Context-Free Parsing: CKY \& Earley Algorithms and Probabilistic Parsing

Natural Language Processing
CS 4I20/6I20—Spring 2017
Northeastern University

David Smith
with some slides

from Jason Eisner \& Andrew McCallum

From Shift-Reduce to CKY

- Shift-reduce parsing can make wrong turns, needs backtracking
- Shift-reduce must pop the top of the stack, but how many items to pop?
- Time-space tradeoff
- Chomsky normal form

Chomsky Normal Form

- Any CFL can be generated by an equivalent grammar in CNF
- Rules of three types
- $X \rightarrow Y Z$
X, Y, Z nonterminals
- $X \rightarrow$ a X nonterminal, a terminal
- $S \rightarrow \varepsilon$ S the start symbol
- NB: the derivation of a given string may change

CNF Conversion

- Create new start symbol
- Remove NTs that can generate epsilon
- Remove NTs that can generate each other, (unary rule cycles)
- Chain rules with RHS > 2
- Related topic: rule Markovization (later)

CKY Algorithm

- Input: string of n words
- Output (of recognizer): grammatical or not
- Dynamic programming in a chart:
- rows labeled 0 to n -I
- columns labeled I to n
- cell [i,j] lists possible constituents spanning words between i and j

CKY Algorithm

- for $\mathrm{i}:=1$ to n
- Add to $[\mathrm{i}-1, \mathrm{i}]$ all (part-of-speech) categories for the $\mathrm{i}^{\text {th }}$ word
- for width := 2 to n
- for start := 0 to n-width
- Define end := start + width
- for mid := start+1 to end-1
- for every constituent X in [start,mid]
- for every constituent Y in [mid,end]
- for all ways of combining X and Y (if any)
- Add the resulting constituent to [start,end] if it's not already there.

CKY Algorithm

- for $\mathrm{i}:=1$ to n
- Add to $[\mathrm{i}-1, \mathrm{i}]$ all (part-of-speech) categories for the $\mathrm{i}^{\text {th }}$ word
- for width := 2 to n
- for start := 0 to n-width
- Define end := start + width
- for mid := start+1 to end-1
- for every constituent X in [start,mid]
- for every constituent Y in [mid,end]
- for all ways of combining X and Y (if any)
- Add the resulting constituent to [start,end] if it's not already there.

Time complexity?

CKY Algorithm

- for $\mathrm{i}:=1$ to n
- Add to $[\mathrm{i}-1, \mathrm{i}]$ all (part-of-speech) categories for the $\mathrm{i}^{\text {th }}$ word
- for width := 2 to n
- for start := 0 to n-width
- Define end := start + width
- for mid := start+1 to end-1
- for every constituent X in [start,mid]
- for every constituent Y in [mid,end]
- for all ways of combining X and Y (if any)
- Add the resulting constituent to [start,end] if it's not already there.

CKY Algorithm

- for $\mathrm{i}:=1$ to n
- Add to $[\mathrm{i}-1, \mathrm{i}]$ all (part-of-speech) categories for the $\mathrm{i}^{\text {th }}$ word
- for width := 2 to n
- for start := 0 to n-width
- Define end := start + width
- for mid := start+1 to end-1
- for every constituent X in [start,mid]
- for every constituent Y in [mid,end]
- for all ways of combining X and Y (if any)
- Add the resulting constituent to [start,end] if it's not already there.

Space complexity?

CKY Algorithm

- for $\mathrm{i}:=1$ to n
- Add to $[\mathrm{i}-1, \mathrm{i}]$ all (part-of-speech) categories for the $\mathrm{i}^{\text {th }}$ word
- for width := 2 to n
- for start := 0 to n-width
- Define end := start + width
- for mid := start+1 to end-1
- for every constituent X in [start,mid]
- for every constituent Y in [mid,end]
- for all ways of combining X and Y (if any)
- Add the resulting constituent to [start,end] if it's not already there.

Time complexity?
Space complexity?
$\mathrm{O}\left(\mathrm{Tn}^{2}\right)$

Follow backpointers

1	$S \rightarrow N P V P$
6	$S \rightarrow V$ Vt NP
2	$S \rightarrow S P P$
1	$V P \rightarrow V N P$
2	$V P \rightarrow V P P P$
1	$N P \rightarrow$ Det N
2	$N P \rightarrow N P P P$
3	$N P \rightarrow N P N P$
0	$P P \rightarrow P N P$

$1 \mathrm{~S} \rightarrow \mathrm{NP}$ VP	
6	$\mathrm{S} \rightarrow$ Vst NP
2	VP
	$N P \rightarrow$ Det
2	NP
3	$N P \rightarrow N P$

	1 fli	2 like	3 an	arrow	
	$\begin{array}{\|ll} \hline \text { NP } & 3 \\ \text { Vst } & 3 \end{array}$	NP 10 S 8 S 13	-	-	NP 24 S 22 S 27 NP 24 S 27 S 22 S 27
		$\begin{array}{\|ll} \hline \text { NP } & 4 \\ \text { VP } & 4 \end{array}$	-	-	$\begin{array}{\|ll\|} \hline \text { NP } & 18 \\ \text { S } & 21 \\ \text { VP } & 18 \\ \hline \end{array}$
2			$\begin{array}{ll} \mathrm{P} & 2 \\ \mathrm{~V} & 5 \end{array}$	-	$\begin{array}{\|ll} \hline \text { PP } & 12 \\ \text { VP } & 16 \end{array}$
				Det 1	NP 10
					N 8

lep

	1 flies 2	2 like	3 an	arrow 5	
0	$\begin{array}{ll} \text { NP } & 3 \\ \text { Vst } & 3 \end{array}$	NP 10 S 8 S 13	-	-	NP 24 S 22 S 27 NP 24 S 27 S 22 S 27
1		$\begin{array}{\|ll\|} \hline N P & 4 \\ \text { VP } & 4 \end{array}$	-	-	NP 18 S 21 VP 18
2			$\begin{array}{ll} \hline \mathrm{P} & 2 \\ \mathrm{~V} & 5 \end{array}$	-	$\begin{array}{ll} \hline P P & 12 \\ \text { VP } & 16 \end{array}$
3				Det 1	NP 10
4					N 8

Treebank Grammars

- What rules would you extract from this tree?
- What probabilities would you assign them?

Treebank Grammars

- Penn Treebank
- Lots of rules have high fanout (flat phrases)
- Lots of unary cycles
- How should we evaluate?
- What are the consequences of CNF conversion?

Parsing as Deduction

- CKY as inference rules
- CKY as Prolog program
- But Prolog is top-down with backtracking
- i.e.,"backward chaining", CKY is "forward chaining"
- Inference rules as Boolean semiring

Probabilistic CFGs

- Generative process (already familiar)
- It's context free: Rules are applied independently, therefore we multiply their probabilities
- How to estimate probabilities?
- Supervised and unsupervised

Questions for PCFGs

- What is the most likely parse for a sentence? (parsing)
- What is the probability of a sentence? (language modeling)
- What rule probabilities maximize the probability of a sentence? (parameter estimation)

Algorithms for PCFGs

- Exact analogues to HMM algorithms
- Parsing:Viterbi CKY
- Language modeling: inside probabilities
- Parameter estimation: inside-outside probabilities with EM

Parsing as Deduction

$\forall A, B, C \in N, W \in V, 0 \leq i, j, k \leq m$
$\operatorname{constit}(B, i, j) \wedge \operatorname{constit}(C, j, k) \wedge A \rightarrow B C \Rightarrow \operatorname{constit}(A, i, k)$

$$
\operatorname{word}(W, i) \wedge A \rightarrow W \Rightarrow \operatorname{constit}(A, i, i+1)
$$

In Prolog:

constit(A, I1, I) :-	constit(A, I, K) :- word(I, W), (A ---> [W]),
constit(B, I, J),	
I1 is I - 1.	constit(C, J, K),
	(A ---> [B, C]).

But Prolog uses top-down search with backtracking...

Parsing as Deduction

$\forall A, B, C \in N, W \in V, 0 \leq i, j, k \leq m$
$\operatorname{constit}(B, i, j) \wedge \operatorname{constit}(C, j, k) \wedge A \rightarrow B C \Rightarrow \operatorname{constit}(A, i, k)$

$$
\operatorname{word}(W, i) \wedge A \rightarrow W \Rightarrow \operatorname{constit}(A, i, i+1)
$$

$\operatorname{constit}(A, i, k)=\bigvee_{B, C, j} \operatorname{constit}(B, i, j) \wedge \operatorname{constit}(C, j, k) \wedge A \rightarrow B C$
$\operatorname{constit}(A, i, j)=\bigvee_{W} \operatorname{word}(W, i, j) \wedge A \rightarrow W$

Parsing as Deduction

$$
\begin{aligned}
& \operatorname{constit}(A, i, k)=\bigvee_{B, C, j} \operatorname{constit}(B, i, j) \wedge \operatorname{constit}(C, j, k) \wedge A \rightarrow B C \\
& \operatorname{constit}(A, i, j)=\bigvee_{W} \operatorname{word}(W, i, j) \wedge A \rightarrow W \\
& \operatorname{score}(\operatorname{constit}(A, i, k))=\max _{B, C, j} \operatorname{score}(\operatorname{constit}(B, i, j)) \\
& \\
& \quad \cdot \operatorname{score}(\operatorname{constit}(C, j, k)) \\
& \\
& \quad \cdot \operatorname{score}(A \rightarrow B C)
\end{aligned} \quad \begin{aligned}
\operatorname{score}(\operatorname{constit}(A, i, j))=\max _{W} \operatorname{score}(w o r d(W, i, j)) \cdot \operatorname{score}(A \rightarrow W)
\end{aligned}
$$

And how about the inside algorithm?

Inside \& Viterbi Algorithms

Let $\beta_{A}(i, j)=p(\operatorname{constit}(A, i, j))$
NB: index between words; M\&S index words
$=p\left(w_{i j} \mid\right.$ nonterminal A from i to j$)$

$$
\beta_{A}(i, k)=\sum_{B, C, j} \beta_{B}(i, j) \cdot \beta_{C}(j, k) \cdot p(A \rightarrow B C)
$$

Let $\delta_{A}(i, j)=p_{\text {best }}(\operatorname{constit}(A, i, j))$

$$
\begin{aligned}
\delta_{A}(i, k) & \left.=\max _{B, C, j} \delta_{B}(i, j)\right) \cdot \delta_{C}(j, k) \cdot p(A \rightarrow B C) \\
\beta_{S}(0, n) & =?
\end{aligned}
$$

Forward-Backward Algorithm

Inside \& Outside

constit(A, i, j)
p(words 0-i, words j-n, constit)

Inside \& Outside

Inside \& Outside

Inside \& Outside

Outside Algorithm

$$
\begin{aligned}
& \alpha_{A}(i, j)= p\left(w_{0, i}, A_{i, j}, w_{j, n}\right) \\
& \alpha_{A}(i, j)= \sum_{B, C, k=j}^{n} \alpha_{B}(i, k) \cdot \beta_{C}(j, k) \cdot p(B \rightarrow A C) \\
&+\sum_{B, C, k=0}^{i} \alpha_{B}(k, j) \cdot \beta_{C}(k, i) \cdot p(B \rightarrow C A) \\
& \alpha_{S}(0, n)=? \\
& \alpha_{P P}(0, n)=? \begin{array}{c}
\text { Spos inside }
\end{array} \\
& \begin{array}{c}
\text { some } \\
\text { resemblance } \\
\text { to derivative } \\
\text { product rule }
\end{array}
\end{aligned}
$$

Problems with Inside-Outside EM

- Each sentence at each iteration takes $O\left(m^{3} n^{3}\right)$
- Local maxima even more problematic than for HMMs: Charniak (1993) found a different maximum for each of 300 trials
- More NTs needed to learn a good model
- NTs don't correspond to intuitions: HMMs are easier to constrain with tag dictionaries

Top-Down/Bottom-Up

- Top-down parsers
- Can get caught in infinite loops
- Take exponential time backtracking
- CKY
- Needs Chomsky normal form
- Builds all possible constituents

Earley Parser (1970)

- Nice combination of
- dynamic programming
- incremental interpretation
- avoids infinite loops
- no restrictions on the form of the context-free grammar.
$A \rightarrow B C$ the D of causes no problems
$-\mathrm{O}\left(\mathrm{n}^{3}\right)$ worst case, but faster for many grammars
- Uses left context and optionally right context to constrain search.

Earley's Overview

- Finds constituents and partial constituents in input
$-A \rightarrow B C . D E$ is partial: only the first half of the A

Earley's Overview

- Proceeds incrementally left-to-right
- Before it reads word 5, it has already built all hypotheses that are consistent with first 4 words
- Reads word 5 \& attaches it to immediately preceding hypotheses. Might yield new constituents that are then attached to hypotheses immediately preceding them ...
- E.g., attaching D to $A \rightarrow B C$. E gives $A \rightarrow B C D . E$
- Attaching E to that gives $A \rightarrow B C D E$.
- Now we have a complete A that we can attach to hypotheses immediately preceding the A, etc.

The Parse Table

- Columns 0 through n corresponding to the gaps between words
- Entries in column 5 look like ($3, \mathrm{NP} \rightarrow \mathrm{NP}$. PP)
(but we'll omit the \rightarrow etc. to save space)
- Built while processing word 5
- Means that the input substring from 3 to 5 matches the initial NP portion of a NP \rightarrow NP PP rule
- Dot shows how much we've matched as of column 5
- Perfectly fine to have entries like (3, VP \rightarrow is it . true that S)

The Parse Table

- Entries in column 5 look like $(3, \mathrm{NP} \rightarrow \mathrm{NP}$. PP)
- What will it mean that we have this entry?
- Unknown right context: Doesn't mean we'll necessarily be able to find a VP starting at column 5 to complete the S.
- Known left context: Does mean that some dotted rule back in column 3 is looking for an S that starts at 3.
- So if we actually do find a VP starting at column 5 , allowing us to complete the S , then we'll be able to attach the S to something.
- And when that something is complete, it too will have a customer to its left ...
- In short, a top-down (i.e., goal-directed) parser: it chooses to start building a constituent not because of the input but because that's what the left context needs. In the spoon, won't build spoon as a verb because there's no way to use a verb there.
- So any hypothesis in column 5 could get used in the correct parse, if words 1-5 are continued in just the right way by words $6-n$.

Earley's as a Recognizer

- Add ROOT \rightarrow. S to column 0 .
- For each j from 0 to n :
- For each dotted rule in column j, (including those we add as we go!) look at what's after the dot:
- If it's a word w, SCAN:
- If w matches the input word between j and $\mathrm{j}+1$, advance the dot and add the resulting rule to column $\mathrm{j}+1$
- If it's a non-terminal X, PREDICT:
- Add all rules for X to the bottom of column j, wth the dot at the start: e.g. X \rightarrow. Y Z
- If there's nothing after the dot, ATTACH:
- We've finished some constituent, A, that started in column $I<j$. So for each rule in column j that has A after the dot: Advance the dot and add the result to the bottom of column j.
- Output "yes" just if last column has ROOT \rightarrow S .
- NOTE: Don't add an entry to a column if it's already there!

Earley's Summary

- Process all hypotheses one at a time in order. (Current hypothesis is shown in blue.)
- This may add new hypotheses to the end of the to-do list, or try to add old hypotheses again.
- Process a hypothesis according to what follows the dot:
- If a word, scan input and see if it matches
- If a nonterminal, predict ways to match it
- (we'll predict blindly, but could reduce \# of predictions by looking ahead k symbols in the input and only making predictions that are compatible with this limited right context)
- If nothing, then we have a complete constituent, so attach it to all its customers

A (Whimsical) Grammar

$$
\begin{array}{ll}
S \rightarrow N P V P & N P \rightarrow \text { Papa } \\
N P \rightarrow \text { Det N } & N \rightarrow \text { caviar } \\
N P \rightarrow N P ~ P P & N \rightarrow \text { spoon } \\
V P \rightarrow V N P & V \rightarrow \text { ate } \\
V P \rightarrow V P P P & P \rightarrow \text { with } \\
P P \rightarrow P N P & \text { Det } \rightarrow \text { the } \\
& \text { Det } \rightarrow a
\end{array}
$$

An Input Sentence

Papa ate the caviar with a spoon.

Remember this stands for $(0$, ROOT \rightarrow. S)

0
0 ROOT . S
0 S . NP VP
0 NP. Det N
0 NP. NP PP
0 NP. Papa

predict the kind of NP we are looking for

(actually we'll look for 3 kinds: any of the 3 will do)

0
0 ROOT . S
0 S . NP VP
0 NP. Det N
0 NP . NP PP
0 NP. Papa
0 Det . the
0 Det . a

predict the kind of Det we are looking for (2 kinds)

predict the kind of NP we're looking for
but we were already looking for these so don't add duplicate goals! Note that this happened when we were processing a left-recursive rule.

0 Papa 1	
0 ROOT. S	0 NP Papa .
0 S . NP VP	
0 NP. Det N	
0 NP.NP PP	
0 NP . Papa	
0 Det. the	scan
0 Det.a	

0 Papa 1	
0 ROOT. S	0 NP Papa .
0 S . NP VP	
0 NP. Det N	
0 NP.NP PP	
0 NP. Papa	
0 Det. the	
0 Det. a	scan

0 Papa 1		attach the newly created NP (which starts at 0) to its customers (incomplete constituents that end at 0 and have NP after the dot)
0 ROOT. S	0 NP Papa.	
O S NP VP	0 S NP. VP	
0 NP. Det N	0 NP NP . PP	
0 NP. NP PP		
0 NP. Papa		
0 Det. the		
0 Det.a		

0 Papa 1	
0 ROOT. S	0 NP Papa
0 S . NP VP	0 SNP.VP
0 NP. Det N	0 NP NP . PP
0 NP.NP PP	1 VP . V NP
0 NP. Papa	1 VP. VP PP
0 Det. the	
0 Det.a	

0 Papa 1	
0 ROOT. S	0 NP Papa.
0 S . NP VP	0 S NP.VP
0 NP. Det N	0 NP NP.PP
0 NP . NP PP	1 VP . V NP
0 NP. Papa	1 VP . VP PP
0 Det. the	1 PP. P NP
0 Det.a	

0 Papa 1	
0 ROOT. S	0 NP Papa.
0 S . NP VP	0 S NP.VP
0 NP. Det N	0 NP NP.PP
0 NP . NP PP	1 VP . VNP
0 NP. Papa	$1 \mathrm{VP} . \mathrm{VP}$ PP
0 Det. the	1 PP. P NP
0 Det.a	1 V . ate

0 Papa 1	
0 ROOT. S	0 NP Papa.
0 S . NP VP	0 S NP.VP
0 NP. Det N	0 NP NP.PP
0 NP . NP PP	1 VP . V NP
0 NP. Papa	$1 \mathrm{VP} . \mathrm{VP}$ PP
0 Det. the	1 PP. P NP
0 Det.a	1 V . ate

0 Papa 1	
0 ROOT.S	0 NP Papa
0 S .NP VP	0 S NP.VP
0 NP. Det N	0 NP NP . PP
0 NP . NP PP	1 VP . V NP
0 NP. Papa	1 VP . VP PP
0 Det. the	1 PP. PNP
0 Det.a	1 V . ate
	1 P . with

0 Papa	0 Papa 1 ate	2
0 ROOT.S	0 NP Papa.	1 V ate.
0 S . NP VP	0 S NP . VP	
0 NP. Det N	0 NP NP . PP	
0 NP.NP PP	$1 \mathrm{VP} . \mathrm{V}$ NP	
0 NP. Papa	1 VP . VP PP	
0 Det. the	1 PP. P NP	
0 Det. a	1 V . ate	
	1 P. with	scan

0 Pa	1 ate	2
0 ROOT. S	0 NP Papa	1 V ate.
0 S . NP VP	0 S NP.VP	1 VP V . NP
0 NP. Det N	0 NP NP.PP	2 NP. Det N
0 NP.NP PP	1 VP . V NP	2 NP.NP PP
0 NP . Papa	1 VP . VP PP	2 NP. Papa
0 Det. the	1 PP . P NP	
0 Det. a	1 V . ate	
	1P. with	

Papa 1 ate		2
0 ROOT. S	0 NP Papa	1 V ate.
0 S . NP VP	0 S NP.VP	1 VP V . NP
0 NP. Det N	0 NP NP . PP	2 NP. Det N
0 NP.NP PP	1 VP . V NP	2 NP.NP PP
0 NP. Papa	1 VP. VP PP	2 NP. Papa
0 Det. the	1 PP. P NP	2 Det. the
0 Det. a	1 V . ate	2 Det.a
	1 P . with	

predict (these next few steps

 should look familiar)| 0 Pap | 1 ate | 2 |
| :---: | :---: | :---: |
| 0 ROOT.S | 0 NP Papa . | 1 V ate. |
| 0 S .NP VP | 0 S NP.VP | 1 VP V . NP |
| 0 NP. Det N | 0 NP NP.PP | 2 NP. Det N |
| 0 NP . NP PP | 1 VP . V NP | 2 NP.NP PP |
| 0 NP. Papa | $1 \mathrm{VP} . \mathrm{VP}$ PP | 2 NP. Papa |
| 0 Det. the | 1 PP. P NP | 2 Det. the |
| 0 Det. a | 1 V . ate | 2 Det.a |
| | 1P. with | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |

predict

0 Pap	1 ate	2
0 ROOT. S	0 NP Papa .	1 V ate.
0 S . NP VP	0 S NP.VP	1 VP V . NP
0 NP. Det N	0 NP NP . PP	2 NP . Det N
0 NP.NP PP	1 VP . V NP	2 NP . NP PP
0 NP. Papa	1 VP . VP PP	2 NP. Papa
0 Det. the	1 PP. P NP	2 Det. the
0 Det. a	1 V . ate	2 Det.a
	1 P . with	

scan (this time we fail since Papa is not the next word)

0 Papa	1 ate	2 the	3
0 ROOT. S	0 NP Papa .	1 V ate	2 Det the
0 S .NP VP	0 S NP.VP	1 VP V . NP	
0 NP. Det N	0 NP NP . PP	2 NP. Det N	
0 NP . NP PP	1 VP . V NP	2 NP . NP PP	
0 NP. Papa	1 VP. VP PP	2 NP . Papa	
0 Det. the	1 PP. P NP	2 Det . the	
0 Det.a	1 V . ate	2 Det.a	
	1 P . with		

Papa	1 ate	2 the	3
0 ROOT. S	0 NP Papa	1 V ate .	2 Det the
0 S .NP VP	0 S NP.VP	1 VP V . NP	2 NP Det.N
0 NP. Det N	0 NP NP.PP	2 NP. Det N	
0 NP.NPPP	1 VP . V NP	2 NP.NP PP	
0 NP. Papa	$1 \mathrm{VP} . \mathrm{VP}$ PP	2 NP. Papa	
0 Det. the	1 PP. P NP	2 Det. the	
0 Det. a	1 V . ate	2 Det.a	
	1 P . with		

0 Papa	1 ate	2 the	3
0 ROOT. S	0 NP Papa .	1 V ate	2 Det the .
0 S .NP VP	0 S NP.VP	1 VP V . NP	2 NP Det. N
0 NP. Det N	0 NP NP . PP	2 NP. Det N	$3 N$. caviar
0 NP . NP PP	1 VP. V NP	2 NP.NP PP	3 N. spoon
0 NP. Papa	1 VP. VP PP	2 NP . Papa	
0 Det. the	1 PP. P NP	2 Det . the	
0 Det.a	1 V . ate	2 Det.a	
	1 P . with		

0 Pa	1 ate	2 the	3 caviar	4
0 ROOT. S	0 NP Papa	1 V ate.	2 Det the .	3 N caviar .
0 S .NP VP	0 S NP . VP	1 VP V . NP	2 NP Det.N	
0 NP. Det N	0 NP NP . PP	2 NP. Det N	3 N . caviar	
0 NP.NP PP	1 VP . V NP	2 NP.NP PP	3 N. spoon	
0 NP. Papa	1 VP . VP PP	2 NP. Papa		
0 Det. the	1 PP. P NP	2 Det. the		
0 Det.a	1 V . ate	2 Det.a		
	1 P . with			

0 Pa	1 ate	2 the	3 caviar	4
0 ROOT.S	0 NP Papa	1 V ate.	2 Det the .	3 N caviar .
0 S . NP VP	0 S NP . VP	1 VP V . NP	2 NP Det.N	
0 NP . Det N	0 NP NP . PP	2 NP. Det N	3 N . caviar	
0 NP . NP PP	1 VP . V NP	2 NP.NP PP	3 N . spoon	
0 NP. Papa	1 VP . VP PP	2 NP. Papa		
0 Det. the	1 PP. P NP	2 Det. the		
0 Det. a	1 V . ate	2 Det.a		
	1 P . with			

0 Pa	1 ate	2 the	3 caviar	4	attach
0 ROOT.S	0 NP Papa .	1 V ate .	2 Det the	3 N caviar .	
0 S . NP VP	0 S NP. VP	1 VP V . NP	2 NP Det.N	2 NP Det N	
0 NP. Det N	0 NP NP.PP	2 NP . Det N	3 N . caviar		
0 NP.NP PP	1 VP . V NP	2 NP . NP PP	3 N. spoon		
0 NP. Papa	1 VP . VP PP	2 NP. Papa			
0 Det. the	1 PP. P NP	2 Det . the			
0 Det.a	1 V . ate	2 Det.a			
	1 P . with				

0 Pa	1 ate	2 the	3 caviar	4	attach (again!)
0 ROOT. S	0 NP Papa	1 V ate	2 Det the .	3 N caviar .	
0 S .NP VP	0 S NP.VP	1 VPV . NP	2 NP Det.N	2 NP Det N.	
0 NP. Det N	0 NP NP . PP	2 NP. Det N	3 N . caviar	1 VP V NP.	
0 NP.NP PP	1 VP . V NP	2 NP . NP PP	3 N. spoon	2 NP NP . PP	
0 NP. Papa	1 VP . VP PP	2 NP. Papa			
0 Det. the	1 PP. P NP	2 Det . the			
0 Det.a	1 V . ate	2 Det.a			
	1 P . with				

0 Pa	1 ate	2 the	3 caviar	4
0 ROOT. S	0 NP Papa .	1 V ate.	2 Det the .	3 N caviar .
0 S NP VP	0 S NP. VP	1 VP V . NP	2 NP Det.N	2 NP Det N .
0 NP. Det N	0 NP NP . PP	2 NP. Det N	3 N . caviar	1 VP V NP
0 NP.NP PP	1 VP . V NP	2 NP . NP PP	3 N. spoon	2 NP NP.PP
0 NP. Papa	1 VP . VP PP	2 NP. Papa		0 S NP VP.
0 Det. the	1 PP . P NP	2 Det. the		1 VP VP . PP
0 Det.a	1 V . ate	2 Det.a		
	1 P . with			

0 Pa	1 ate	2 the	3 caviar	4
0 ROOT. S	0 NP Papa .	1 V ate.	2 Det the	3 N caviar .
0 S . NP VP	0 S NP.VP	1 VP V . NP	2 NP Det.N	2 NP Det N
0 NP. Det N	0 NP NP.PP	2 NP. Det N	3 N . caviar	1 VP V NP
0 NP.NP PP	1 VP . V NP	2 NP . NP PP	3 N. spoon	2 NP NP . PP
0 NP. Papa	1 VP . VP PP	2 NP. Papa		0 S NP VP
0 Det. the	1 PP. P NP	2 Det . the		1 VP VP . PP
0 Det.a	1 V . ate	2 Det.a		4 PP . P NP
	1 P . with			

0 Pap	1 ate	2 the	3 caviar	4
0 ROOT. S	0 NP Papa	1 V ate.	2 Det the .	3 N caviar .
0 S . NP VP	0 S NP.VP	1 VPV . NP	2 NP Det.N	2 NP Det N .
0 NP. Det N	0 NP NP.PP	2 NP. Det N	3 N . caviar	1 VP V NP.
0 NP.NP PP	1 VP . V NP	2 NP.NP PP	3 N. spoon	2 NP NP . PP
0 NP. Papa	$1 \mathrm{VP} . \mathrm{VPPP}$	2 NP. Papa		0 S NP VP
0 Det. the	1 PP. P NP	2 Det. the		1 VP VP. PP
0 Det. a	1 V . ate	2 Det.a		4 PP. P NP
	1P. with			0 ROOT S .

Papa	1 ate	2 the	3 caviar	4
0 ROOT. S	0 NP Papa	1 V ate.	2 Det the .	3 N caviar .
0 S .NP VP	0 S NP.VP	1 VP V . NP	2 NP Det.N	2 NP Det N .
0 NP. Det N	0 NP NP . PP	2 NP. Det N	3 N . caviar	1 VP V NP.
0 NP.NP PP	1 VP . V NP	2 NP.NP PP	3 N . spoon	2 NP NP. PP
0 NP. Papa	1 VP . VP PP	2 NP. Papa		0 S NP VP
0 Det. the	1 PP. P NP	2 Det. the		1 VP VP. PP
0 Det.a	1 V . ate	2 Det.a		4 PP . P NP
	1 P . with			0 ROOT S .

0 Pa	1 ate	2 the	3 caviar	4
0 ROOT. S	0 NP Papa .	1 V ate.	2 Det the	3 N caviar .
0 S . NP VP	0 S NP.VP	1 VP V . NP	2 NP Det.N	2 NP Det N
0 NP. Det N	0 NP NP . PP	2 NP. Det N	3 N . caviar	1 VP V NP
0 NP.NP PP	1 VP . V NP	2 NP . NP PP	3 N. spoon	2 NP NP . PP
0 NP. Papa	1 VP . VP PP	2 NP. Papa		0 S NP VP
0 Det. the	1 PP. P NP	2 Det . the		1 VP VP . PP
0 Det.a	1 V . ate	2 Det.a		4 PP.PNP
	1 P . with			0 ROOT S
				4 P . with

Pa	1 ate	2 the	3 caviar	4
0 ROOT. S	0 NP Papa	1 V ate.	2 Det the .	3 N caviar .
0 S .NP VP	0 S NP.VP	1 VP V . NP	2 NP Det.N	2 NP Det N .
0 NP. Det N	0 NP NP . PP	2 NP. Det N	3 N . caviar	1 VP V NP
0 NP.NP PP	1 VP . V NP	2 NP.NP PP	3 N . spoon	2 NP NP. PP
0 NP. Papa	1 VP. VP PP	2 NP . Papa		0 S NP VP
0 Det. the	1 PP. P NP	2 Det. the		1 VP VP . PP
0 Det.a	1 V . ate	2 Det.a		4 PP. P NP
	1 P . with			0 ROOT S.
				4 P . with

0 Pap	1 ate	2 the	3 caviar	4 with	5
0 ROOT. S	0 NP Papa	1 V ate	2 Det the .	$3 N$ caviar .	4 P with .
0 S .NP VP	0 S NP.VP	1 VP V . NP	2 NP Det.N	2 NP Det N	
0 NP. Det N	0 NP NP . PP	2 NP. Det N	3 N . caviar	1 VP V NP	
0 NP.NP PP	1 VP . V NP	2 NP . NP PP	3 N. spoon	2 NP NP. PP	
0 NP. Papa	1 VP . VP PP	2 NP. Papa		0 S NP VP	
0 Det. the	1 PP. P NP	2 Det . the		1 VP VP. PP	
0 Det.a	1 V . ate	2 Det.a		4 PP.PNP	
	1 P . with			0 ROOT S	
				4 P . with	

0 Pap	1 ate	2 the	3 caviar	4 with	5
0 ROOT. S	0 NP Papa	1 V ate	2 Det the .	3 N caviar .	4 P with.
0 S .NP VP	0 S NP.VP	1 VP V . NP	2 NP Det.N	2 NP Det N	4 PP P.NP
0 NP. Det N	0 NP NP . PP	2 NP. Det N	3 N . caviar	1 VP V NP	
0 NP.NP PP	1 VP . V NP	2 NP . NP PP	3 N. spoon	2 NP NP. PP	
0 NP. Papa	1 VP . VP PP	2 NP. Papa		0 S NP VP	
0 Det. the	1 PP. P NP	2 Det . the		1 VP VP. PP	
0 Det.a	1 V . ate	2 Det.a		4 PP.PNP	
	1 P . with			0 ROOT S .	
				4 P . with	

0 Pap	1 ate	2 the	3 caviar	4 with	5
0 ROOT.S	0 NP Papa	1 V ate	2 Det the .	$3 N$ caviar .	4 P with .
0 S .NP VP	0 S NP.VP	1 VP V . NP	2 NP Det.N	2 NP Det N	4 PP P.NP
0 NP. Det N	0 NP NP.PP	2 NP. Det N	3 N . caviar	1 VP V NP	5 NP . Det N
0 NP.NP PP	1 VP . V NP	2 NP . NP PP	3 N. spoon	2 NP NP. PP	5 NP. NP PP
0 NP. Papa	1 VP . VP PP	2 NP. Papa		0 S NP VP	5 NP. Papa
0 Det. the	1 PP. P NP	2 Det . the		1 VP VP. PP	
0 Det.a	1 V . ate	2 Det.a		4 PP.PNP	
	1 P . with			0 ROOT S	
				4 P . with	

0 Pap	1 ate	2 the	3 caviar	4 with	5
0 ROOT. S	0 NP Papa	1 V ate	2 Det the .	$3 N$ caviar .	4 P with .
0 S .NP VP	0 S NP.VP	1 VP V . NP	2 NP Det.N	2 NP Det N	4 PP P.NP
0 NP. Det N	0 NP NP . PP	2 NP. Det N	3 N . caviar	1 VP V NP	5 NP . Det N
0 NP.NP PP	1 VP . V NP	2 NP . NP PP	3 N. spoon	2 NP NP. PP	5 NP . NP PP
0 NP. Papa	1 VP . VP PP	2 NP. Papa		0 S NP VP	5 NP. Papa
0 Det. the	1 PP. P NP	2 Det . the		1 VP VP. PP	5 Det. the
0 Det.a	1 V . ate	2 Det.a		4 PP.PNP	5 Det.a
	1 P . with			0 ROOT S	
				4 P . with	

0 Pa	1 ate	2 the	3 caviar	4 with	5
0 ROOT.S	0 NP Papa	1 V ate	2 Det the .	3 N caviar .	4 P with .
0 S . NP VP	0 S NP.VP	1 VP V . NP	2 NP Det.N	2 NP Det N .	4 PP P.NP
0 NP. Det N	0 NP NP . PP	2 NP. Det N	3 N . caviar	1 VP V NP.	5 NP . Det N
0 NP.NP PP	1 VP . V NP	2 NP . NP PP	3 N. spoon	2 NP NP. PP	5 NP. NP PP
0 NP. Papa	1 VP . VP PP	2 NP. Papa		0 S NP VP.	5 NP . Papa
0 Det. the	1 PP. P NP	2 Det. the		1 VP VP . PP	5 Det. the
0 Det.a	1 V . ate	2 Det.a		4 PP.PNP	5 Det.a
	1 P . with			0 ROOT S .	
				4 P . with	

0 Pa	1 ate	2 the	3 caviar	4 with	5
0 ROOT. S	0 NP Papa .	1 V ate	2 Det the .	3 N caviar .	4 P with .
0 S .NP VP	0 S NP. VP	1 VPV . NP	2 NP Det.N	2 NP Det N	4 PPP.NP
0 NP. Det N	0 NP NP . PP	2 NP. Det N	3 N . caviar	1 VP V NP	5 NP . Det N
0 NP.NPPP	1 VP . V NP	2 NP.NPPP	3 N. spoon	2 NP NP. PP	5 NP.NP PP
0 NP. Papa	$1 \mathrm{VP} . \mathrm{VP}$ PP	2 NP. Papa		0 S NP VP	5 NP. Papa
0 Det. the	1 PP. P NP	2 Det. the		1 VP VP.PP	5 Det. the
0 Det.a	1 V . ate	2 Det.a		4 PP.PNP	5 Det.a
	1 P . with			0 ROOT S	
				4 P . with	

0 Pap	1 ate	2 the	3 caviar	4 with	5
0 ROOT. S	0 NP Papa	1 V ate	2 Det the .	$3 N$ caviar .	4 P with .
0 S .NP VP	0 S NP.VP	1 VP V . NP	2 NP Det.N	2 NP Det N	4 PP P.NP
0 NP. Det N	0 NP NP . PP	2 NP. Det N	3 N . caviar	1 VP V NP	5 NP. Det N
0 NP.NP PP	1 VP . V NP	2 NP . NP PP	3 N. spoon	2 NP NP. PP	5 NP . NP PP
0 NP. Papa	1 VP . VP PP	2 NP. Papa		0 S NP VP	5 NP. Papa
0 Det. the	1 PP. P NP	2 Det . the		1 VP VP. PP	5 Det. the
0 Det.a	1 V . ate	2 Det.a		4 PP.PNP	5 Det.a
	1 P . with			0 ROOT S .	
				4 P . with	

e	2 the	3 caviar	4 with	$5 \quad \mathbf{a} \quad 6$	
	1 V ate.	2 Det the .	3 N caviar .	4 P with .	5 Deta.
	1 VPV . NP	2 NP Det.N	2 NP Det N	4 PPP.NP	
P	2 NP . Det N	3 N . caviar	1 VP V NP	5 NP. Det N	
	2 NP . NP PP	3 N. spoon	2 NP NP. PP	5 NP . NP PP	
כ	2 NP. Papa		0 S NP VP	5 NP. Papa	
	2 Det. the		1 VP VP. PP	5 Det. the	
	2 Det.a		4 PP. P NP	5 Det.a	
			0 ROOTS		
			4 P . with		

e	2 the	3 caviar	4 with	5 a	
	1 V ate	2 Det the .	3 N caviar .	4 P with.	5 Det a
	1 VP V . NP	2 NP Det.N	2 NP Det N	4 PP P.NP	5 NP Det. N
P	2 NP. Det N	3 N . caviar	$1 \mathrm{VP} V \mathrm{NP}$	5 NP . Det N	
	2 NP.NP PP	3 N. spoon	2 NP NP. PP	5 NP . NP PP	
כ	2 NP. Papa		0 S NP VP	5 NP. Papa	
	2 Det. the		1 VP VP . PP	5 Det. the	
	2 Det. a		4 PP . P NP	5 Det.a	
			0 ROOT S .		
			4 P . with		

e	2 the	3 caviar	4 with	5 a	
	1 V ate	2 Det the .	3 N caviar .	4 P with.	5 Deta.
	1 VP V . NP	2 NP Det.N	2 NP Det N	4 PP P.NP	5 NP Det. N
P	2 NP. Det N	3 N . caviar	$1 \mathrm{VP} V \mathrm{NP}$	5 NP. Det N	6 N . caviar
	2 NP.NP PP	3 N. spoon	2 NP NP. PP	5 NP.NP PP	6 N. spoon
כ	2 NP. Papa		0 S NP VP	5 NP. Papa	
	2 Det. the		1 VP VP . PP	5 Det. the	
	2 Det. a		4 PP . P NP	5 Det.a	
			0 ROOT S .		
			4 P . with		

e	2 the	3 caviar	4 with	5 a	
	1 V ate	2 Det the .	3 N caviar .	4 P with.	5 Deta.
	1 VP V . NP	2 NP Det.N	2 NP Det N	4 PP P.NP	5 NP Det.N
P	2 NP. Det N	3 N . caviar	$1 \mathrm{VP} V \mathrm{NP}$	5 NP. Det N	6 N. caviar
	2 NP.NP PP	3 N. spoon	2 NP NP. PP	5 NP.NP PP	6 N . spoon
כ	2 NP. Papa		0 S NP VP	5 NP. Papa	
	2 Det. the		1 VP VP . PP	5 Det. the	
	2 Det. a		4 PP . P NP	5 Det.a	
			0 ROOT S .		
			4 P . with		

e	2 the	3 caviar	4 with	5 a 6	spoon 7	
	1 V ate.	2 Det the .	3 N caviar .	4 P with .	5 Deta	6 N spoon .
	1 VP V . NP	2 NP Det.N	2 NP Det N .	4 PPP.NP	5 NP Det.N	
P	2 NP . Det N	3 N . caviar	1 VPV NP.	5 NP. Det N	6 N . caviar	
	2 NP . NP PP	3 N . spoon	2 NP NP. PP	5 NP.NP PP	6 N. spoon	
\bigcirc	2 NP . Papa		0 S NP VP.	5 NP . Papa		
	2 Det. the		1 VP VP. PP	5 Det. the		
	2 Det. a		4 PP.PNP	5 Det.a		
			0 ROOTS			
			4P.with			

e	2 the	3 caviar	4 with	5 a 6	spoon 7	
	1 V ate.	2 Det the .	3 N caviar .	4 P with .	5 Det a	6 N spoon.
	1 VP V . NP	2 NP Det.N	2 NP Det N .	4 PPP.NP	5 NP Det. N	5 NP Det N.
P	2 NP . Det N	3 N . caviar	1 VPV NP.	5 NP. Det N	6 N . caviar	
	2 NP . NP PP	3 N . spoon	2 NP NP.PP	5 NP . NP PP	6 N . spoon	
\bigcirc	2 NP . Papa		0 S NP VP.	5 NP . Papa		
	2 Det . the		1 VP VP. PP	5 Det . the		
	2 Det.a		4 PP.PNP	5 Det.a		
			0 ROOTS			
			4P.with			

e	2 the	3 caviar	4 with	5 a	spoon	
	1 V ate .	2 Det the .	3 N caviar .	4 P with .	5 Det a	6 N spoon .
	1 VP V . NP	2 NP Det.N	2 NP Det N .	4 PP P . NP	5 NP Det.N	5 NP Det N .
P	2 NP. Det N	3 N . caviar	1 VP V NP.	5 NP . Det N	6 N . caviar	4 PP P NP
	2 NP.NP PP	3 N. spoon	2 NP NP.PP	5 NP . NP PP	6 N. spoon	5 NP NP . PP
כ	2 NP. Papa		0 S NP VP.	5 NP . Papa		
	2 Det. the		1 VP VP.PP	5 Det . the		
	2 Det. a		4 PP. PNP	5 Det. a		
			0 ROOT S .			
			4 P . with			

Papa	1 ate	2 the	3 caviar	with a spo	
0 ROOT.S	0 NP Papa	1 V ate	2 Det the	3 N caviar .	6 N spoon
0 S NP VP	0 SNP.VP	1 VP V . NP	2 NP Det. N	2 NP Det N	5 NP Det N
0 NP. Det N	0 NP NP . PP	2 NP. DetN	3 N . caviar	1 VP V NP	4 PP P NP
0 NP.NP PP	1 VP . V NP	2 NP.NP PP	3 N. spoon	2 NP NP . PP	5 NP NP . PP
0 NP. Papa	1 VP . VP PP	2 NP. Papa		0 S NP VP	2 NP NP PP
0 Det. the	1 PP. P NP	2 Det. the		1 VP VP.PP	1 VP VP PP
0 Det.a	1 V . ate	2 Det.a		4 PP . P NP	
	1 P . with			0 ROOT S	
				4 P . with	

Papa	1 ate	2 the	3 caviar	4 with a spo	
0 ROOT.S	0 NP Papa	1 V ate	2 Det the	3 N caviar .	.. 6 N spoon
0 S . NP VP	0 S NP. VP	1 VP V . NP	2 NP Det.N	2 NP Det N	5 NP Det N
0 NP. Det N	0 NP NP . PP	2 NP. Det N	3 N . caviar	1 VP V NP	4 PP P NP
0 NP . NP PP	1 VP . V NP	2 NP.NP PP	3 N. spoon	2 NP NP. PP	5 NP NP . PP
0 NP. Papa	1 VP . VP PP	2 NP. Papa		0 S NP VP	2 NP NP PP .
0 Det. the	1 PP. P NP	2 Det. the		1 VP VP. PP	1 VP VP PP
0 Det. a	1 V . ate	2 Det.a		4 PP . P NP	7 PP . P NP
	1 P . with			0 ROOT S	
				4 P . with	

Papa	1 ate	2 the	3 caviar	with a spo	
0 ROOT.S	0 NP Papa	1 V ate	2 Det the	3 N caviar .	6 N spoon
0 S NP VP	0 SNP.VP	1 VP V . NP	2 NP Det. N	2 NP Det N	5 NP Det N
0 NP. Det N	0 NP NP.PP	2 NP. DetN	3 N . caviar	1 VP V NP	4 PP P NP
0 NP.NP PP	1 VP . V NP	2 NP.NP PP	3 N. spoon	2 NP NP . PP	5 NP NP . PP
0 NP. Papa	1 VP . VP PP	2 NP. Papa		0 S NP VP	2 NP NP PP
0 Det. the	1 PP. P NP	2 Det. the		1 VP VP.PP	1 VP VP PP.
0 Det.a	1 V . ate	2 Det.a		4 PP . P NP	7 PP . P NP
	1 P . with			0 ROOT S	1 VP V NP
				4 P . with	2 NP NP . PP

Papa	1 ate	2 the	3 caviar	with a spo	
0 ROOT.S	0 NP Papa	1 V ate	2 Det the	3 N caviar .	6 N spoon
0 S . NP VP	0 SNP.VP	1 VP V . NP	2 NP Det. N	2 NP Det N	5 NP Det N
0 NP. Det N	0 NP NP . PP	2 NP. DetN	3 N . caviar	1 VP V NP	4 PP P NP
0 NP.NP PP	1 VP . V NP	2 NP.NP PP	3 N. spoon	2 NP NP . PP	5 NP NP . PP
0 NP. Papa	1 VP . VP PP	2 NP. Papa		0 S NP VP	2 NP NP PP
0 Det. the	1 PP. P NP	2 Det. the		1 VP VP.PP	1 VP VP PP
0 Det.a	1 V . ate	2 Det.a		4 PP . P NP	7 PP . P NP
	1 P . with			0 ROOT S	1 VPV VP
				4 P . with	2 NP NP . PP
					0 S NP VP
					1 VP VP . PP

0 Papa 1 ate		2 the	3 caviar	4 with a spo	
0 ROOT. S	0 NP Papa .	1 V ate .	2 Det the .	3 N caviar 6 N spoon .
0 S .NP VP	0 SNP.VP	1 VP V . NP	2 NP Det.N	2 NP Det N	5 NP Det N
0 NP. Det N	0 NP NP.PP	2 NP. Det N	3 N. caviar	1 VP V NP	4 PP P NP
0 NP.NPPP	1 VP . V NP	2 NP.NP PP	3 N . spoon	2 NP NP. PP	5 NP NP . PP
0 NP. Papa	1 VP . VP PP	2 NP. Papa		0 S NP VP	2 NP NP PP.
0 Det. the	1 PP. P NP	2 Det. the		1 VP VP. PP	1 VP VP PP.
0 Det.a	1 V . ate	2 Det. a		4 PP . P NP	$7 \mathrm{PP} . \mathrm{PNP}$
	1 P . with			0 ROOT S	1 VP V NP
				4 P . with	2 NP NP . PP
					0 S NP VP
					1 VP VP . PP
					7 P . with

0 Papa	1 ate	2 the	3 caviar	4 with a spo	
0 ROOT. S	0 NP Papa .	1 V ate .	2 Det the .	3 N caviar .	6 N spoon.
0 S .NP VP	0 S NP. VP	1 VP V . NP	2 NP Det.N	2 NP Det N	5 NP Det N .
0 NP. Det N	0 NP NP.PP	2 NP. Det N	3 N . caviar	1 VP V NP	4 PP P NP .
0 NP.NPPP	1 VP . V NP	2 NP.NPPP	3 N . spoon	2 NP NP. PP	5 NP NP. PP
0 NP. Papa	1 VP . VP PP	2 NP. Papa		0 S NP VP	2 NP NP PP.
0 Det. the	1 PP. P NP	2 Det. the		1 VP VP . PP	1 VP VP PP.
0 Det.a	1 V . ate	2 Det. a		4 PP.PNP	$7 \mathrm{PP} . \mathrm{PNP}$
	1 P . with			0 ROOT S	1 VP V NP
				4 P . with	2 NP NP.PP
					0 S NP VP
					1 VP VP . PP
					7 P . with

0 Papa	1 ate	2 the	3 caviar	4 with a spoon 7	
0 ROOT.S	0 NP Papa	1 V ate	2 Det the	3 N caviar	6 N spoon
0 S NP VP	0 S NP . VP	1 VP V . NP	2 NP Det.N	2 NP Det N .	5 NP Det N
0 NP. Det N	0 NP NP.PP	2 NP. Det N	3 N . caviar	1 VP V NP	4 PP P NP
0 NP.NP PP	1 VP. V NP	2 NP.NP PP	3 N. spoon	2 NP NP. PP	5 NP NP . PP
0 NP. Papa	1 VP . VP PP	2 NP. Papa		0 S NP VP	2 NP NP PP
0 Det. the	1 PP. P NP	2 Det . the		1 VP VP.PP	1 VP VP PP
0 Det.a	1 V . ate	2 Det.a		4 PP . P NP	7 PP. P NP
	1 P . with			0 ROOT S .	$1 \mathrm{VP} V \mathrm{NP}$.
				4 P . with	2 NP NP.PP
					0 S NP VP.
					1 VP VP. PP
					7 P . with

Papa	ate	2 the	3 caviar	4 with a spoon 7	
0 ROOT. S	0 NP Papa	1 V ate	2 Det the .	$3 N$ caviar 6 N spoon
0 S NP VP	0 S NP.VP	1 VP V . NP	2 NP Det.N	2 NP Det N .	5 NP Det N
0 NP. Det N	0 NP NP . PP	2 NP. Det N	3 N . caviar	1 VP V NP.	4 PP P NP
0 NP.NP PP	1 VP . V NP	2 NP.NP PP	3 N. spoon	2 NP NP. PP	5 NP NP . PP
0 NP. Papa	1 VP . VP PP	2 NP. Papa		0 S NP VP.	2 NP NP PP
0 Det. the	1 PP. P NP	2 Det. the		1 VP VP. PP	1 VP VP PP
0 Det.a	1 V . ate	2 Det. a		4 PP . P NP	$7 \mathrm{PP} . \mathrm{PNP}$
	1 P . with			0 ROOT S .	1 VPV NP.
				4 P . with	2 NP NP . PP
					0 S NP VP
					1 VP VP . PP
					7 P . with
					0 ROOT S

Papa	ate	2 the	3 caviar	4 with a spoon 7	
0 ROOT.S	0 NP Papa	1 V ate	2 Det the	3 N caviar .	6 N spoon
0 S . NP VP	0 S NP. VP	1 VP V . NP	2 NP Det.N	2 NP Det N	5 NP Det N
0 NP. Det N	0 NP NP . PP	2 NP. DetN	3 N . caviar	1 VP V NP	4 PP P NP
0 NP.NP PP	1 VP . V NP	2 NP.NP PP	3 N . spoon	2 NP NP . PP	5 NP NP . PP
0 NP. Papa	1 VP . VP PP	2 NP. Papa		0 S NP VP	2 NP NP PP
0 Det. the	1 PP. P NP	2 Det. the		1 VP VP.PP	1 VP VP PP.
0 Det.a	1 V . ate	2 Det.a		4 PP . P NP	7 PP . P NP
	1 P . with			0 ROOT S	1 VP V NP
				4 P . with	2 NP NP.PP
					0 S NP VP.
					1 VP VP. PP
					7 P . with
					0 ROOT S

0 Papa	1 ate	2 the	3 caviar	4 with a spo	
0 ROOT.S	0 NP Papa .	1 V ate	2 Det the .	3 N caviar 6 N spoon
0 S .NP VP	0 S NP . VP	1 VP V . NP	2 NP Det . N	2 NP Det N .	5 NP Det N
0 NP. Det N	0 NP NP . PP	2 NP . Det N	3 N . caviar	1 VP V NP.	4 PP P NP
0 NP.NP PP	1 VP . V NP	2 NP.NP PP	3 N. spoon	2 NP NP. PP	5 NP NP . PP
0 NP. Papa	1 VP. VP PP	2 NP . Papa		0 S NP VP.	2 NP NP PP
0 Det. the	1 PP . P NP	2 Det. the		1 VP VP. PP	1 VP VP PP
0 Det.a	1 V . ate	2 Det.a		4 PP . P NP	$7 \mathrm{PP} . \mathrm{PNP}$
	1 P . with			0 ROOT S .	1 VP V NP
				4 P . with	2 NP NP . PP
					0 S NP VP
					1 VP VP . PP
					7 P . with
					0 ROOT S .

0 Papa 1 ate		2 the	3 caviar	4 with a spoon 7	
0 ROOT. S	0 NP Papa	1 V ate	2 Det the	3 N caviar	6 N spoon
0 S NP VP	0 S NP . VP	1 VP V . NP	2 NP Det.N	2 NP Det N .	5 NP Det N
0 NP. Det N	0 NP NP.PP	2 NP. Det N	3 N . caviar	1 VP V NP	4 PP P NP
0 NP.NP PP	1 VP. V NP	2 NP.NP PP	3 N. spoon	2 NP NP. PP	5 NP NP . PP
0 NP. Papa	1 VP . VP PP	2 NP. Papa		0 S NP VP	2 NP NP PP
0 Det. the	1 PP. P NP	2 Det . the		1 VP VP.PP	1 VP VP PP
0 Det.a	1 V . ate	2 Det. a		4 PP . P NP	7 PP. P NP
	1 P . with			0 ROOT S .	$1 \mathrm{VP} V \mathrm{NP}$.
				4 P . with	2 NP NP.PP
					0 S NP VP.
					1 VP VP. PP
					7 P . with
					0 ROOT S

Papa	1 ate	2 the	3 caviar	4 with a spo	
0 ROOT. S	0 NP Papa	1 V ate	2 Det the	3 N caviar	6 N spoon
0 S NP VP	0 S NP . VP	1 VP V . NP	2 NP Det.N	2 NP Det N.	5 NP Det N
0 NP. Det N	0 NP NP.PP	2 NP. Det N	3 N . caviar	1 VP V NP	4 PP P NP
0 NP.NP PP	1 VP. V NP	2 NP.NP PP	3 N. spoon	2 NP NP. PP	5 NP NP . PP
0 NP. Papa	1 VP . VP PP	2 NP. Papa		0 S NP VP	2 NP NP PP
0 Det. the	1 PP. P NP	2 Det. the		1 VP VP. PP	1 VP VP PP
0 Det.a	1 V . ate	2 Det. a		4 PP . P NP	7 PP. P NP
	1 P . with			0 ROOT S .	$1 \mathrm{VP} V \mathrm{NP}$.
				4 P . with	2 NP NP.PP
					0 S NP VP.
					1 VP VP. PP
					7 P . with
					0 ROOT S.

Left Recursion Kills Pure
 Top-Down Parsing ...

VP

Left Recursion Kills Pure
 Top-Down Parsing ...

Left Recursion Kills Pure
 Top-Down Parsing ...

Left Recursion Kills Pure Top-Down Parsing ...

makes new hypotheses ad infinitum before we've seen the PPs at all
hypotheses try to predict in advance how many PP's will arrive in input

... but Earley's Alg is Okay!

$$
\begin{gathered}
\text { VP } \\
\text { VP } \\
\text { VPP } \\
(\text { in column } 1 \text {) }
\end{gathered}
$$

... but Earley's Alg is Okay!

VP
VP PP
(in column 1)

... but Earley's Alg is Okay!

... but Earley's Alg is Okay!

```
        VP
VP PP
(in column 1)
```


... but Earley's Alg is Okay!

VP
 vp pp can be reused

(in column 1)

... but Earley's Alg is Okay!

... but Earley's Alg is Okay!

VP
 vp pp can be reused

(in column 1)

... but Earley's Alg is Okay!

VP
 vp pp can be reused again

(in column 1)

... but Earley's Alg is Okay!

0 Pa	ate	2 the	3 caviar	with a spo	
0 ROOT.S	0 NP Papa .	1 V ate.	2 Det the .	3 N caviar .	6 N spoon.
0 S . NP VP	0 S NP. VP	1 VP V . NP	2 NP Det.N	2 NP Det N .	$5 \mathrm{NP} \operatorname{Det} \mathrm{N}$.
0 NP. Det N	0 NP NP . PP	2 NP. Det N	3 N . caviar	$1 \mathrm{VP} V \mathrm{NP}$	4 PP P NP
0 NP . NP PP	1 VP . V NP	2 NP.NP PP	3 N . spoon	2 NP NP. PP	5 NP NP . PP
0 NP. Papa	$1 \mathrm{VP} . \mathrm{VP}$ PP	2 NP. Papa		0 S NP VP	2 NP NP PP
0 Det. the	1 PP . P NP	2 Det. the		1 VP VP. PP	1 VP VP PP.
0 Det.a	1 V . ate	2 Det.a		4 PP.PNP	$7 \mathrm{PP} . \mathrm{PNP}$
	1 P . with			0 ROOT S	1 VPV NP.
				4 P . with	2 NP NP . PP
					0 S NP VP.
completed that VP = VP PP in col 7 col 1 would let us use it in a VP PP structure _ can reuse col 1 as often as we need					1 VP VP . PP
					7 P . with
					0 ROOT S

Beyond Recognition

- So far, we've described an Earley recognizer
- Note what we did when we tried to create entries that already existed
- What should we do when combining items?
- How to derive outside algorithm?

Parsing Tricks

Left-Corner Parsing

- Technique for 1 word of lookahead in algorithms like Earley's
- (can also do multi-word lookahead but it's harder)

Basic Earley’s Algorithm

Papa 1	
0 ROOT . S	0 NP Papa .
0 S . NP VP	0 S NP . VP
0 NP . Det N	0 NP NP . PP
0 NP . NP PP	
0 NP . Papa	
0 Det . the	
0 Det.a	

0	
Papa 1	
0 ROOT . S	0 NP Papa .
0 S . NP VP	0 S NP . VP
0	predict
0 NP . Det N	0 NP NP . PP
0 NP . NP PP	$1 \mathrm{VP} . \mathrm{V} \mathrm{NP}$
0 NP . Papa	$1 \mathrm{VP} . \mathrm{VP}$ PP
0 Det . the	
0 Det . a	

0 Papa 1	
0 ROOT. S	0 NP Papa .
0 S . NP VP	0 S NP . VP
0 NP . Det N	0 NP NP.PP
0 NP . NP PP	1 VP . V NP
0 NP . Papa	1 VP.VP PP
0 Det . the	$1 \mathrm{PP} . \mathrm{PNP}$
0 Det. a	

0 Papa 1	
0 ROOT. S	0 NP Papa .
0 S . NP VP	0 S NP.VP
0 NP . Det N	0 NP NP.PP
0 NP . NP PP	1 VP . V NP
0 NP . Papa	1 VP . VP PP
0 Det . the	$1 \mathrm{PP} . \mathrm{PNP}$
0 Det. a	1 V . ate
	1 V . drank
	1 V . snorted

0	
Papa 1	
0 ROOT . S	0 NP Papa .
0 S . NP VP	0 S NP . VP
0 NP . Det N	0 NP NP . PP
0 predict	
0 NP . NP PP	$1 \mathrm{VP} . \mathrm{V} \mathrm{NP}$
0 Papa	$1 \mathrm{VP} . \mathrm{VP}$ PP
0 Det . the	$1 \mathrm{PP} . \mathrm{P} \mathrm{NP}$
0 Det . a	1 V. ate
	1 V. drank
	1 V. snorted

0 Papa 1	
0 ROOT . S	0 NP Papa .
0 S . NP VP	0 S NP . VP
0 NP . Det N	0 NP NP . PP
0 NP . NP PP	$1 \mathrm{VP} . \mathrm{V} \mathrm{NP}$
0 NP . Papa	$1 \mathrm{VP} . \mathrm{VP} \mathrm{PP}$
0 Det . the	$1 \mathrm{PP} . \mathrm{P} \mathrm{NP}$
0 Det . a	1 V. ate
	1 V. drank
	1 V. snorted

predict

- .V makes us add all the verbs in the vocabulary!
- Slow - we'd like a shortcut.

$0 \quad$ Papa 1	
0 ROOT . S	0 NP Papa .
0 S . NP VP	0 S NP . VP
0 NP . Det N	0 NP NP . PP
0 NP . NP PP	$1 \mathrm{VP} . \mathrm{V} \mathrm{NP}$
0 NP . Papa	$1 \mathrm{VP} . \mathrm{VP} \mathrm{PP}$
0 Det . the	1 PP. P NP
0 Det . a	1 V. ate
	1 V. drank
	1 V. snorted

predict

$0 \quad$ Papa 1	
0 ROOT . S	0 NP Papa .
0 S . NP VP	0 S NP . VP
0 NP . Det N	0 NP NP . PP
0 NP . NP PP	$1 \mathrm{VP} . \mathrm{V} \mathrm{NP}$
0 NP . Papa	$1 \mathrm{VP} . \mathrm{VP} \mathrm{PP}$
0 Det . the	1 PP. P NP
0 Det . a	1 V. ate
	1 V. drank
	1 V. snorted

predict

Papa 1	
0 ROOT. S	0 NP Papa.
0 S .NP VP	0 S NP.VP
0 NP . Det N	0 NP NP. PP
0 NP . NP PP	1 VP . V NP
0 NP. Papa	$1 \mathrm{VP} . \mathrm{VP}$ PP
0 Det. the	1 PP.PNP
0 Det. a	1 V . ate
	1 V . drank
	1 V . snorted

predict

- Every .VP adds all VP \rightarrow... rules again.
- Before adding a rule, check it's not a duplicate.
- Slow if there are >700 VP \rightarrow... rules

0	
Papa 1	
0 ROOT . S	0 NP Papa .
0 S . NP VP	0 S NP . VP
0 NP . Det N	0 NP NP . PP
0 NP . NP PP	$1 \mathrm{VP} . \mathrm{V} \mathrm{NP}$
0 NP . Papa	$1 \mathrm{VP} . \mathrm{VP}$ PP
0 Det . the	1 PP . P NP
0 Det . a	1 V. ate
	1 V. drank
	1 V. snorted
	1 P. with

$0 \quad$ Papa 1	
0 ROOT . S	0 NP Papa .
0 S . NP VP	0 S NP . VP
0 NP . Det N	0 NP NP . PP
0 NP . NP PP	$1 \mathrm{VP} . \mathrm{V} \mathrm{NP}$
0 NP . Papa	$1 \mathrm{VP} . \mathrm{VP} \mathrm{PP}$
0 Det . the	1 PP . P NP
0 Det . a	1 V. ate
	1 V. drank
	1 V. snorted
	1 P. with

predict
.P makes us add all the prepositions ...

1-word lookahead would help

0	Papa 1
0 ROOT . S	0 NP Papa .
0 S . NP VP	0 S NP . VP
0 NP . Det N	0 NP NP . PP
0 NP . NP PP	$1 \mathrm{VP} . \mathrm{V} \mathrm{NP}$
0 NP . Papa	$1 \mathrm{VP} . \mathrm{VP} \mathrm{PP}$
0 Det . the	$1 \mathrm{PP} . \mathrm{P} \mathrm{NP}$
0 Det . a	1 V. ate
	1 V. drank
	1 V. snorted
	1 P. with

1-word lookahead would help

1-word lookahead would help

0 Pa	pa 1	
0 ROOT. S	0 NP Papa.	In fact, no point in adding any constituent that can't start with ate Don't bother adding PP, P, etc. No point in adding words other than ate
0 S . NP VP	0 S NP.VP	
0 NP . Det N	ONPNP.PP-	
0 NP . NP PP	1 VP . V NP	
0 NP. Papa	1 VP . VP PP	
0 Det. the		
0 Det.a	1 V . ate	
	1V. drank	
	1 V . snorted-	
	1P. with	

With Left-Corner Filter

Papa 1	
0 ROOT . S	0 NP Papa .
0 S . NP VP	0 S NP . VP
0 NP . Det N	ONPNP.PP-
0 NP . NP PP	
0 NP . Papa	
0 Det . the	
0 Det. a	

With Left-Corner Filter

0 Papa 1 at		ate
0 ROOT. S	0 NP Papa.	attach
0 S . NP VP	0 S NP. VP	
0 NP . Det N	ONPNP.PP	PP can't start with ate
0 NP . NP PP		
0 NP . Papa		
0 Det . the		
0 Det. a		

With Left-Corner Filter

0	ap 1	ate
0 ROOT. S	0 NP Papa .	attach
0 S . NP VP	0 S NP . VP	
0 NP . Det N	ONPNP.PP	PP can't start with ate
0 NP . NP PP		
0 NP . Papa		Pruning- now we won't predict 1 PP. P NP 1 PP . ate
0 Det . the		
0 Det. a		

With Left-Corner Filter

0 P	рa a	ate
0 ROOT. S	0 NP Papa.	attach
0 S . NP VP	0 S NP . VP	
0 NP . Det N	ONPNP.PP-	PP can't start with ate
0 NP . NP PP		
0 NP . Papa		Pruning- now we won't predict
0 Det . the		1 PP . P NP
0 Det. a		1 PP . ate
		eithe

With Left-Corner Filter

0 P	рa a	ate
0 ROOT. S	0 NP Papa.	attach
0 S . NP VP	0 S NP . VP	
0 NP . Det N	ONPNP.PP-	PP can't start with ate
0 NP . NP PP		
0 NP . Papa		Pruning- now we won't predict
0 Det . the		1 PP . P NP
0 Det. a		1 PP . ate
		eithe

0 Papa		predict
0 ROOT. S	0 NP Papa .	
0 S . NP VP	0 S NP . VP	
0 NP . Det N	ONPNP.PP-	
0 NP . NP PP	1 VP . V NP	
0 NP . Papa	1 VP . VP PP	
0 Det . the	1 V . ate	
0 Det. a	1V.drank	
	1V. snorted	

0 Papa		predict
0 ROOT. S	0 NP Papa .	
0 S . NP VP	0 S NP . VP	
0 NP . Det N	ONPNP.PP-	
0 NP . NP PP	1 VP . V NP	
0 NP . Papa	1 VP . VP PP	
0 Det . the	1 V . ate	
0 Det. a	1V.drank	
	1 V . snorted	

0 Papa	
0 ROOT. S	0 NP Papa .
0 S . NP VP	0 S NP . VP
0 NP . Det N	ONPNP.PP-
0 NP . NP PP	1 VP. V NP
0 NP . Papa	1 VP. VP PP
0 Det . the	1 V . ate
0 Det. a	1V.drank
	1V. snorted

Merging Right-Hand Sides

- Grammar might have rules X \rightarrow A G H P $X \rightarrow B$ G H P
- Could end up with both of these in chart: $(2, X \rightarrow A . G H P)$ in column 5
$\mathbf{(2 , X} \boldsymbol{X} \mathbf{B}$. G H P) in column 5
- But these are now interchangeable: if one produces X then so will the other
- To avoid this redundancy, can always use dotted rules of this form: X \rightarrow... G H P

Merging Right-Hand Sides

- Similarly, grammar might have rules

$$
X \rightarrow A G H P
$$

$$
\mathrm{X} \rightarrow \mathrm{~A} \text { G H Q }
$$

- Could end up with both of these in chart:
$(\mathbf{2}, \mathbf{X} \rightarrow \mathbf{A}$. G H P) in column 5
($2, X \rightarrow \mathbf{A}$. G H Q) in column 5
- Not interchangeable, but we'll be processing them in parallel for a while ...
- Solution: write grammar as $\mathbf{X} \rightarrow \mathbf{A}$ G H (PIQ)

Merging Right-Hand Sides

- Combining the two previous cases:

$$
X \rightarrow A \text { G H P }
$$

$X \rightarrow A G H Q$
$X \rightarrow B G H P$
$X \rightarrow B G H Q$
becomes

$$
X \rightarrow(A \mid B) G H(P \mid Q)
$$

- And often nice to write stuff like
$\mathbf{N P} \rightarrow(\operatorname{Det} I \varepsilon) \operatorname{Adj}^{*} \mathbf{N}$

Merging Right-Hand Sides

Merging Right-Hand Sides

$X \rightarrow(A \mid B) G H(P \mid Q)$
NP \rightarrow (Det I ε) Adj* \mathbf{N}

Merging Right-Hand Sides

$X \rightarrow(A \mid B) G H(P \mid Q)$
NP \rightarrow (Det I ε) Adj* N

- These are regular expressions!

Merging Right-Hand Sides

$$
\begin{aligned}
& X \rightarrow(A \mid B) G H(P \mid Q) \\
& N P \rightarrow(D e t \mid \varepsilon) A d j^{*} N
\end{aligned}
$$

- These are regular expressions!
- Build their minimal DFAs:

Merging Right-Hand Sides

$$
\begin{aligned}
& X \rightarrow(A \mid B) G H(P I Q) \\
& N P \rightarrow(\operatorname{Det} \mid \varepsilon) A d j^{\star} N
\end{aligned}
$$

- These are regular expressions!
- Build their minimal DFAs:

Merging Right-Hand Sides

$$
\begin{aligned}
& X \rightarrow(A \mid B) G H(P I Q) \\
& N P \rightarrow(\operatorname{Det} \mid \varepsilon) A d j^{\star} N
\end{aligned}
$$

- These are regular expressions!
- Build their minimal DFAs:

Merging Right-Hand Sides

$X \rightarrow(A \mid B) G H(P \mid Q)$
NP \rightarrow (Det I ε) Adj* N

- These are regular expressions!
- Build their minimal DFAs:

- Automaton states replace dotted rules $(\mathbf{X} \rightarrow \mathbf{A} \mathbf{G}: \mathbf{H} \mathbf{P})$

Merging Right-Hand Sides

Indeed, all NP \rightarrow rules can be unioned into a single DFA!

$$
\begin{aligned}
& \text { NP } \rightarrow \text { ADJP ADJP JJ JJ NN NNS } \\
& \text { NP } \rightarrow \text { ADJP DT NN } \\
& \text { NP } \rightarrow \text { ADJP JJ NN } \\
& \text { NP } \rightarrow \text { ADJP JJ NN NNS } \\
& \text { NP } \rightarrow \text { ADJP JJ NNS } \\
& \text { NP } \rightarrow \text { ADJP NN } \\
& \text { NP } \rightarrow \text { ADJP NN NN } \\
& \text { NP } \rightarrow \text { ADJP NN NNS } \\
& \text { NP } \rightarrow \text { ADJP NNS } \\
& \text { NP } \rightarrow \text { ADJP NPR } \\
& \text { NP } \rightarrow \text { ADJP NPRS } \\
& \text { NP } \rightarrow \text { DT } \\
& \text { NP } \rightarrow \text { DT ADJP } \\
& \text { NP } \rightarrow \text { DT ADJP, JJ NN } \\
& \text { NP } \rightarrow \text { DT ADJP ADJP NN } \\
& \text { NP } \rightarrow \text { DT ADJP JJ JJ NN } \\
& \text { NP } \rightarrow \text { DT ADJP JJ NN } \\
& N P \rightarrow \text { DT ADJP JJ NN NN }
\end{aligned}
$$

Merging Right-Hand Sides

Indeed, all NP \rightarrow rules can be unioned into a single DFA!

```
NP }->\mathrm{ ADJP ADJP JJ JJ NN NNS
    | ADJP DT NN
    | ADJP JJ NN
    | ADJP JJ NN NNS
    | ADJP JJ NNS
    ADJP NN
    ADJP NN NN
    | ADJP NN NNS
    | ADJP NNS
    | ADJP NPR
    | ADJP NPRS
    | DT
    | DT ADJP
    | DT ADJP , JJ NN
    DT ADJP ADJP NN
    DT ADJP JJ JJ NN
    | DT ADJP JJ NN
    | DT ADJP JJ NN NN
        etc.
```


Merging Right-Hand Sides

Indeed, all NP \rightarrow rules can be unioned into a single DFA!

```
NP }->\mathrm{ ADJP ADJP JJ JJ NN NNS
    | ADJP DT NN
    | ADJP JJ NN
    | ADJP JJ NN NNS
    | ADJP JJ NNS
    | ADJP NN
    ADJP NN NN
    | ADJP NN NNS regul|ar
    | ADJP NPR expreSSIIOn
    | DT
    | DT ADJP
    | DT ADJP, JJ NN
    | DT ADJP ADJP NN
    | DT ADJP JJ JJ NN
    | DT ADJP JJ NN
    | DT ADJP JJ NN NN
        etc.
```


Merging Right-Hand Sides

Indeed, all NP \rightarrow rules can be unioned into a single DFA!

$$
\text { NP } \rightarrow \text { ADJP ADJP JJ JJ NN NNS }
$$

| ADJP DT NN
| ADJP JJ NN
| ADJP JJ NN NNS
| ADJP JJ NNS
| ADJP NN
| ADJP NN NN
| ADJP NN NNS
| ADJP NNS
| ADJP NPR
| ADJP NPRS
expression
| DT
| DT ADJP
| DT ADJP, JJ NN
| DT ADJP ADJP NN
| DT ADJP JJ JJ NN
| DT ADJP JJ NN
| DT ADJP JJ NN NN

etc.

Merging Right-Hand Sides

Indeed, all NP \rightarrow rules can be unioned into a single DFA!

```
NP }->\mathrm{ ADJP ADJP JJ JJ NN NNS
    | ADJP DT NN
    | ADJP JJ NN
    | ADJP JJ NN NNS
    | ADJP JJ NNS
    | ADJP NN
    | ADJP NN NN
    | ADJP NN NNS
    | ADJP NNS
    | ADJP NPR
    | ADJP NPRS
    | DT
| DT ADJP
    | DT ADJP , JJ NN
    | DT ADJP ADJP NN
| DT ADJP JJ JJ NN
| DT ADJP JJ NN
| DT ADJP JJ NN NN
    expression
```

 etc.

Merging Right-Hand Sides

Indeed, all NP \rightarrow rules can be unioned into a single DFA!

```
NP }->\mathrm{ ADJP ADJP JJ JJ NN NNS
    | ADJP DT NN
    | ADJP JJ NN
    | ADJP JJ NN NNS
    | ADJP JJ NNS
    | ADJP NN
    | ADJP NN NN
    | ADJP NN NNS
    | ADJP NNS
    | ADJP NPR
    | ADJP NPRS
    | DT
    | DT ADJP
    | DT ADJP , JJ NN
    | DT ADJP ADJP NN
DT ADJP JJ JJ NN
| DT ADJP JJ NN
    | DT ADJP JJ NN NN
        etc.
    expression
```


etc.

Earley's Algorithm on DFAs

- What does Earley's algorithm now look like?

predict

Earley's Algorithm on DFAs

- What does Earley's algorithm now look like?

Column 4
$(2,0) \quad$ predict
$(4, \bigcirc)$
$(4, \bigcirc)$

Earley's Algorithm on DFAs

- What does Earley's algorithm now look like?

Column 4	Column 5	...	Column 7	predict or attach?
...	...			
(2,0)			(4)	
(4,0)				
(4,0)	(4, 0)			

Earley's Algorithm on DFAs

- What does Earley's algorithm now look like?

Column 4	Column 5	\ldots	Column 7
\ldots	\ldots		
$(2, \bigcirc)$			(4)
$(4, \bigcirc)$			
$(4, \bigcirc)$	$(4, \bigcirc)$		

Pruning for Speed

Pruning for Speed

- Heuristically throw away constituents that probably won't make it into best complete parse.

Pruning for Speed

- Heuristically throw away constituents that probably won't make it into best complete parse.
- Use probabilities to decide which ones.

Pruning for Speed

- Heuristically throw away constituents that probably won't make it into best complete parse.
- Use probabilities to decide which ones.
-So probs are useful for speed as well as accuracy!

Pruning for Speed

- Heuristically throw away constituents that probably won't make it into best complete parse.
- Use probabilities to decide which ones.
-So probs are useful for speed as well as accuracy!
- Both safe and unsafe methods exist

Pruning for Speed

- Heuristically throw away constituents that probably won't make it into best complete parse.
- Use probabilities to decide which ones.
-So probs are useful for speed as well as accuracy!
- Both safe and unsafe methods exist
-Throw x away if $p(x)<10^{-200}$
(and lower this threshold if we don't get a parse)

Pruning for Speed

- Heuristically throw away constituents that probably won't make it into best complete parse.
- Use probabilities to decide which ones.
-So probs are useful for speed as well as accuracy!
- Both safe and unsafe methods exist
-Throw x away if $p(x)<10-200$
(and lower this threshold if we don't get a parse)
-Throw x away if $p(x)<100$ * $p(y)$ for some y that spans the same set of words

Pruning for Speed

- Heuristically throw away constituents that probably won't make it into best complete parse.
- Use probabilities to decide which ones.
-So probs are useful for speed as well as accuracy!
- Both safe and unsafe methods exist
-Throw x away if $p(x)<10-200$ (and lower this threshold if we don't get a parse)
-Throw x away if $p(x)<100$ * $p(y)$ for some y that spans the same set of words
-Throw x away if $p(x)^{*} q(x)$ is small, where $q(x)$ is an estimate of probability of all rules needed to combine x with the other words in the sentence

Agenda ("Best-First") Parsing

Agenda ("Best-First") Parsing

- Explore best options first
- Should get some good parses early on - grab one \& go!

Agenda ("Best-First") Parsing

- Explore best options first
- Should get some good parses early on - grab one \& go!
- Prioritize constits (and dotted constits)
- Whenever we build something, give it a priority
- How likely do we think it is to make it into the highest-prob parse?
- usually related to log prob. of that constit
- might also hack in the constit's context, length, etc.
- if priorities are defined carefully, obtain an A* algorithm

Agenda ("Best-First") Parsing

- Explore best options first
- Should get some good parses early on - grab one \& go!
- Prioritize constits (and dotted constits)
- Whenever we build something, give it a priority
- How likely do we think it is to make it into the highest-prob parse?
- usually related to log prob. of that constit
- might also hack in the constit's context, length, etc.
- if priorities are defined carefully, obtain an A* algorithm
- Put each constit on a priority queue (heap)

Agenda ("Best-First") Parsing

- Explore best options first
- Should get some good parses early on - grab one \& go!
- Prioritize constits (and dotted constits)
- Whenever we build something, give it a priority
- How likely do we think it is to make it into the highest-prob parse?
- usually related to log prob. of that constit
- might also hack in the constit's context, length, etc.
- if priorities are defined carefully, obtain an A* algorithm
- Put each constit on a priority queue (heap)
- Repeatedly pop and process best constituent.
- CKY style: combine w/ previously popped neighbors.
- Earley style: scan/predict/attach as usual. What else?

Preprocessing

Preprocessing

- First "tag" the input with parts of speech:
-Guess the correct preterminal for each word, using faster methods we'll learn later
-Now only allow one part of speech per word
-This eliminates a lot of crazy constituents!
-But if you tagged wrong you could be hosed
- Raise the stakes:
-What if tag says not just "verb" but "transitive verb"? Or "verb with a direct object and 2 PPs attached"? ("supertagging")

Preprocessing

- First "tag" the input with parts of speech:
-Guess the correct preterminal for each word, using faster methods we'll learn later
-Now only allow one part of speech per word
-This eliminates a lot of crazy constituents!
-But if you tagged wrong you could be hosed
- Raise the stakes:
-What if tag says not just "verb" but "transitive verb"? Or "verb with a direct object and 2 PPs attached"? ("supertagging")
- Safer to allow a few possible tags per word, not just one ...

Center-Embedding

if x
then
if y
then
if a
then b
endif
else b
endif
else b
endif

Center-Embedding

if x
then
if y then
if a
then b
endif
else b
endif
else b
endif

Center-Embedding

if x
then
if y then
if a
then b
endif
else b
endif
else b
endif

Center-Embedding

if x
then
if y then
if a
then b
endif
else b
endif
else b
endif

STATEMENT \rightarrow if EXPR then
 STATEMENT endif

STATEMENT \rightarrow if EXPR then STATEMENT else STATEMENT endif

Center-Embedding

Center-Embedding

- This is the rat that ate the malt.

Center-Embedding

- This is the rat that ate the malt.
- This is the malt that the rat ate.

Center-Embedding

- This is the rat that ate the malt.
- This is the malt that the rat ate.

Center-Embedding

- This is the rat that ate the malt.
- This is the malt that the rat ate.
- This is the cat that bit the rat that ate the malt.

Center-Embedding

- This is the rat that ate the malt.
- This is the malt that the rat ate.
- This is the cat that bit the rat that ate the malt.
- This is the malt that the rat that the cat bit ate.

Center-Embedding

- This is the rat that ate the malt.
- This is the malt that the rat ate.
- This is the cat that bit the rat that ate the malt.
- This is the malt that the rat that the cat bit ate.

Center-Embedding

- This is the rat that ate the malt.
- This is the malt that the rat ate.
- This is the cat that bit the rat that ate the malt.
- This is the malt that the rat that the cat bit ate.
- This is the dog that chased the cat that bit the rat that ate the malt.

Center-Embedding

- This is the rat that ate the malt.
- This is the malt that the rat ate.
- This is the cat that bit the rat that ate the malt.
- This is the malt that the rat that the cat bit ate.
- This is the dog that chased the cat that bit the rat that ate the malt.
- This is the malt that [the rat that [the cat that [the dog chased] bit] ate].

More Center-Embedding

[What did you disguise
[those handshakes that
you greeted
[the people we bought
[the bench
[Billy was read to]
on]
with]
with]
for]?

More Center-Embedding

[What did you disguise
[those handshakes that you greeted
[the people we bought
[the bench
[Billy was read to]
on]
with]
with]
for]?

More Center-Embedding

[What did you disguise
[those handshakes that you greeted
[the people we bought [the bench
[Billy was read to]
on]
with]
with]
for]?

More Center-Embedding

[What did you disguise
[those handshakes that you greeted
[the people we bought [the bench
[Billy was read to]
on]
with]
with]
for]?
[Which mantelpiece did you put
[the idol I sacrificed
[the fellow we sold
[the bridge you threw
[the bench
[Billy was read to] on]
off]

More Center-Embedding

[What did you disguise
[those handshakes that you greeted
[the people we bought [the bench
[Billy was read to]
on]
with]
with]
[Which mantelpiece did you put
[the idol I sacrificed
[the fellow we sold
[the bridge you threw
[the bench
[Billy was read to] on]
off]
to]

More Center-Embedding

[What did you disguise
[those handshakes that you greeted
[the people we bought [the bench
[Billy was read to]
on]
with]
with]
for]?
[Which mantelpiece did you put
[the idol I sacrificed
[the fellow we sold
[the bridge you threw
[the bench
[Billy was read to] on]
off]
to]
to]

More Center-Embedding

[What did you disguise
[those handshakes that you greeted
[the people we bought [the bench
[Billy was read to]
on]
with]
with]
for]?
[Which mantelpiece did you put
[the idol I sacrificed
[the fellow we sold
[the bridge you threw
[the bench
[Billy was read to] on]
off]
to]
to]
on]?

More Center-Embedding

[What did you disguise
[those handshakes that you greeted
[the people we bought
[the bench

with]

on]?

Center Recursion vs. Tail Recursion

[What did you disguise
[those handshakes that you greeted
[the people we bought
[the bench
[Billy was read to] on]
with]
with]
for]?
[For what did you disguise [those handshakes with which you greeted
[the people with which we bought [the bench on which
[Billy was read to]?
"pied piping" -
NP moves leftward,
preposition follows along

Disallow Center-Embedding?

Disallow Center-Embedding?

- Center-embedding seems to be in the grammar, but people have trouble processing more than 1 level of it.

Disallow Center-Embedding?

- Center-embedding seems to be in the grammar, but people have trouble processing more than 1 level of it.
- You can limit \# levels of center-embedding via features: e.g., S[S_DEPTH=n+1] \rightarrow A S[S_DEPTH=n] B

Disallow Center-Embedding?

- Center-embedding seems to be in the grammar, but people have trouble processing more than 1 level of it.
- You can limit \# levels of center-embedding via features: e.g., S[s_DEPTH=n+1] \rightarrow A S[S_DEPTH=n] B
- If a CFG limits \# levels of embedding, then it can be compiled into a finite-state machine - we don't need a stack at all!
- Finite-state recognizers run in linear time.
- However, it's tricky to turn them into parsers for the original CFG from which the recognizer was compiled.

Finally

- Treebanks and evaluation
- Lexicalized parsing (with heads)
- Towards dependency parsing

Treebanks

* Pure Grammar Induction Approaches tend not to produce the parse trees that people want
* Solution
\varnothing Give a some example of parse trees that we want
\varnothing Make a learning tool learn a grammar
* Treebank
\varnothing A collection of such example parses
\varnothing PennTreebank is most widely used

Treebanks

- Penn Treebank
- Trees are represented via bracketing
- Fairly flat structures for Noun Phrases (NP Arizona real estate loans)
- Tagged with grammatical and semantic functions (-SBJ , -LOC, ...)
- Use empty nodes(*) to indicate understood subjects and extraction gaps
((S (NP-SBJ The move)
(VP followed (NP (NP a round)
(PP of
(NP (NP similar increases)
(PP by
(NP other lenders))
(PP against
(NP Arizona real estate loans)))))
'(S-ADV (NP-SBJ *)
(VP reflecting
(NP a continuing decline)
(PP-LOC in
(NP that market))))))
.)

Treebanks

- Many people have argued that it is better to have linguists constructing treebanks than grammars
- Because it is easier
- to work out the correct parse of sentences
- than
- to try to determine what all possible manifestations of a certain rule or grammatical construct are

Parser Evaluation

Evaluation

Ultimate goal is to build system for IE, QA, MT
People are rarely interested in syntactic analysis for its own sake

Evaluate the system for evaluate the parser

For Simplicity and modularization, and Convenience
Compare parses from a parser with the result of hand parsing of a sentence(gold standard)

What is objective criterion that we are trying to maximize?

Evaluation

Tree Accuracy (Exact match)
It is a very tough standard!!!
But in many ways it is a sensible one to use

PARSEVAL Measures

For some purposes, partially correct parses can be useful
Originally for non-statistical parsers
Evaluate the component pieces of a parse
Measures : Precision, Recall, Crossing brackets

Evaluation

(Labeled) Precision
How many brackets in the parse match those in the correct tree (Gold standard)?
(Labeled) Recall
How many of the brackets in the correct tree are in the parse?
Crossing brackets
Average of how many constituents in one tree cross over constituent boundaries in the other tree

```
B1
B2 ( ) ( )
B3
B4
    w1 w2 w3 w4 w5 w6 w7 w8
```


Problems with PARSEVAL

Even vanilla PCFG performs quite well

It measures success at the level of individual decisions

You must make many consecutive decisions correctly to be correct on the entire tree.

Problems with PARSEVAL (2)

Behind story

The structure of Penn Treebank
Flat \rightarrow Few brackets \rightarrow Low Crossing brackets
Troublesome brackets are avoided
\rightarrow High Precision/Recall

The errors in precision and recall are minimal

In some cases wrong PP attachment penalizes Precision, Recall and Crossing Bracket Accuracy minimally.

On the other hand, attaching low instead of high, then every node in the right-branching tree will be wrong: serious harm

Evaluation

Do PARSEVAL measures succeed in real tasks?
Many small parsing mistakes might not affect tasks of semantic interpretation
(Bonnema 1996,1997)
Tree Accuracy of the Parser : 62\%
Correct Semantic Interpretations : 88\%
(Hermajakob and Mooney 1997)
English to German translation

At the moment, people feel PARSEVAL measures are adequate for the comparing parsers

Lexicalized Parsing

Limitations of PCFGs

- PCFGs assume:
- Place invariance
- Context free: P (rule) independent of
- words outside span
- also, words with overlapping derivation
- Ancestor free: P(rule) independent of
- Non-terminals above.
- Lack of sensitivity to lexical information
- Lack of sensitivity to structural frequencies

Lack of Lexical Dependency

Means that
P(VP \rightarrow V NP NP)
is independent of the particular verb involved!
... but much more likely with ditransitive verbs (like gave).
He gave the boy a ball.
He ran to the store.

The Need for Lexical Dependency

Probabilities dependent on Lexical words
Problem 1 : Verb subcategorization
VP expansion is independent of the choice of verb
However ...

	verb			
	come	take	think	want
VP -> V	9.5%	2.6%	4.6%	5.7%
VP -> V NP	1.1%	32.1%	0.2%	13.9%
VP -> V PP	34.5%	3.1%	7.1%	0.3%
VP -> V SBAR	6.6%	0.3%	73.0%	0.2%
VP $->$ V S	2.2%	1.3%	4.8%	70.8%

Including actual words information when making decisions about tree structure is necessary

Weakening the independence assumption of PCFG

Probabilities dependent on Lexical words
Problem 2 : Phrasal Attachment
Lexical content of phrases provide information for decision
Syntactic category of the phrases provide very little information
Standard PCFG is worse than n-gram models

Another case of PP attachment ambiguity

Another case of PP attachment ambiguity

(b)

Another case of PP attachment ambiguity

(a)

Rules
$\mathrm{S} \rightarrow$ NP VP
$\mathrm{NP} \rightarrow$ NNS
$\mathbf{V P} \rightarrow$ VP PP
$\mathrm{VP} \rightarrow$ VBD NP
NP \rightarrow NNS
PP \rightarrow IN NP
NP \rightarrow DT NN
NNS \rightarrow workers
VBD \rightarrow dumped
NNS \rightarrow sacks
IN \rightarrow into
DT \rightarrow a
NN \rightarrow bin

(b)

Rules
$\mathrm{S} \rightarrow$ NP VP
$\mathrm{NP} \rightarrow$ NNS
NP \rightarrow NP PP
VP \rightarrow VBD NP
NP \rightarrow NNS
PP \rightarrow IN NP
NP \rightarrow DT NN
NNS \rightarrow workers
VBD \rightarrow dumped
NNS \rightarrow sacks
IN \rightarrow into
DT \rightarrow a
NN \rightarrow bin

If $P(\mathrm{NP} \rightarrow \mathrm{NP}$ PP $\mid \mathrm{NP})>P(\mathrm{VP} \rightarrow \mathrm{VP} P \mathrm{PP} \mid \mathrm{VP})$ then (b) is more probable, else (a) is more probable.

Attachment decision is completely independent of the words

A case of coordination ambiguity

(a)

Rules
$\mathrm{NP} \rightarrow$ NP CC NP
$\mathrm{NP} \rightarrow$ NP PP
$\mathrm{NP} \rightarrow$ NNS
$\mathrm{PP} \rightarrow$ IN NP
$\mathrm{NP} \rightarrow$ NNS
$\mathrm{NP} \rightarrow$ NNS
$\mathrm{NNS} \rightarrow$ dogs
$\mathrm{IN} \rightarrow$ in
$\mathrm{NNS} \rightarrow$ houses
$\mathrm{CC} \rightarrow$ and
$\mathrm{NNS} \rightarrow$ cats

(b)

Rules
$\mathrm{NP} \rightarrow$ NP CC NP
$\mathrm{NP} \rightarrow$ NP PP
$\mathrm{NP} \rightarrow$ NNS
$\mathrm{PP} \rightarrow$ IN NP
$\mathrm{NP} \rightarrow$ NNS
$\mathrm{NP} \rightarrow$ NNS
$\mathrm{NNS} \rightarrow$ dogs
$\mathrm{IN} \rightarrow$ in
$\mathrm{NNS} \rightarrow$ houses
$\mathrm{CC} \rightarrow$ and
$\mathrm{NNS} \rightarrow$ cats

Here the two parses have identical rules, and therefore have identical probability under any assignment of PCFG rule probabilities

Weakening the independence assumption of PCFG

Probabilities dependent on Lexical words

Solution
Lexicalize CFG : Each phrasal node with its head word

Background idea
Strong lexical dependencies between heads and their dependents

Heads in Context-Free Rules

Add annotations specifying the "head" of each rule:

S	\Rightarrow	NP	VP
VP	\Rightarrow	Vi	
VP	\Rightarrow	Vt	NP
VP	\Rightarrow	VP	PP
NP	\Rightarrow	DT	NN
NP	\Rightarrow	NP	PP
PP	\Rightarrow	IN	NP

Vi	\Rightarrow	sleeps
Vt	\Rightarrow	saw
NN	\Rightarrow	man
NN	\Rightarrow	woman
NN	\Rightarrow	telescope
DT	\Rightarrow	the
IN	\Rightarrow	with
IN	\Rightarrow	in

Note: $\mathrm{S}=$ sentence, $\mathrm{VP}=$ verb phrase, $\mathrm{NP}=$ noun phrase, $\mathrm{PP}=$ prepositional phrase, DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun, $\mathrm{IN}=$ preposition

More about heads

- Each context-free rule has one "special" child that is the head of the rule. e.g.,

S	\Rightarrow	NP	VP	
VP	\Rightarrow	Vt	NP	(VP is the head)
NP	\Rightarrow	DT	NN	NN

- A core idea in linguistics
(X-bar Theory, Head-Driven Phrase Structure Grammar)
- Some intuitions:
- The central sub-constituent of each rule.
- The semantic predicate in each rule.

Rules which recover heads: Example rules for NPs

If the rule contains NN, NNS, or NNP:
Choose the rightmost NN, NNS, or NNP
Else If the rule contains an NP: Choose the leftmost NP

Else If the rule contains a JJ: Choose the rightmost JJ
Else If the rule contains a CD: Choose the rightmost CD
Else Choose the rightmost child
e.g.,
$\mathrm{NP} \Rightarrow \mathrm{DT}$ NNP NN
$\mathrm{NP} \Rightarrow$ DT NN NNP
$\mathrm{NP} \Rightarrow \mathrm{NP} \quad \mathrm{PP}$
$\mathrm{NP} \Rightarrow \mathrm{DT}$ JJ
$\mathrm{NP} \Rightarrow \mathrm{DT}$

Adding Headwords to Trees

- A constituent receives its headword from its head child.

```
S NP VP (S receives headword from VP)
VP F Vt NP (VP receives headword from Vt)
NP D NN (NP receives headword from NN)
```


Adding Headtags to Trees

- Also propogate part-of-speech tags up the trees

Explosion of number of rules

New rules might look like:
VP[gave] \rightarrow V[gave] NP[man] NP[book]
But this would be a massive explosion in number of rules (and parameters)

Sparseness and the Penn Treebank

- The Penn Treebank - 1 million words of parsed English WSJ - has been a key resource (because of the widespread reliance on supervised learning)
- But 1 million words is like nothing:
- 965,000 constituents, but only 66 WHADJP, of which only 6 aren't how much or how many, but there is an infinite space of these (how clever/original/incompetent (at risk assessment and evaluation))
- Most of the probabilities that you would like to compute, you can't compute

Sparseness and the Penn Treebank

- Most intelligent processing depends on bilexical statistics: likelihoods of relationships between pairs of words.
- Extremely sparse, even on topics central to the WSJ:
- stocks plummeted 2 occurrences
- stocks stabilized 1 occurrence
- stocks skyrocketed 0 occurrences
- \#stocks discussed 0 occurrences
- So far there has been very modest success augmenting the Penn Treebank with extra unannotated materials or using semantic classes or clusters (cf. Charniak 1997, Charniak 2000) - as soon as there are more than tiny amounts of annotated training data.

Lexicalized, Markov out from head

Collins 1997: Markov model out from head

- Charniak (1997) expands each phrase structure tree in a single step.
- This is good for capturing dependencies between child nodes
- But it is bad because of data sparseness
- A pure dependency, one child at a time, model is worse
- But one can do better by in between models, such as generating the children as a Markov process on both sides of the head (Collins 1997; Charniak 2000)

Modeling Rule Productions as Markov Processes

- Step 1: generate category of head child

$\underline{\text { Modeling Rule Productions as Markov Processes }}$

- Step 2: generate left modifiers in a Markov chain

Modeling Rule Productions as Markov Processes

- Step 2: generate left modifiers in a Markov chain

Modeling Rule Productions as Markov Processes

- Step 2: generate left modifiers in a Markov chain

Modeling Rule Productions as Markov Processes

- Step 3: generate right modifiers in a Markov chain

A Refinement: Adding a Distance Variable

- $\Delta=1$ if position is adjacent to the head.

Adding dependency on structure

Weakening the independence assumption of PCFG

Probabilities dependent on structural context
PCFGs are also deficient on purely structural grounds too
Really context independent?

Expansion	\% as Subj	\% as Obj
NP \rightarrow PRP	13.7%	2.1%
$N P \rightarrow$ NNP	3.5%	0.9%
$N P \rightarrow$ DT NN	5.6%	4.6%
$N P \rightarrow N N$	1.4%	2.8%
$N P \rightarrow N P ~ S B A R$	0.5%	2.6%
$N P \rightarrow N P ~ P P$	5.6%	14.1%

Weakening the independence assumption of PCFG

(a)

(b)

