programming, local search, ...

Usually the
bottleneck in NLP

$$
p(\text { out } \mid \text { in })=\frac{1}{Z} e^{\text {score(out }, \text { in })} Z=
$$

$$
\sum_{o u t^{\prime} \in G E N(i n)} e^{\operatorname{score}\left(o u t^{\prime}, i n\right)}
$$

Structured Log-Linear Models

- Linear model for scoring structures
- Get a probability distribution by normalizing
* Viz. logistic regression, Markov random fields, undirected graphical models
- Inference: sampling, variational methods, dynamic programming, local search, ...
- Training: maximum likelihood, minimum risk, etc.

Structured Log-Linear Models

With latent variables

- Several layers of linguistic structure
- Unknown correspondences
- Naturally handled by probabilistic framework
- Several inference setups, for example:

$$
p\left(\text { out }_{1} \mid \text { in }\right)=\sum_{\text {out }_{2}, \text { alignment }} p\left(\text { out }_{1}, \text { out }_{2}, \text { alignment } \mid \text { in }\right)
$$

Structured Log-Linear Models

With latent variables

- Several layers of linguistic structure
- Unknown correspondences
- Naturally handled by probabilistic framework
- Several inference setups, for example:

Edge-Factored Parsers

- No global features of a parse (McDonald et al. 2005)
- Each feature is attached to some edge
- MST or CKY-like DP for fast $O\left(n^{2}\right)$ or $O\left(n^{3}\right)$ parsing

"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers

- Is this a good edge?

"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers

- Is this a good edge?

yes, lots of positive features ...

Byl jasný studený dubnový den a hodiny odbijely třináctou
"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers

- Is this a good edge?

Byl jasný studený dubnový den a hodiny odbijely třináctou
"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers

- Is this a good edge?
jasný \leftarrow den
("bright day")

Byl jasný studený dubnový den a hodiny odbíjely třináctou
"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers

- Is this a good edge?
jasný \leftarrow den
("bright day")

Byl jasný studený dubnový den a hodiny odbijely třináctou
$\begin{array}{lllllllll}V & A & A & A & N & J & N & V & C\end{array}$
"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers

- Is this a good edge?

"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers

- Is this a good edge?

Edge-Factored Parsers

- Is this a good edge?

Edge-Factored Parsers

- Is this a good edge?

Edge-Factored Parsers

- Is this a good edge?

Edge-Factored Parsers

- How about this competing edge?

"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers

- How about this competing edge?
not as good, lots of red ...

Byl jasný studený dubnový den a hodiny odbijely třináctou

V	A	A	A	N	J	N	V	C

"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers

- How about this competing edge?

"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers

- How about this competing edge?
jasný \leftarrow hodiny
("bright clocks")

Byl jasný studený dubnový den a hodiny odbijely třináctou
$\begin{array}{lllllllll}V & A & A & A & N & \text { J } & \text { V }\end{array}$
"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers

- How about this competing edge?
jasný \leftarrow hodiny
("bright clocks")
... undertrained ...

Byl jasný studený dubnový den a hodiny odbíjely třináctou
$\begin{array}{llllllll} & A & A & A & N & \text { J }\end{array}$
"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers

- How about this competing edge?
jasný \leftarrow hodiny
("bright clocks")
... undertrained ...

Byl jasný studený dubnový den a hodiny odbijely třináctou

V	A	A	A	N	J	N	V	C
byl	jasn	stud	dubn	den a	hodi	odbí	třin	

"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers

- How about this competing edge?

```
jasný \(\leftarrow\) hodiny
("bright clocks")
... undertrained ...
```

jasn \leftarrow hodi
("bright clock," stems only)

Byl jasný studený dubnový den a hodiny odbijely třináctou

V	A	A	A	N	J	N	V	C
byl	jasn	stud	dubn	den a	hodi	odbí	třin	

"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers

- How about this competing edge?

jasný \leftarrow hodiny ("bright clocks")
 ... undertrained ...

jasn \leftarrow hodi
("bright clock," stems only)

Byl jasný studený dubnový den a hodiny odbijely třináctou

| V | A | A | N | J | C | C |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

byl jasn stud dubn den a hodi odbí třin
"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers

- How about this competing edge?

jasný \leftarrow hodiny
("bright clocks")
... undertrained ...

```
jasn < hodi
    ("bright clock," stems only)
```


$A_{\text {singular }} \leftarrow \mathrm{N}_{\text {plural }}$

By jasný studený dubnový den a hodiny odbijely třináctou

V	A	A	A	N	J	\mathbf{N}	V	C
byl	jas	stud	dubn	den a	nodi	odbí	třin	

"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers

- How about this competing edge?
jasný \leftarrow hodiny
("bright clocks")
... undertrained ...

```
jasn < hodi
("bright clock," stems only)
```


$A_{\text {singular }} \leftarrow N_{\text {plural }}$

Byl jasný studený dubnový den a hodiny odbijely třináctou

Vbyl	$\begin{array}{llllll} A & \mathrm{~N} & \mathrm{~J} & \mathrm{~N} & \mathrm{~V} & \mathrm{C} \end{array}$							
	sn stud dubn den a hodi odbi							

"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers

- How about this competing edge?

Byl jasný studený dubnový den a hodiny odbijely třináctou

V	A	A	A	J	N	V	C

byl jasn stud dubn den a hodi odbí třin
"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers

- Which edge is better?
- "bright day" or "bright clocks"?

By jasny studený dubnový den a hodiny odbijely třináctou

| V | A | A | A | N | J | V |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

by jasn stud dubn den a hodi odbí třin
"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers

- Which edge is better?
- Score of an edge $e=\theta \cdot$ features(e)
- Standard algos \rightarrow valid parse with max total score

Byl jasnẙ studený dubnový den a hodiny odbijely třináctou

| V | A | A | N | J |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

byl jasn stud dubn den a hodi odbí třin
"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers

- Which edge is better? our current weight vector
- Score of an edge $\mathrm{e}=\theta$ features(e)
- Standard algos \rightarrow valid parse with max total score

Byl jasnẙ studený dubnový den a hodiny odbíjely třináctou

V	A	A	A	N	N	V	C
byl	jasn	stud	dubn	den	hodi	odbí	třin

"It was a bright cold day in April and the clocks were striking thirteen"

Local factors in a graphical model

- First, a familiar example
- Conditional Random Field (CRF) for POS tagging

Local factors in a graphical model

- First, a familiar example
- Conditional Random Field (CRF) for POS tagging

Local factors in a graphical model

- First, a familiar example
\square Conditional Random Field (CRF) for POS tagging

Possible tagging (i.e., assignment to remaining variables)

Observed input sentence (shaded)

Local factors in a graphical model

- First, a familiar example
\square Conditional Random Field (CRF) for POS tagging
Possible tagging (i.e., assignment to remaining variables) Another possible tagging

Observed input sentence (shaded)

Local factors in a graphical model

- First, a familiar example
\square Conditional Random Field (CRF) for POS tagging
Possible tagging (i.e., assignment to remaining variables) Another possible tagging

Observed input sentence (shaded)

Local factors in a graphical model

- First, a familiar example
- Conditional Random Field (CRF) for POS tagging

Local factors in a graphical model

- First, a familiar example
\square Conditional Random Field (CRF) for POS tagging

Local factors in a graphical model

- First, a familiar example
- Conditional Random Field (CRF) for POS tagging

Local factors in a graphical model

- First, a familiar example
- Conditional Random Field (CRF) for POS tagging

"Unary" factor evaluates this tag

Local factors in a graphical model

- First, a familiar example
- Conditional Random Field (CRF) for POS tagging

> "Unary" factor evaluates this tag
> Its values depend on corresponding word

Local factors in a graphical model

- First, a familiar example
- Conditional Random Field (CRF) for POS tagging

> "Unary" factor evaluates this tag
> Its values depend on corresponding word

Local factors in a graphical model

- First, a familiar example
- Conditional Random Field (CRF) for POS tagging

> "Unary" factor evaluates this tag
> Its values depend on corresponding word

Local factors in a graphical model

- First, a familiar example
- Conditional Random Field (CRF) for POS tagging

> "Unary" factor evaluates this tag
> Its values depend on corresponding word

(could be made to depend on entire observed sentence)

Local factors in a graphical model

First, a familiar example

- Conditional Random Field (CRF) for POS tagging

Local factors in a graphical model

- First, a familiar example
- Conditional Random Field (CRF) for POS tagging

Local factors in a graphical model

- First, a familiar example
- Conditional Random Field (CRF) for POS tagging

Local factors in a graphical model

- First, a familiar example
- Conditional Random Field (CRF) for POS tagging

Local factors in a graphical model

- First, a familiar example
\square Conditional Random Field (CRF) for POS tagging

Local factors in a graphical model

- First, a familiar example
- Conditional Random Field (CRF) for POS tagging

Graphical Models for Parsing

- First, a labeling example
* CRF for POS tagging

- Now let's do dependency parsing!
* $O\left(n^{2}\right)$ boolean variables for the possible links

Graphical Models for Parsing

- First, a labeling example
* CRF for POS tagging

- Now let's do dependency parsing!
* $O\left(n^{2}\right)$ boolean variables for the possible links

Graphical Models for Parsing

- First, a labeling example
* CRF for POS tagging

- Now let's do dependency parsing!
* $O\left(n^{2}\right)$ boolean variables for the possible links

Graphical Models for Parsing

- First, a labeling example
* CRF for POS tagging
- Now let's do dependency parsing!
* $O\left(n^{2}\right)$ boolean variables for the possible links

Possible parse...

... find

Graphical Models for Parsing

- First, a labeling example
* CRF for POS tagging

- Now let's do dependency parsing!
* $\mathrm{O}\left(\mathrm{n}^{2}\right)$ boolean variables for the possible links

Graphical Models for Parsing

- First, a labeling example * CRF for POS tagging
- Now let's do dependency parsing!
* $O\left(n^{2}\right)$ boolean variables for the possible links

Another
parse...
... find

Graphical Models for Parsing

- First, a labeling example * CRF for POS tagging

- Now let's do dependency parsing!
* $\mathrm{O}\left(\mathrm{n}^{2}\right)$ boolean variables for the possible links

Graphical Models for Parsing

- First, a labeling example * CRF for POS tagging

- Now let's do dependency parsing!
* $\mathrm{O}\left(\mathrm{n}^{2}\right)$ boolean variables for the possible links

Graphical Models for Parsing

- First, a labeling example
* CRF for POS tagging

- Now let's do dependency parsing!
* $\mathrm{O}\left(\mathrm{n}^{2}\right)$ boolean variables for the possible links

Local Factors for Parsing

- What factors determine parse probability?

Local Factors for Parsing

- What factors determine parse probability?
* Unary factors to score each link in isolation

Local Factors for Parsing

- What factors determine parse probability?
* Unary factors to score each link in isolation

Local Factors for Parsing

- What factors determine parse probability?
* Unary factors to score each link in isolation
- But what if the best assignment isn't a tree?

Global Factors for Parsing

- What factors determine parse probability?
* Unary factors to score each link in isolation

Global Factors for Parsing

- What factors determine parse probability?
* Unary factors to score each link in isolation
* Global TREE factor to require links to form a legal tree

Global Factors for Parsing

- What factors determine parse probability?
* Unary factors to score each link in isolation
* Global TREE factor to require links to form a legal tree
- A hard constraint: potential is either 0 or I

Global Factors for Parsing

- What factors determine parse probability?
* Unary factors to score each link in isolation
* Global TREE factor to require links to form a legal tree
- A hard constraint: potential is either 0 or I

Global Factors for Parsing optionally require the $\boldsymbol{\supset}$

- What factors determine parse tree to be projective (no crossing, links)
(\% Unary factors to score each link in isulauuli \downarrow
$\{$: Global TREE factor to require links to form a legal tree
- A hard constraint: potential is either 0 or I 64 entries ($0 / 1$)

So far, this is equivalent to edge-factored parsing

Global Factors for Parsing optionally require the $\boldsymbol{\supset}$

- What factors determine parse tree to be projective (no crossing, links)
**Unary factors to score each link in isulatuou \downarrow
: Global TREE factor to require links to form a legal tree
- A hard constraint: potential is either 0 or I 64 entries ($0 / 1$)

So far, this is equivalent to edge-factored parsing

ffffff	0
ffffft	0
fffftf	0
\ldots	\ldots
fftfft	1
\ldots	\ldots
tttttt	0

... fin Note: traditional parsers don'† loop through this table to consider exponentially many trees one at a time.
They use combinatorial algorithms; so should we!

Local Factors for Parsing

- What factors determine parse probability?
* Unary factors to score each link in isolation
* Global TREE factor to require links to form a legal tree
- A hard constraint: potential is either 0 or I
* Second order effects: factors on 2 variables
- Grandparent-parent-child chains

Local Factors for Parsing

- What factors determine parse probability?
* Unary factors to score each link in isolation
* Global TREE factor to require links to form a legal tree
- A hard constraint: potential is either 0 or I
* Second order effects: factors on 2 variables
- Grandparent-parent-child chains

Local Factors for Parsing

- What factors determine parse probability?
* Unary factors to score each link in isolation
* Global TREE factor to require links to form a legal tree
- A hard constraint: potential is either 0 or I
* Second order effects: factors on 2 variables
- Grandparent-parent-child chains
- No crossing links
- Siblings
* Hidden morphological tags
: Word senses and subcategorization frames
... find

Great Ideas in ML: Message Passing

Great Ideas in ML: Message Passing

Count the soldiers

Great Ideas in ML: Message Passing Count the soldiers

Great Ideas in ML: Message Passing

 Count the soldiers

Great Ideas in ML: Message Passing

Count the soldiers

Great Ideas in ML: Message Passing Count the soldiers

Great Ideas in ML: Message Passing Count the soldiers

Great Ideas in ML: Message Passing

Count the soldiers

Great Ideas in ML: Message Passing

Count the soldiers

Great Ideas in ML: Message Passing

Count the soldiers

Great Ideas in ML: Message Passing

Count the soldiers

Great Ideas in ML: Message Passing

Count the soldiers

Great Ideas in ML: Message Passing

Each soldier receives reports from all branches of tree

adapted from MacKay (2003) textbook

Great Ideas in ML: Message Passing

Each soldier receives reports from all branches of tree

adapted from MacKay (2003) textbook

Great Ideas in ML: Message Passing

Each soldier receives reports from all branches of tree

adapted from MacKay (2003) textbook

Great Ideas in ML: Message Passing

Each soldier receives reports from all branches of tree

adapted from MacKay (2003) textbook

Great Ideas in ML: Message Passing

Each soldier receives reports from all branches of tree

adapted from MacKay (2003) textbook

Great Ideas in ML: Message Passing

Each soldier receieses reports from all branches of tree

adapted from MacKay (2003) textbook

Great Ideas in ML: Message Passing

Each soldier receives reports from all branches of tree

adapted from MacKay (2003) textbook

Great Ideas in ML: Message Passing

Each soldier receives reports from all branches of tree

adapted from MacKay (2003) textbook

Great Ideas in ML: Message Passing

Each soldier receives reports from all branches of tree

adapted from MacKay (2003) textbook

Great Ideas in ML: Message Passing

Each soldier receives reports from all branches of tree

adapted from MacKay (2003) textbook

Great Ideas in ML: Message Passing

Each soldier receieves reports from all branches of tree

adapted from MacKay (2003) textbook

Great Ideas in ML: Message Passing

Each soldier receives reports from all branches of tree

adapted from MacKay (2003) textbook

Great Ideas in ML: Message Passing

Each soldier receives reports from all branches of tree

adapted from MacKay (2003) textbook

Great Ideas in ML: Message Passing

Each soldier receives reports from all branches of tree

adapted from MacKay (2003) textbook

Great ideas in ML: Forward-Backward

- In the CRF, message passing = forward-backward= "sum-product algorithm"

Great ideas in ML: Forward-Backward

- In the CRF, message passing = forward-backward= "sum-product algorithm"

find

Great ideas in ML: Forward-Backward

- In the CRF, message passing = forward-backward= "sum-product algorithm"

find

Great ideas in ML: Forward-Backward

- In the CRF, message passing = forward-backward= "sum-product algorithm"

find
preferred
tags

Great ideas in ML: Forward-Backward

- In the CRF, message passing = forward-backward= "sum-product algorithm"

find
preferred
tags

Great ideas in ML: Forward-Backward

- In the CRF, message passing = forward-backward= "sum-product algorithm"

find
preferred
tags

Great ideas in ML: Forward-Backward

- In the CRF, message passing = forward-backward= "sum-product algorithm"

find
preferred
tags

Great ideas in ML: Forward-Backward

- In the CRF, message passing = forward-backward= "sum-product algorithm"

Great ideas in ML: Forward-Backward

- In the CRF, message passing = forward-backward= "sum-product algorithm"

find
preferred
tags

Great ideas in ML: Forward-Backward

- In the CRF, message passing = forward-backward= "sum-product algorithm"

find
preferred
tags

Sum-Product Equations

- Message from variable v to factor f

$$
m_{v \rightarrow f}(x)=\prod_{f^{\prime} \in N(v) \backslash\{f\}} m_{f^{\prime} \rightarrow v}(x)
$$

- Message from factor f to variable v

$$
m_{f \rightarrow v}(x)=\sum_{N(f) \backslash\{v\}}\left[f\left(x_{m}\right) \prod_{v^{\prime} \in N(f) \backslash\{v\}} m_{v^{\prime} \rightarrow f}(y)\right]
$$

Great ideas in ML: Forward-Backward

Great ideas in ML: Forward-Backward

Great ideas in ML: Forward-Backward

- Extend CRF to "skip chain" to capture non-local factor

Great ideas in ML: Forward-Backward

- Extend CRF to "skip chain" to capture non-local factor
\square More influences on belief :)

Great ideas in ML: Forward-Backward

- Extend CRF to "skip chain" to capture non-local factor
\square More influences on belief $)^{-}$
\square Graph becomes loopy $)$

Great ideas in ML: Forward-Backward

- Extend CRF to "skip chain" to capture non-local factor
\square More influences on belief $)^{-}$
\square Graph becomes loopy $)$

Red messages not independent?
Pretend they are!
find
preferred

Great ideas in ML: Forward-Backward

- Extend CRF to "skip chain" to capture non-local factor
\square More influences on belief :)
\square Graph becomes loopy $)^{\circ}$

Red messages not independent?
Pretend they are!
"Loopy Belief Propagation"

Terminological Clarification

propagation

Terminological Clarification

Terminological Clarification

Terminological Clarification

Terminological Clarification

Terminological Clarification

Terminological Clarification

Propagating Global Factors

- Loopy belief propagation is easy for local factors
- How do combinatorial factors (like TREE) compute the message to the link in question?
* "Does the TREE factor think the link is probably t given the messages it receives from all the other links?"

Propagating Global Factors

- Loopy belief propagation is easy for local factors
- How do combinatorial factors (like TREE) compute the message to the link in question?
* "Does the TREE factor think the link is probably t given the messages it receives from all the other links?"

Propagating Global Factors

- Loopy belief propagation is easy for local factors
- How do combinatorial factors (like TREE) compute the message to the link in question?
* "Does the TREE factor think the link is probably t given the messages it receives from all the other links?"
... find

TREE factor	
ffffff	0
ffffft	0
fffftf	0
\ldots	\ldots
fftfft	1
\ldots	\ldots
$t f t t t$	0

links ...

Propagating Global Factors

- How does the TREE factor compute the message to the link in question?
* "Does the TREE factor think the link is probably t given the messages it receives from all the other links?"

Propagating Global Factors

- How does the TREE factor compute the message to the link in question?
* "Does the TREE factor think the link is probably t given the messages it receives from all the other links?"

Old-school parsing to the rescue!
This is the outside probability of the link in an edge-factored parser!
\therefore TREE factor computes all outgoing messages at once (given all incoming messages)

Projective case: total $\mathrm{O}\left(\mathrm{n}^{3}\right)$ time by inside-outside
Non-projective: total $\mathrm{O}\left(\mathrm{n}^{3}\right)$ time by inverting Kirchhoff matrix

Graph Theory to the Rescue!

Tutte's Matrix-Tree Theorem (1948)
The determinant of the Kirchoff (aka Laplacian) adjacency matrix of directed graph G without row and column r is equal to the sum of scores of all directed spanning trees of G rooted at node r.

Graph Theory to the Rescue!

Tutte's Matrix-Tree Theorem (1948)
The determinant of the Kirchoff (aka Laplacian) adjacency matrix of directed graph G without row and column r is equal to the sum of scores of all directed spanning trees σ rooted at node r.

Exactly the Z we need!

Graph Theory to the Rescue!

$O\left(n^{3}\right)$ time!
Tu EMatrix-Tree Theorem (1948)
The determinant of the Kirchoff (aka Laplacian) adjacency matrix of directed graph G without row and column r is equal to the sum of scores of all directed spanning trees σ rooted at node r.

Exactly the Z we need!

Kirchoff (Laplacian) Matrix

$\left[\begin{array}{ccccc}0 & -s(1,0) & -s(2,0) & \cdots & -s(n, 0) \\ 0 & 0 & -s(2,1) & \cdots & -s(n, 1) \\ 0 & -s(1,2) & 0 & \cdots & -s(n, 2) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & -s(1, n) & -s(2, n) & \cdots & 0\end{array}\right]$

Negate edge scores

- Sum columns
(children)
Strike root row/col.
Take determinant

Kirchoff (Laplacian) Matrix

$\left[\begin{array}{cc|ccc}0 & -s(1,0) & -s(2,0) & \cdots & -s(n, 0) \\ 0 & 0 & -s(2,1) & \cdots & -s(n, 1) \\ 0 & -s(1,2) & 0 & \cdots & -s(n, 2) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & -s(1, n) & -s(2, n) & \cdots & 0\end{array}\right]$

Negate edge scores

- Sum columns
(children)
Strike root row/col.
Take determinant

Kirchoff (Laplacian) Matrix

$$
\left[\begin{array}{ccccc}
0 & -s(1,0) & -s(2,0) & \cdots & -s(n, 0) \\
0 & \sum_{j \neq 1} s(1, j) & -s(2,1) & \cdots & -s(n, 1) \\
0 & -s(1,2) & \sum_{j \neq 2} s(2, j) & \cdots & -s(n, 2) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & -s(1, n) & -s(2, n) & \cdots & \sum_{j \neq n} s(n, j)
\end{array}\right]
$$

Negate edge scores

- Sum columns (children)
Strike root row/col.
Take determinant

Kirchoff (Laplacian) Matrix

$$
\left|\begin{array}{cccc}
\sum_{j \neq 1} s(1, j) & -s(2,1) & \cdots & -s(n, 1) \\
-s(1,2) & \sum_{j \neq 2} s(2, j) & \cdots & -s(n, 2) \\
\vdots & \vdots & \ddots & \vdots \\
-s(1, n) & -s(2, n) & \cdots & \sum_{j \neq n} s(n, j)
\end{array}\right|
$$

Negate edge scores
Sum columns
(children)
Strike root row/col.
Take determinant

Kirchoff (Laplacian) Matrix

$$
\left|\begin{array}{cccc}
\sum_{j \neq 1} s(1, j) & -s(2,1) & \cdots & -s(n, 1) \\
-s(1,2) & \sum_{j \neq 2} s(2, j) & \cdots & -s(n, 2) \\
\vdots & \vdots & \ddots & \vdots \\
-s(1, n) & -s(2, n) & \cdots & \sum_{j \neq n} s(n, j)
\end{array}\right|
$$

Negate edge scores
Sum columns (children)
Strike root row/col.
Take determinant
N.B.: This allows multiple children of root, but see Koo et al. 2007.

Transition-Based Parsing

- Linear time
- Online
- Train a classifier to predict next action
- Deterministic or beam-search strategies
- But... generally less accurate

Transition-Based Parsing

Arc-eager shift-reduce parsing (Nivre, 2003)

Start state: ([], [1, .., n], \{ \})
Final state: $(S,[], A)$

Shift: $\quad(S, i \mid B, A) \quad \Rightarrow \quad(S \mid i, B, A)$
Reduce: $\quad(S \mid i, B, A) \quad \Rightarrow \quad(S, B, A)$
Right-Arc: $(S|i, j| B, A) \quad \Rightarrow \quad(S|i| j, B, A \cup\{i \rightarrow j\})$
Left-Arc: $\quad(S|i, j| B, A) \quad \Rightarrow \quad(S, j \mid B, A \cup\{i \leftarrow j\})$

Transition-Based Parsing

Arc-eager shift-reduce parsing (Nivre, 2003)

Transition-Based Parsing

Arc-eager shift-reduce parsing (Nivre, 2003)

Stack
[who]s
Buffer
[did, you, see] ${ }_{B}$
\{\}

Shift

Transition-Based Parsing

Arc-eager shift-reduce parsing (Nivre, 2003)

Stack
[]s Buffer
[did, you, see] ${ }_{B}$
$\{$ who $\stackrel{\text { OBJ }}{\leftrightarrows}$ did \}
Arcs

Left-arc
OBJ

Transition-Based Parsing

Arc-eager shift-reduce parsing (Nivre, 2003)

Stack
[did]s
Buffer
[you, see] $_{B}$
Arcs
\{who $\stackrel{\text { OBJ }}{\longleftrightarrow}$ did \}

Shift

Transition-Based Parsing

Arc-eager shift-reduce parsing (Nivre, 2003)

Stack

${[d i d, ~ y o u]_{S} \quad[s e e]_{B}}$

Arcs
$\{$ who $\underset{\text { did }}{\xrightarrow{\text { OBJ }}} \stackrel{\text { did }}{ }$ you $\}$

Right-arc SBJ

Transition-Based Parsing

Arc-eager shift-reduce parsing (Nivre, 2003)

Stack
[did]s
$\left[\right.$ see] ${ }_{B}$

Arcs
\{ who $\stackrel{\text { OBJ }}{\longleftrightarrow}$ did, did $\xrightarrow{\text { SBJ }}$ you $\}$

Reduce

Transition-Based Parsing

Arc-eager shift-reduce parsing (Nivre, 2003)

Stack

$[\text { did, see] }]_{S} \quad[]_{B}$

Right-arc
VG

Buffer
Arcs
\{ who $\stackrel{\text { OBJ }}{\leftrightarrows}$ did, did $\xrightarrow{\text { SBJ }}$ you, did $\xrightarrow{\mathrm{VG}}$ see $\}$

Transition-Based Parsing

Arc-eager shift-reduce parsing (Nivre, 2003)

Stack

${[d i d, ~ y o u]_{S} \quad[s e e]_{B}}$

Arcs
$\{$ who $\underset{\text { did }}{\xrightarrow{\text { OBJ }}} \stackrel{\text { did }}{ }$ you $\}$

Right-arc SBJ

Transition-Based Parsing

Arc-eager shift-reduce parsing (Nivre, 2003)

Stack
$\left[_{\text {[did, you }}^{S}{ }_{S} \quad[\mathrm{see}]_{B}\right.$

Arcs
$\{$ who $\underset{\text { did }}{\xrightarrow{\text { OBJ }}} \xrightarrow{\text { SBJ }}$ did, you $\}$

Right-arc SBJ

Choose action w/best classifier score I00k - IM features

Transition-Based Parsing

Arc-eager shift-reduce parsing (Nivre, 2003)

Right-arc
SBJ

Choose action w/best classifier score I00k - IM features

[^0]: 品 PRINT
 宿 Reprints
 C. Save

