Noisy Channel and Hidden Markov Models

Natural Language Processing
CS 4I20/6 I20—Spring 2017
Northeastern University
David Smith
with material from Jason Eisner \& Andrew McCallum

Warren Weaver to Norbert Wiener 4 March 1947

One thing I wanted to ask you about is this.A most serious problem, for UNESCO and for the constructive and peaceful future of the planet, is the problem of translation, as it unavoidably affects the communication between peoples. Huxley has recently told me that they are appalled by the magnitude and the importance of the translation job.

Recognizing fully, even though necessarily vaguely, the semantic difficulties because of multiple meanings, etc., I have wondered if it were unthinkable to design a computer which would translate. Even if it would translate only scientific material (where the semantic difficulties are very notably less), and even if it did produce an inelegant (but intelligible) result, it would seem to me worth while.

Also knowing nothing official about, but having guessed and inferred considerable about, powerful new mechanized methods in cryptography-methods which I believe succeed even when one does not know what language has been codedone naturally wonders if the problem of translation could conceivably be treated as a problem in cryptography.When I look at an article in Russian, I say:"This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode."

Word Segmentation

theprophetsaidtothecity

- What does this say?
- And what other words are substrings?
" Given L = a "lexicon" FSA that matches all English words.
- How to apply to this problem?
- What if Lexicon is weighted?
- From unigrams to bigrams?
- Smooth L to include unseen words?

Spelling correction

- Spelling correction also needs a lexicon L
- But there is distortion ...
- Let T be a transducer that models common typos and other spelling errors

```
- ance \((\rightarrow)\) ence
- \(\mathrm{e} \rightarrow\) ع
\(-\varepsilon \rightarrow\) e // Cons _ Cons
\(-r r \rightarrow r\)
- ge \(\rightarrow\) dge
- etc.
```

- Now what can you do with L .o. T ?
- Should T and L have probabilities?
- Want T to include "all possible" errors ...

Noisy Channel Model

real language X

noisy channel $\mathbf{X} \boldsymbol{\rightarrow} \mathbf{Y}$

yucky language Y
want to recover \mathbf{X} from \mathbf{Y}

Noisy Channel Model

real language X

correct spelling

typos

noisy channel $X \rightarrow Y$

yucky language Y
misspelling
want to recover \mathbf{X} from Y

Noisy Channel Model

real language X

(lexicon space)*

yucky language Y

Noisy Channel Model

real language X

(lexicon space)*
noisy channel $\mathbf{X} \rightarrow \mathbf{Y}$
pronunciation

yucky language Y
speech
want to recover \mathbf{X} from \mathbf{Y}

Noisy Channel Model

real language X

(lexicon space)*

pronunciation
noisy channel $\mathbf{X} \rightarrow \mathbf{Y}$
acoustic model

yucky language

speech
want to recover \mathbf{X} from \mathbf{Y}

Noisy Channel Model

real language X

"target" language

translation

yucky language Y

want to recover X from Y

Noisy Channel Model

real language X

"target" language

translation

yucky language Y

want to recover \mathbf{X} from Y

Noisy Channel Model

real language X

yucky language Y

delete everything but terminals

text

want to recover \mathbf{X} from \mathbf{Y}

Noisy Channel Model

real language X

delete everything but terminals

yucky language Y
want to recover \mathbf{X} from Y

Noisy Channel Model

real language X

yucky language Y

Noisy Channel Model

real language X

yucky language \mathbf{Y}

$=$
$p(\mathbf{X}, \mathbf{Y})$
want to recover $\mathbf{x} \in \mathbf{X}$ from $\mathbf{y} \in \mathbf{Y}$

Noisy Channel Model

real language X
noisy channel $X \rightarrow Y$
$=$
$p(X, Y)$

yucky language Y

want to recover $\mathbf{x} \in \mathbf{X}$ from $\mathbf{y} \in \mathbf{Y}$
choose x that maximizes $p(x \mid y)$ or equivalently $p(x, y)$

Noisy Channel Model

Noisy Channel Model

$$
\begin{gathered}
\mathbf{p}(\mathbf{X}) \\
* \\
\mathbf{p}(\mathbf{Y} \mid \mathbf{X}) \\
= \\
\mathbf{p}(\mathbf{X}, \mathbf{Y})
\end{gathered}
$$

Noisy Channel Model

$\mathrm{p}(\mathbf{X}, \mathbf{Y})$

Noisy Channel Model

p(X) *

$\mathrm{p}(\mathrm{Y} \mid \mathrm{X})$
=
$\mathrm{p}(\mathbf{X}, \mathbf{Y})$

Noisy Channel Model

p(X)
 *

$\mathrm{p}(\mathrm{Y} \mid \mathrm{X})$
=

$p(X, Y)$

Noisy Channel Model

p(X) *

$\mathrm{p}(\mathrm{Y} \mid \mathrm{X})$
=

$\mathbf{p}(\mathbf{X}, \mathbf{Y})$

Note $\mathbf{p}(\mathrm{x}, \mathrm{y})$ sums to 1.

Noisy Channel Model

Note $p(x, y)$ sums to 1 .
Suppose $y=" C$ "; what is best " x "?

Noisy Channel Model

Suppose $y=$ "C"; what is best " x "?

Noisy Channel Model

$p(X)$
 *
 $p(Y \mid X)$

$\mathbf{p}(\mathbf{X}, \mathbf{y})$

Noisy Channel Model

restrict just to paths compatible with output "C"

Noisy Channel Model

p(X) *

$p(Y \mid X)$
\mathscr{H}
restrict just to paths compatible with output "C"

$$
\begin{gathered}
(\mathrm{Y}=\mathrm{y}) ? \\
= \\
\mathbf{p}(\mathbf{X}, \mathbf{y})
\end{gathered}
$$

Noisy Channel Model

restrict just to paths compatible with output "C"

($\mathrm{Y}=\mathrm{y}$) ?
$p(Y \mid X)$
*
$=$
$\mathrm{p}(\mathrm{X}, \mathrm{y})$

Morpheme Segmentation

- Let Lexicon be a machine that matches all Turkish words
Same problem as word segmentation (in, e.g., Chinese)
- Just at a lower level: morpheme segmentation
- Turkish word: uygarlaştramadıklarımızdanmışınıızcasına = uygar+laş+tır+ma+dık+ları+mız+dan+mış+sınız+ca+sı+na (behaving) as if you are among those whom we could not cause to become civilized
- Some constraints on morpheme sequence: bigram probs
- Generative model - concatenate then fix up joints
" stop + -ing = stopping, fly +-s = flies, vowel harmony
- Use a cascade of transducers to handle all the fixups
- But this is just morphology!
- Can use probabilities here too (but people often don't)

Edit Distance Transducer

Stochastic

Edit Distance Transducer

Likely edits = high-probability arcs

Stochastic

Edit Distance Transducer

caca

Stochastic

Edit Distance Transducer

Best path (by Dijkstra's algorithm)

caca

Speech Recognition by FST Composition

 (Pereira \& Riley 1996)
trigram language model
 p(word seq)

. 0.
pronunciation model p(phone seq | word seq)
. 0.
acoustic model
p(acoustics | phone seq)

Speech Recognition by FST Composition

 (Pereira \& Riley 1996)
trigram language model
 p(word seq)

. 0.
pronunciation model p(phone seq| word seq)

. 0.
acoustic model

p(acoustics | phone seq)
observed acoustics

Speech Recognition by FST Composition

 (Pereira \& Riley 1996)
trigram language model
 p (word seq)

. 0.

p(phone seq | word seq)
p(acoustics | phone seq)

Speech Recognition by FST Composition

 (Pereira \& Riley 1996)
trigram language model
 p (word seq)

. 0.

p(phone seq | word seq)
p(acoustics | phone seq)

Transliteration (Knight \& Graehl, 1998)

1. $\quad \mathbf{P}(w)$ - generates written English word sequences.
2. $\quad \mathrm{P}(e \mid w)$ - pronounces English word sequences.
3. $\quad P(j \mid e)$ - converts English sounds into Japanese sounds.
4. $\quad \mathrm{P}(k \mid j)$ - converts Japanese sounds to katakana writing.
5. $\quad \mathrm{P}(o \mid k)$ - introduces misspellings caused by optical character recognition (OCR).

Part-of-Speech Tagging

Bigram LM as FSM

Grammatical Categories

" "Parts of speech" (partes orationis)
"Some Cool Kids call them "word classes"
" Folk definitions

- Nouns: people, places, concepts, things, ...
- Verbs: expressive of action
"Adjectives: properties of nouns
- In linguistics, defined by role in syntax

The Tagging Task

The Tagging Task

Input: the lead paint is unsafe

The Tagging Task

Input: the lead paint is unsafe
Output: the/Det lead/N paint/N is/V unsafe/Adj

The Tagging Task

Input: the lead paint is unsafe
Output: the/Det lead/N paint/N is/V unsafe/Adj

The Tagging Task

Input: the lead paint is unsafe
Output: the/Det lead/N paint/N is/V unsafe/Adj

- Uses:

The Tagging Task

Input: the lead paint is unsafe
 Output: the/Det lead/N paint/N is/V unsafe/Adj

- Uses:
" text-to-speech (how do we pronounce "lead"?)

The Tagging Task

Input: the lead paint is unsafe
Output: the/Det lead/N paint/N is/V unsafe/Adj

- Uses:
" text-to-speech (how do we pronounce "lead"?)
- can write regexps like (Det) Adj* N+ over the output

The Tagging Task

Input: the lead paint is unsafe
Output: the/Det lead/n paint/n is/V unsafe/Adj

- Uses:
" text-to-speech (how do we pronounce "lead"?)
- can write regexps like (Det) Adj* N+ over the output
- preprocessing to speed up parser (but a little dangerous)

The Tagging Task

Input: the lead paint is unsafe
Output: the/Det lead/n paint/n is/V unsafe/Adj

- Uses:
- text-to-speech (how do we pronounce "lead"?)
- can write regexps like (Det) Adj* N+ over the output
- preprocessing to speed up parser (but a little dangerous)
- if you know the tag, you can back off to it in other tasks

Why Do We Care?

Input: the lead paint is unsafe Output: the/Det lead/n paint/N is/V unsafe/Adj

Why Do We Care?

Input: the lead paint is unsafe Output: the/Det lead/n paint/N is/V unsafe/Adj

- The first statistical NLP task

Why Do We Care?

Input: the lead paint is unsafe
Output: the/Det lead/n paint/N is/V unsafe/Adj

- The first statistical NLP task
- Been done to death by different methods

Why Do We Care?

Input: the lead paint is unsafe
Output: the/Det lead/n paint/N is/V unsafe/Adj

- The first statistical NLP task
- Been done to death by different methods
- Easy to evaluate (how many tags are correct?)

Why Do We Care?

Input: the lead paint is unsafe
Output: the/Det lead/n paint/n is/v unsafe/Adj

- The first statistical NLP task
- Been done to death by different methods
- Easy to evaluate (how many tags are correct?)
- Canonical finite-state task (in English)

Why Do We Care?

Input: the lead paint is unsafe
Output: the/Det lead/n paint/n is/v unsafe/Adj

- The first statistical NLP task
- Been done to death by different methods
- Easy to evaluate (how many tags are correct?)
- Canonical finite-state task (in English)
- Can be done well with methods that look at local context

Why Do We Care?

Input: the lead paint is unsafe
Output: the/Det lead/n paint/n is/v unsafe/Adj

- The first statistical NLP task
- Been done to death by different methods
- Easy to evaluate (how many tags are correct?)
- Canonical finite-state task (in English)
" Can be done well with methods that look at local context
" Though should "really" do it by parsing!

Tagged Data Sets

- Brown Corpus
" Designed to be a representative sample from 1961 "news, poetry, "belles lettres", short stories
- 87 different tags
- Penn Treebank
- 45 different tags
"Currently most widely used for English
Now a paradigm in lots of other languages
Chinese Treebank has over 200 tags

Penn Treebank POS Tags

- PART-OF-SPEECH
- Adjective
- Adjective, comparative
- Adjective, cardinal number
- Adverb
- Conjunction, coordination
- Conjunction, subordinating
- Determiner
- Determiner, postdeterminer
- Noun
- Noun, plural
- Noun, proper, singular
- Noun, proper, plural
- Pronoun, personal
- Pronoun, question
- Verb, base present form

TAG EXAMPLES
JJ happy, bad
JJR happier, worse
CD 3, fifteen
RB often, particularly
CC and, or
IN
DT
JJ
NN
NNS women, books
NNP London, Michael
NNPS Australians, Methodists
PRP you, we, she, it
WP who, whoever
VBP take, live

Word Class Classes

- Importantly for predicting POS tags, there are two broad classes
" "Closed class" words
"Belong to classes that don't accept new members
" Determiners: the, a, an, this, ...
"Prepositions: in, on, of, ...
" "Open class" words
"Nouns, verbs, adjectives, adverbs, ...
" "Closed" is relative: These words are born and die over longer time scales (e.g, "regarding")

Ambiguity in Language

```
Fed raises interest rates 0.5%
in effort to control inflation
```

NY Times headline 17 May 2000

Part-of-speech Ambiguity

		VB			
	VBZ	VBZ	VBZ		
NNP	NNS	NNS	NNS	CD	NN
Fed	raises	interest rates	0.5	$\%$	in effort to

Degree of Supervision

Degree of Supervision

- Supervised: Training corpus is tagged by humans

Degree of Supervision

- Supervised: Training corpus is tagged by humans
- Unsupervised: Training corpus isn't tagged

Degree of Supervision

- Supervised: Training corpus is tagged by humans
- Unsupervised: Training corpus isn't tagged
- Partly supervised: Training corpus isn't tagged, but you have a dictionary giving possible tags for each word

Degree of Supervision

- Supervised: Training corpus is tagged by humans
- Unsupervised: Training corpus isn't tagged
- Partly supervised: Training corpus isn't tagged, but you have a dictionary giving possible tags for each word

Degree of Supervision

- Supervised: Training corpus is tagged by humans
- Unsupervised: Training corpus isn't tagged
- Partly supervised: Training corpus isn't tagged, but you have a dictionary giving possible tags for each word
- We'll start with the supervised case and move to decreasing levels of supervision.

Current Performance

Input: the lead paint is unsafe Output: the/Det lead/n paint/n is/v unsafe/Adj

Current Performance

Input: the lead paint is unsafe Output: the/Det lead/n paint/n is/v unsafe/Adj

- How many tags are correct?

Current Performance

Input: the lead paint is unsafe
Output: the/Det lead/n paint/N is/V unsafe/Adj

- How many tags are correct?

About 97\% currently

Current Performance

Input: the lead paint is unsafe
Output: the/Det lead/n paint/n is/v unsafe/Adj

- How many tags are correct?

About 97\% currently

- But baseline is already 90\%
"Baseline is performance of stupidest possible method
-Tag every word with its most frequent tag
- Tag unknown words as nouns

What Should We Look At?

Bill directed a cortege of autos through the dunes

What Should We Look At?

correct tags
 PN Verb Det Noun Prep Noun Prep Det Noun Bill directed a cortege of autos through the dunes

What Should We Look At?

correct tags
 PN Verb Det Noun Prep Noun Prep Det Noun Bill directed a cortege of autos through the dunes PN Adj Det Noun Prep Noun Prep Det Noun Verb Verb Noun Verb
 Adj
 Prep
 ...?
 some possible tags for each word (maybe more)

What Should We Look At?

What Should We Look At?

correct tags
PN Verb Det Noun Prep Noun Prep Det Noun Bill directed a cortege of autos through the dunes PN Adj Det Noun
Verb Verb Noun Verb

Adj
Prep
some possible tags for each word (maybe more)

What Should We Look At?

What Should We Look At?

Each unknown tag is constrained by its word

What Should We Look At?

		correct tags PN	Verb	Det
PN	Noun Prep Noun Prep	Det Noun		
Bill	directed	a		
cortege of autos through the dunes				

Each unknown tag is constrained by its word and by the tags to its immediate left and right.

What Should We Look At?

		correct tags PN	Verb	Det
PN	Noun Prep Noun Prep	Det Noun		
Bill	directed	a	cortege of autos through the dunes	
PN	Adj	Det	Noun Prep Noun Prep	Det Noun

Each unknown tag is constrained by its word and by the tags to its immediate left and right. But those tags are unknown too ...

What Should We Look At?

Each unknown tag is constrained by its word and by the tags to its immediate left and right. But those tags are unknown too ...

What Should We Look At?

Each unknown tag is constrained by its word and by the tags to its immediate left and right. But those tags are unknown too ...

Finite-State Approaches

- Noisy Channel Model (statistical)

real language X

noisy channel $\mathbf{X} \boldsymbol{\rightarrow} \mathbf{Y}$

yucky language Y
want to recover \mathbf{X} from \mathbf{Y}
part-of-speech tags (n-gram model)
replace tags with words text

Review: Noisy Channel

real language X

yucky language Y

Review: Noisy Channel

real language X

yucky language Y

want to recover $x \in X$ from $y \in Y$

Review: Noisy Channel

real language X

noisy channel $\mathbf{X} \rightarrow \mathbf{Y}$

yucky language Y

$\mathbf{p}(\mathbf{X}, \mathbf{Y})$
want to recover $\mathbf{x} \in \mathbf{X}$ from $\mathbf{y} \in \mathbf{Y}$
choose \mathbf{x} that maximizes $\mathbf{p}(\mathbf{x} \mid \mathbf{y})$ or equivalently $\mathbf{p}(x, y)$

Noisy Channel for Tagging

acceptor: p (tag sequence)
"Markov Model"

transducer: tags \rightarrow words

"Unigram Replacement"

\author{

. 0.

}
acceptor: the observed words
"straight line"

transducer: scores candidate tag seqs on their joint probability with obs words; pick best path

Markov Model (bigrams)

Verb

Det

Prep
Adj
Noun
Stop

Markov Model (bigrams)

Markov Model (bigrams)

Prep

Stop

Markov Model (bigrams)

Markov Model (bigrams)

Markov Model (bigrams)

Markov Model (bigrams)

Stop

Markov Model (bigrams)

Markov Model

Verb

Det

Prep

Adj
Noun
Stop

Markov Model

Markov Model

Markov Model

Markov Model

p(tag seq)

Start Det Adj Adj Noun Stop $=0.8 * 0.3 * 0.4 * 0.5 * 0.2$

Markov Model as an FSA

p(tag seq)

Start Det Adj Adj Noun Stop $=0.8 * 0.3 * 0.4 * 0.5 * 0.2$

Markov Model as an FSA

p(tag seq)

Start Det Adj Adj Noun Stop $=0.8 * 0.3 * 0.4 * 0.5 * 0.2$

Markov Model as an FSA

p(tag seq)

Start Det Adj Adj Noun Stop $=0.8 * 0.3 * 0.4 * 0.5 * 0.2$

Markov Model (tag bigrams)

p(tag seq)

Start Det Adj Adj Noun Stop $=0.8 * 0.3 * 0.4 * 0.5 * 0.2$

Noisy Channel for Tagging

automaton: p(tag sequence)
"Markov Model"

transducer: tags $\boldsymbol{\rightarrow}$ words

"Unigram Replacement"
automaton: the observed words "straight line"
transducer: scores candidate tag seqs on their joint probability with obs words; pick best path

Noisy Channel for Tagging

transducer: scores candidate tag seqs on their joint probability with obs words; we should pick best path

Unigram Replacement Model

 p(word seq | tag seq)Noun:cortege/0.000001

sums to 1

Compose

p(tag seq)

Compose

$\mathrm{p}($ word seq, tag seq) $=\mathrm{p}($ tag seq $) * \mathrm{p}$ (word seq | tag seq)

Observed Words as Straight-Line FSA

word seq

Compose with

$\mathrm{p}($ word seq, tag seq $)=\mathrm{p}($ tag seq $) * \mathrm{p}$ (word seq | tag seq)

Compose with

$p($ word seq, tag seq $)=p($ tag seq $) * p($ word seq \mid tag seq $)$

Compose with

$\mathrm{p}($ word seq, tag seq) $=\mathrm{p}($ tag seq $) * \mathrm{p}$ (word seq | tag seq)

The best path:
Start Det Adj Adj Noun Stop $=0.32 * 0.0009 \ldots$ the cool directed autos
$p($ word seq, tag seq $)=p($ tag seq $) * p($ word seq \mid tag seq $)$

In Fact, Paths Form a "Trellis"

p(word seq, tag seq)

The best path:
Start Det Adj Adj Noun Stop $=0.32 * 0.0009 \ldots$ the cool directed autos

In Fact, Paths Form a "Trellis"

p(word seq, tag seq)

The best path:
Start Det Adj Adj Noun Stop $=0.32 * 0.0009 \ldots$ the cool directed autos

In Fact, Paths Form a "Trellis"

p(word seq, tag seq)

The best path:
Start Det Adj Adj
Noun Stop $=0.32 * 0.0009 \ldots$ the cool directed autos

The Trellis Shape Emerges from the Cross-Product Construction for

The Trellis Shape Emerges from the Cross-Product Construction for

The Trellis Shape Emerges from the Cross-Product Construction for

$=$ All paths here are 4 words

The Trellis Shape Emerges from the Cross-Product Construction for

$=$ All paths here are 4 words

So all paths here must have 4 words on output side

Actually, Trellis Isn't Complete

 p(word seq, tag seq)

The best path:
Start Det Adj Adj
Noun Stop $=0.32 * 0.0009 \ldots$ the cool directed autos

Actually, Trellis Isn't Complete

p(word seq, tag seq)
Trellis has no Det \rightarrow Det or Det \rightarrow Stop arcs; why?

The best path:
Start Det Adj Adj Noun Stop $=0.32 * 0.0009 \ldots$ the cool directed autos

Actually, Trellis Isn't Complete

p(word seq, tag seq)
Lattice is missing some other arcs; why?

The best path:
Start Det Adj Adj Noun Stop $=0.32 * 0.0009 \ldots$ the cool directed autos

Actually, Trellis Isn't Complete

 p(word seq, tag seq) Lattice is missing some states; why?

The best path:
Start Det Adj Adj Noun Stop $=0.32 * 0.0009 \ldots$ the cool directed autos

Find best path from Start to Stop

Find best path from Start to Stop

- Use dynamic programming:
- What is best path from Start to each node?
- Work from left to right
- Each node stores its best path from Start (as probability plus one backpointer)

Find best path from Start to Stop

- Use dynamic programming:
- What is best path from Start to each node?
- Work from left to right
- Each node stores its best path from Start (as probability plus one backpointer)
- Special acyclic case of Dijkstra's shortest-path alg.

Find best path from Start to Stop

- Use dynamic programming:
- What is best path from Start to each node?
- Work from left to right
- Each node stores its best path from Start (as probability plus one backpointer)
- Special acyclic case of Dijkstra's shortest-path alg.
- Faster if some arcs/states are absent

In Summary

In Summary

- We are modeling p(word seq, tag seq)

In Summary

- We are modeling p(word seq, tag seq)
- The tags are hidden, but we see the words

In Summary

- We are modeling p(word seq, tag seq)
- The tags are hidden, but we see the words
- Is tag sequence X likely with these words?

In Summary

- We are modeling p(word seq, tag seq)
- The tags are hidden, but we see the words
- Is tag sequence X likely with these words?
- Noisy channel model is a "Hidden Markov Model":

In Summary

- We are modeling p(word seq, tag seq)
- The tags are hidden, but we see the words
- Is tag sequence X likely with these words?
" Noisy channel model is a "Hidden Markov Model":

Start PN Verb Det Noun Prep Noun Prep Noun Stop

Bill directed a cortege of autos thro

In Summary

- We are modeling p(word seq, tag seq)
- The tags are hidden, but we see the words
- Is tag sequence X likely with these words?
" Noisy channel model is a "Hidden Markov Model":

Start PN Verb Det Noun Prep Noun Prep Noun Stop

Bill directed a cortege of autos thro

In Summary

- We are modeling p(word seq, tag seq)
- The tags are hidden, but we see the words
- Is tag sequence X likely with these words?
- Noisy channel model is a "Hidden Markov Model":

Start PN Verb Det Noun Prep Noun Prep Noun Stop

Bill directed a cortege of autos thro

In Summary

- We are modeling p(word seq, tag seq)
- The tags are hidden, but we see the words
- Is tag sequence X likely with these words?
- Noisy channel model is a "Hidden Markov Model": probs from tag bigram model

Start PN Verb Det Noun Prep Noun Prep Noún Stop

Bill directed a cortege of autos thro

In Summary

- We are modeling p(word seq, tag seq)
- The tags are hidden, but we see the words
- Is tag sequence X likely with these words?
- Noisy channel model is a "Hidden Markov Model": probs from tag bigram model

Start PN Verb Det Noun Prep Noun Prep Noún Stop

Bill directed a cortege of autos thro
" Find X that maximizes probability product

Another Viewpoint

Another Viewpoint

- We are modeling p(word seq, tag seq)

Another Viewpoint

- We are modeling p(word seq, tag seq)
- Why not use chain rule + some kind of backoff?

Another Viewpoint

- We are modeling p(word seq, tag seq)
- Why not use chain rule + some kind of backoff?
- Actually, we are!

Another Viewpoint

- We are modeling p(word seq, tag seq)
- Why not use chain rule + some kind of backoff?
- Actually, we are!
$\mathrm{p}\left(\begin{array}{rlll}\text { Start PN } & \text { Verb } & \text { Det } & \ldots \\ \text { Bill } & \text { directed a } & \ldots\end{array}\right)$
$=p($ Start $) * p(P N \mid S t a r t) * p($ Verb | Start PN $) * p($ Det | Start PN Verb) $* \ldots$ * p(Bill | Start PN Verb ...) * p(directed \| Bill, Start PN Verb Det ...) * p(a | Bill directed, Start PN Verb Det ...) * ...

Another Viewpoint

- We are modeling p(word seq, tag seq)
" Why not use chain rule + some kind of backoff?
- Actually, we are!

$$
\left.\begin{array}{c}
\mathrm{P}\left(\begin{array}{r}
\text { Start PN Verb } \\
\text { Bill directed a }
\end{array} \text { Det } \ldots\right.
\end{array}\right) .
$$

Start PN Verb Det Noun Prep Noun Prep Det Noun Stop Bill directed a cortege of autos through the dunes

Another Viewpoint

- We are modeling p(word seq, tag seq)
" Why not use chain rule + some kind of backoff?
- Actually, we are!

$$
\begin{aligned}
& \text { p(} \left.\begin{array}{rlll}
\text { Start PN } & \text { Verb } & \text { Det } & \ldots \\
\text { Bill } & \text { directed } & \text { a } & \ldots
\end{array}\right) \\
& =p(\text { Start }) * p(\text { PN | Start }) * p(\text { Verb | PN }) * p(\text { Det | St PN Verb) } * \text {... } \\
& \text { * p(Bill | Start PN Verb ...) * p(directed | Bill, Start PN Verb Det ...) } \\
& \text { * p(a | Bill directed, Start PN Verb Det ...) * ... }
\end{aligned}
$$

Start PN Verb Det Noun Prep Noun Prep Det Noun Stop
Bill directed a cortege of autos through the dunes

Another Viewpoint

- We are modeling p(word seq, tag seq)
" Why not use chain rule + some kind of backoff?
- Actually, we are!

$$
\left.\begin{array}{c}
\mathrm{P}\left(\begin{array}{r}
\text { Start PN Verb } \\
\text { Bill directed a }
\end{array} \text { Det } \ldots\right.
\end{array}\right) .
$$

Start PN Verb Det Noun Prep Noun Prep Det Noun Stop
Bill directed a cortege of autos through the dunes

Variations

Variations

Multiple tags per word

Variations

Multiple tags per word
" Transformations to knock some of them out

Variations

- Multiple tags per word
- Transformations to knock some of them out
- How to encode multiple tags and knockouts?

Variations

- Multiple tags per word
- Transformations to knock some of them out
- How to encode multiple tags and knockouts?

Variations

- Multiple tags per word
- Transformations to knock some of them out
- How to encode multiple tags and knockouts?
- Use the above for partly supervised learning

Variations

- Multiple tags per word
"Transformations to knock some of them out
" How to encode multiple tags and knockouts?
- Use the above for partly supervised learning
" Supervised: You have a tagged training corpus

Variations

- Multiple tags per word
" Transformations to knock some of them out
" How to encode multiple tags and knockouts?
- Use the above for partly supervised learning
" Supervised: You have a tagged training corpus
- Unsupervised: You have an untagged training corpus

Variations

- Multiple tags per word
"Transformations to knock some of them out
- How to encode multiple tags and knockouts?
- Use the above for partly supervised learning
" Supervised: You have a tagged training corpus
" Unsupervised: You have an untagged training corpus
- Here: You have an untagged training corpus and a dictionary giving possible tags for each word

Applications of HMMs

- NLP
- Part-of-speech tagging
- Word segmentation
- Information extraction
- Optical character recognition
- Speech recognition
- Modeling acoustics, with continuous emissions
- Computer Vision
- Gesture recognition
- Biology
- Gene finding
- Protein structure prediction
- Economics, Climatology, Robotics, etc.

A More Traditional View of HMMs

Input: the lead paint is unsafe
Observations
Output: the/Det lead/n paint/w is/v unsafe/Adj
Tags

1) Data: Notation, representation
2) Problem: Write down the problem in notation
3) Model: Make some assumptions, define a parametric model (often generative model of the data)
4) Inference: How to search through possible answers to find the best one
5) Learning: How to estimate parameters
6) Implementation: Engineering considerations for an efficient implementation

An HMM Tagger

- View sequence of tags as a Markov chain. Assumptions:
- Limited horizon $P\left(x_{t+1} \mid x_{1}, \ldots x_{t}\right)=P\left(x_{t+1} \mid x_{t}\right)$
- Time invariant (stationary) $P\left(x_{t+1} \mid x_{t}\right)=P\left(x_{2} \mid x_{1}\right)$
- We assume that a word's tag only depends on the previous tag (limited horizon) and that his dependency does not change over time (time invariance)
- A state (part of speech) generates a word. We assume it depends only on the state.

$$
P\left(o_{t} \mid x_{1}, \ldots x_{T}, o_{1}, \ldots o_{t-1}\right)=P\left(o_{t} \mid x_{t}\right)
$$

The Markov Property

- A stochastic process has the Markov property if the conditional probability distribution of future states of the process, given the current state, depends only upon the current state, and conditionally independent of the past states (the path of the process) given the current state.
- A process with the Markov property is usually called a Markov process, and may be described as Markovian.

$$
\operatorname{Pr}[X(t+h)=y \mid X(s)=x(s), s \leq t]=\operatorname{Pr}[X(t+h)=y \mid X(t)=x(t)], \quad \forall h>0 .
$$

HMM w/State Emissions

 transitions
$P\left(o_{t} \mid x_{t}\right)$

HMM as Bayes Net

- Top row is unobserved states, interpreted as POS tags
- Bottom row is observed output observations (words)

(One) Standard HMM Formalism

- ($\left.X, O, x_{s}, A, B\right)$ are all variables. Model $\mu=(A, B)$
- X is state sequence of length T ; O is observation seq.
- x_{s} is a designated start state (with no incoming transitions). (Can also be separated into π as in book.)
- A is matrix of transition probabilities (each row is a conditional probability table (CPT)
- B is matrix of output probabilities (vertical CPTs)

$$
P(X, O \mid \mu)=\prod_{t=1}^{T} a\left[x_{t} \mid x_{t-1}\right] b\left[o_{t} \mid x_{t}\right]
$$

- HMM is a probabilistic (nondeterministic) finite state automaton, with probabilistic outputs (from vertices, not arcs, in the simple case)

HMM Inference Problems

- Given an observation sequence, find the most likely state sequence (tagging)
- Compute the probability of observations when state sequence is hidden (language modeling)
- Given observations and (optionally) a their corresponding states, find parameters that maximize the probability of the observations (parameter estimation)

Most Likely State Sequence

- Given $O=\left(\mathrm{o}_{1}, \ldots, \mathrm{O}_{\mathrm{T}}\right)$ and model $\mu=(\mathrm{A}, \mathrm{B})$
- We want to find
$\arg \max _{X} P(X \mid O, \mu)=\arg \max _{X} \frac{P(X, O \mid \mu)}{P(O \mid \mu)}=\arg \max _{X} P(X, O \mid \mu)$
- $P(O, X \mid \mu)=P(O \mid X, \mu) P(X \mid \mu)$
- $P(O \mid X, \mu)=b\left[x_{1} \mid o_{1}\right] b\left[x_{2} \mid o_{2}\right] \ldots b\left[x_{T} \mid o_{T}\right]$
- $P(X \mid \mu)=a\left[x_{1} \mid x_{2}\right] a\left[x_{2} \mid x_{3}\right] \ldots a\left[x_{T-1} \mid x_{T}\right]$
- $\arg \max _{x} P(O, X \mid \mu)=\arg \max x_{1}, x_{2}, \ldots x_{T}$
- Problem: arg max is exponential in sequence length!

Paths in a Trellis

States

Paths in a Trellis

Paths in a Trellis

States

$\delta_{i}(t)=$ Probability of most likely path that ends at state i at time t.

Dynamic Programming

- Efficient computation of max over all states
- Intuition: Probability of the first t observations is the same for all possible $t+1$ length sequences.
- Define forward score:

$$
\begin{aligned}
& \delta_{i}(t)=\max _{x_{1} \cdots x_{t-1}} P\left(o_{1} o_{2} \cdots o_{t}, x_{1} \cdots x_{t-1}, x_{t}=i \mid \mu\right) \\
& \delta_{j}(t+1)=\max _{i=1 \ldots N} \delta_{i}(t) a\left[x_{j} \mid x_{i}\right] b\left[o_{t+1} \mid x_{j}\right]
\end{aligned}
$$

- Compute it recursively from the beginning
- (Then must remember best paths to get arg max.)

The Viterbi Algorithm (1967)

- Used to efficiently find the state sequence that gives the highest probability to the observed outputs
- Maintains two dynamic programming tables:
- The probability of the best path (max)

$$
\delta_{j}(t+1)=\max _{i=1 . . N} \delta_{i}(t) a\left[x_{j} \mid x_{i}\right] b\left[o_{t+1} \mid x_{j}\right]
$$

- The state transitions of the best path (arg)

$$
\psi_{j}(t+1)=\arg \max _{i=1 . . N} \delta_{i}(t) a\left[x_{j} \mid x_{i}\right] b\left[o_{t+1} \mid x_{j}\right]
$$

- Note that this is different from finding the most likely tag for each time t !

- Initialization

$$
\delta_{j}(0)=1 \text { if } x_{j}=x_{s} . \quad \delta_{j}(0)=0 \text { otherwise } .
$$

- Induction

$$
\delta_{j}(t+1)=\max _{i=1 . . N} \delta_{i}(t) a\left[x_{j} \mid x_{i}\right] b\left[o_{t+1} \mid x_{j}\right]
$$

Store backtrace

$$
\psi_{j}(t+1)=\arg \max _{i=1 . . N} \delta_{i}(t) a\left[x_{j} \mid x_{i}\right] b\left[o_{t+1} \mid x_{j}\right]
$$

- Termination and path readout

$$
\begin{array}{lr}
\hat{x}_{T}=\arg \max _{i=1 . . N} \delta_{i}(T) & \text { Probability of entire best seq. } \\
\hat{x}_{t}=\psi_{\hat{x}_{t+1}}(t+1) & P(\hat{X})=\max _{i=1 . . N} \delta_{i}(T)
\end{array}
$$

HMMs:
 Maxing and Summing

Markov vs. Hidden Markov Models

Unrolled into a Trellis

HMM Inference Problems

- Given an observation sequence, find the most likely state sequence (tagging)
- Compute the probability of observations when state sequence is hidden (language modeling)
- Given observations and (optionally) a their corresponding states, find parameters that maximize the probability of the observations (parameter estimation)

Tagging

Given an observation sequence, find the most likely state sequence.

$$
\begin{aligned}
\arg \max _{X} P(X \mid O, \mu)= & \arg \max _{X} \frac{P(X, O \mid \mu)}{P(O \mid \mu)}=\arg \max _{X} P(X, O \mid \mu) \\
& \arg \max _{x_{1}, x_{2}, \ldots x_{T}} P\left(x_{1}, x_{2}, \ldots, x_{T}, O \mid \mu\right)
\end{aligned}
$$

Last time: Use dynamic programming to find highestprobability sequence (i.e. best path, like Dijsktra's algorithm)

Language Modeling

Compute the probability of observations when state sequence is hidden.

$$
P(X, O \mid \mu)=P(O \mid X, \mu) P(X \mid \mu)
$$

Therefore

$$
P(O \mid \mu)=\sum_{X} P(O \mid X, \mu) P(X \mid \mu)
$$

$$
\sum P\left(x_{1}, x_{2}, \ldots, x_{T}, O \mid \mu\right)
$$

$x_{1}, x_{2}, \ldots x_{T}$
Suspiciously similar to

$$
\max _{x_{1}, x_{2}, \ldots x_{T}} P\left(x_{1}, x_{2}, \ldots, x_{T}, O \mid \mu\right)
$$

Viterbi Algorithm (Tagging)

Viterbi Algorithm (Tagging)

NN

NNS

NNP
VB

VBZ

Fed
raises interest
rates

Viterbi Algorithm (Tagging)

NN

NNS

NNP
VB

VBZ

Fed
raises interest
rates

Viterbi Algorithm (Tagging)

NN
NNS
NNP
VB

Fed

rates

Viterbi Algorithm (Tagging)

NN

NNS
NNP
VB

Fed

raises interest

rates

Viterbi Algorithm (Tagging)

Fed

rates

Viterbi Algorithm (Tagging)

Fed raises interest
rates

Viterbi Algorithm (Tagging)

Forward Algorithm (LM)

What Do These Greek Letters Mean?

$$
\delta_{j}(t)=\max _{x_{1} \cdots x_{t-1}} P\left(x_{1} \cdots x_{t-1}, o_{1} \cdots o_{t-1}, x_{t}=j \mid \mu\right)
$$

$$
\begin{aligned}
\alpha_{j}(t) & =\sum_{x_{1} \cdots x_{t-1}} P\left(x_{1} \cdots x_{t-1}, o_{1} \cdots o_{t-1}, x_{t}=j \mid \mu\right) \\
& =P\left(o_{1} \cdots o_{t-1}, x_{t}=j \mid \mu\right)
\end{aligned}
$$

What Do These Greek Letters Mean?

Probability of the best path from the beginning to word t such that word t has tag j

$$
\delta_{j}(t)=\max _{x_{1} \cdots x_{t-1}} P\left(x_{1} \cdots x_{t-1}, o_{1} \cdots o_{t-1}, x_{t}=j \mid \mu\right)
$$

$$
\begin{aligned}
\alpha_{j}(t) & =\sum_{x_{1} \cdots x_{t-1}} P\left(x_{1} \cdots x_{t-1}, o_{1} \cdots o_{t-1}, x_{t}=j \mid \mu\right) \\
& =P\left(o_{1} \cdots o_{t-1}, x_{t}=j \mid \mu\right)
\end{aligned}
$$

What Do These Greek Letters Mean?

Probability of the best path from the beginning to word t such that word t has tag j

$$
\delta_{j}(t)=\max _{x_{1} \cdots x_{t-1}} P\left(x_{1} \cdots x_{t-1}, o_{1} \cdots o_{t-1}, x_{t}=j \mid \mu\right)
$$

Probability of all paths from the beginning to word t such that word t has tag j

$$
\begin{aligned}
\alpha_{j}(t) & =\sum_{x_{1} \cdots x_{t-1}} P\left(x_{1} \cdots x_{t-1}, o_{1} \cdots o_{t-1}, x_{t}=j \mid \mu\right) \\
& =P\left(o_{1} \cdots o_{t-1}, x_{t}=j \mid \mu\right)
\end{aligned}
$$

What Do These Greek Letters Mean?

Probability of the best path from the beginning to word t such that word t has tag j

$$
\delta_{j}(t)=\max _{x_{1} \cdots x_{t-1}} P\left(x_{1} \cdots x_{t-1}, o_{1} \cdots o_{t-1}, x_{t}=j \mid \mu\right)
$$

Probability of all paths from the beginning to word t such that word t has tag j

$$
\begin{aligned}
\alpha_{j}(t) & =\sum_{x_{1} \cdots x_{t-1}} P\left(x_{1} \cdots x_{t-1}, o_{1} \cdots o_{t-1}, x_{t}=j \mid \mu\right) \\
& =P\left(o_{1} \cdots o_{t-1}, x_{t}=j \mid \mu\right)
\end{aligned}
$$

HMM Language Modeling

- Probability of observations, summed over all possible ways of tagging that observation:

$$
\sum_{i} \alpha_{i}(T)
$$

- This is the sum of all path probabilities in the trellis

HMM Parameter Estimation

- Supervised
- Train on tagged text, test on plain text
- Maximum likelihood (can be smoothed):
- $a[V B Z \mid N N]=C(N N, V B Z) / C(N N)$
- $\mathrm{b}[$ rates |VBZ] $=\mathrm{C}($ VBZ, rates $) / \mathrm{C}($ VBZ $)$
- Unsupervised
- Train and test on plain text
- What can we do?

Forward-Backward Algorithm

Forward-Backward Algorithm

NN
NNS

NNP
VB
VBZ

Fed
rates

Forward-Backward Algorithm

Forward-Backward Algorithm

NN
NNS

NNP
VB
VBZ

Fed

Forward-Backward Algorithm

Forward-Backward Algorithm

Forward-Backward Algorithm

Forward-Backward Algorithm

$$
P\left(o_{1} \cdots o_{t-1}, x_{t}=j \mid \mu\right)=\alpha_{j}(t)
$$

$$
P\left(o_{t} \cdots o_{T} \mid x_{t}=j, \mu\right)=\beta_{j}(t)
$$

$$
P\left(o_{1} \cdots o_{T}, x_{t}=j \mid \mu\right)=\alpha_{j}(t) \beta_{j}(t)
$$

$$
P\left(x_{t}=j \mid O, \mu\right)=\frac{P\left(x_{t}=j, O \mid \mu\right)}{P(O \mid \mu)}=\frac{\alpha_{j}(t) \beta_{j}(t)}{\alpha_{\#}(T)}
$$

$$
P\left(x_{t}=i, x_{t+1}=j \mid O, \mu\right)=\frac{P\left(x_{t}=i, x_{t+1}=j, O \mid \mu\right)}{P(O \mid \mu)}
$$

$$
=\frac{\alpha_{i}(t) a[j \mid i] b\left[o_{t} \mid j\right] \beta_{j}(t+1)}{\alpha_{\#}(T)}
$$

Expectation Maximization (EM)

- Iterative algorithm to maximize likelihood of observed data in the absence of hidden data (e.g., tags)
- Choose an initial model μ
- Expectation step: find the expected value of hidden variables given current μ
- Maximization step: choose new μ to maximize probability of hidden and observed data
- Guaranteed to increase likelihood
- Not guaranteed to find global maximum

Supervised vs. Unsupervised

Supervised	Unsupervised
Annotated training text	Plain text
Simple count/normalize	EM
Fixed tag set	Set during training
Training reads data once	Training needs multiple passes

Logarithms for Precision

$$
P(Y)=p\left(y_{1}\right) p\left(y_{2}\right) \cdots p\left(y_{T}\right)
$$

$$
\log P(Y)=\log p\left(y_{1}\right)+\log p\left(y_{2}\right) \cdots+\log p\left(y_{T}\right)
$$

Increased dynamic range of $[0, \mathrm{I}]$ to $[-\infty, 0]$

Semirings

	Set	\oplus	\otimes	0	I
Prob	R^{+}	+	x	0	I
Max	R^{+}	\max	x	0	I
Log	$\mathrm{R} \cup\{ \pm \infty\}$	$\log +$	+	$-\infty$	0
"Tropical"	$\mathrm{R} \cup\{ \pm \infty\}$	\max	+	$-\infty$	0
Shortest path	$\mathrm{R} \cup\{ \pm \infty\}$	\min	+	∞	0
Boolean	$\{\mathrm{F}, \mathrm{T}\}$	\vee	\wedge	F	T
String	$\Sigma^{*} \cup\{\infty\}$	longest commmon prefix	concat	∞	ε

Search as Deduction

Axioms path(Start, 0$)$, $\operatorname{word}($ the $, 0,1)$, emit(DT, the),\ldots Inference rule
$\forall A, B \in T ; W \in V ; 0 \leq i, j \leq n$
$\operatorname{path}(B, j) \Longleftarrow \operatorname{path}(A, i) \wedge \operatorname{word}(W, i, j)$ $\wedge e m i t(B, W) \wedge \operatorname{trans}(A, B)$
In Prolog

```
path(B,J) :-
    path(A,I), word(W,I,J), emit(B,W), trans(A,B).
path("Start",0).
word("the" , 0,1).
word("cool", 1, 2).
..
emit("DT","the").
```


Search as Deduction

Axioms path(Start, 0$)$, word (the $, 0,1$), emit(DT, the), \ldots Inference rule
$\forall B, j: \operatorname{path}(B, j)=$

$$
\bigvee_{A, W, i} \operatorname{path}(A, i) \wedge \operatorname{word}(W, i, j)
$$

$\wedge e m i t(B, W) \wedge \operatorname{trans}(A, B)$
In Prolog

```
path(B,J) :-
    path(A,I), word(W,I,J), emit(B,W), trans(A,B).
path("Start",0).
word("the",0,1).
word("cool", 1, 2).
..
emit("DT","the").
```


Search as Deduction

Axioms path(Start, 0$)$, word (the $, 0,1$), emit(DT, the), \ldots Inference rule
$\forall B, j: \operatorname{path}(B, j)=$
$\bigvee \operatorname{path}(A, i) \wedge \operatorname{word}(W, i, j)$ A, W, i
$\wedge \operatorname{emit}(B, W) \wedge \operatorname{trans}(A, B)$
Shortest path
$\forall B, j: \operatorname{path}(B, j)=$

$$
\begin{array}{r}
\min _{A, W, i} \operatorname{path}(A, i)+\operatorname{word}(W, i, j) \\
+\operatorname{emit}(B, W)+\operatorname{trans}(A, B)
\end{array}
$$

Search as Deduction

Axioms path(Start, 0$)$, word (the $, 0,1$), emit(DT, the), \ldots
Shortest path
$\forall B, j: \operatorname{path}(B, j)=$

$$
\begin{array}{r}
\min _{A, W, i} \operatorname{path}(A, i)+\operatorname{word}(W, i, j) \\
+\operatorname{emit}(B, W)+\operatorname{trans}(A, B)
\end{array}
$$

Viterbi algorithm
$\forall B, j: \operatorname{path}(B, j)=$

$$
\begin{array}{r}
\max _{A, W, i} \operatorname{path}(A, i) \cdot \operatorname{word}(W, i, j) \\
\cdot \operatorname{emit}(B, W) \cdot \operatorname{trans}(A, B)
\end{array}
$$

Search as Deduction

Axioms path(Start, 0$)$, $\operatorname{word}($ the $, 0,1), \operatorname{emit}(\mathrm{DT}$, the $), \ldots$

Viterbi algorithm
$\forall B, j: \operatorname{path}(B, j)=$

$$
\begin{array}{r}
\max _{A, W, i} \operatorname{path}(A, i) \cdot \operatorname{word}(W, i, j) \\
\cdot \operatorname{emit}(B, W) \cdot \operatorname{trans}(A, B)
\end{array}
$$

Viterbi w/log probabilities
$\forall B, j: \operatorname{path}(B, j)=$

$$
\begin{array}{r}
\max _{A, W, i} \operatorname{path}(A, i)+\operatorname{word}(W, i, j) \\
+\operatorname{emit}(B, W)+\operatorname{trans}(A, B)
\end{array}
$$

Search as Deduction

Axioms path(Start, 0$), \operatorname{word}($ the $, 0,1), \operatorname{emit}(\mathrm{DT}$, the $), \ldots$

Viterbi algorithm
$\forall B, j: \operatorname{path}(B, j)=$

$$
\begin{array}{r}
\max _{A, W, i} \operatorname{path}(A, i) \cdot \operatorname{word}(W, i, j) \\
\cdot \operatorname{emit}(B, W) \cdot \operatorname{trans}(A, B)
\end{array}
$$

Forward algorithm
$\forall B, j: \operatorname{path}(B, j)=$

$$
\sum_{A, W, i} \operatorname{path}(A, i) \cdot \operatorname{word}(W, i, j)
$$

- $\operatorname{emit}(B, W) \cdot \operatorname{trans}(A, B)$

Search as Deduction

Axioms path(Start, 0$)$, $\operatorname{word}($ the $, 0,1), \operatorname{emit}(\mathrm{DT}$, the $), \ldots$
Forward algorithm

$$
\begin{array}{r}
\forall B, j: \operatorname{path}(B, j)=\quad \sum_{A, W, i} \operatorname{path}(A, i) \cdot \operatorname{word}(W, i, j) \\
\cdot \operatorname{emit}(B, W) \cdot \operatorname{trans}(A, B)
\end{array}
$$

Let $\theta=$ subset of axioms whose weights we wish to optimize

Chain rule

$$
\underset{B}{\text { goal }=\sum_{B} \operatorname{path}(B, n), ~}
$$

$$
\frac{\partial g o a l}{\partial \theta}=\sum_{B} \frac{\partial \text { goal }}{\partial p a t h(B, n)} \frac{\partial p a t h(B, n)}{\partial \theta}
$$

Search as Deduction

Axioms path(Start, 0$)$, $\operatorname{word}($ the $, 0,1)$, emit(DT, the),\ldots
Forward algorithm

$$
\forall B, j: \operatorname{path}(B, j)=\quad \sum_{A, W, i} \operatorname{path}(A, i) \cdot \operatorname{word}(W, i, j)
$$

- emit $(B, W) \cdot \operatorname{trans}(A, B)$

Chain rule

$$
\frac{\partial g o a l}{\partial \operatorname{path}(A, i)}=\sum_{B, j} \frac{\partial \text { goal }}{\partial \operatorname{path}(B, j)} \frac{\partial \operatorname{path}(B, j)}{\partial \operatorname{path}(A, i)}
$$

$\beta_{A}(i)=\sum_{B, W, j} \beta_{B}(j) \cdot \operatorname{word}(W, i, j) \cdot \operatorname{emit}(B, W) \cdot \operatorname{trans}(A, B)$

Reading

- Barzilay \& Lee. Catching the Drift: Probabilistic Content Models, with Applications to Generation and Summarization. HLT-NAACL, 2004.
- http://aclweb.org/anthology//N/N04/ N04-1015.pdf
- Ritter, Cherry \& Dolan. Unsupervised Modeling of Twitter Conversations. HLT-NAACL, 2010.
- http://aclweb.org/anthology//N/NIO/

N10-1020.pdf

- Background: Jurafsky \& Martin, ch. 5 and 6.I-6.5

