Regular Languages

Natural Language Processing CS 4I20/6I20—Spring 2017
Northeastern University

David Smith
with material from Jason Eisner, Andrew McCallum, and Lari Karttunen

Noam
 Chomsky 1928-

Formal languages
(Chomsky hierarchy)
Generative grammar
Anarcho-Socialist

A Language

- Some sentences in the language
※ The man took the book.
* Colorless green ideas sleep furiously.
* This sentence is false.
- Some sentences not in the language
* *The girl, the sidewalk, the chalk, drew.
\% *Backwards is sentence this.
* *Je parle anglais.

Languages as Rewriting Systems

- Start with some "non-terminal" symbol S
- Expand that symbol, using a rewrite rule.
- Keep applying rules until all non-terminals are expanded to terminals.
- The string of terminals is a sentence of the language.

Chomsky Hierarchy

- Let Caps = nonterminals; lower = terminals; Greek = strings of terms/nonterms
- Recursively enumerable (Turing equivalent)
\div Rules: $\alpha \rightarrow \beta$
- Context-sensitive
\because Rules: $\alpha \mathrm{A} \beta \rightarrow \alpha \gamma \beta$
- Context-free
\div Rules: $A \rightarrow \alpha$
- Regular (finite-state)
* Rules $: A \rightarrow a B ; A \rightarrow a$

Regular Language Example

- Nonterminals: S, X
- Terminals: m, o

One expansion

- Rules:
- $S \rightarrow \mathrm{mX}$
- $X \rightarrow 0 X$
- $X \rightarrow 0$

S
mX
mox mooX
mooo

- Start symbol: S

Another Regular Language

- Strings in and not in this language
$\%$ In the language:
- "ba!","baa!","baaaaaaaa!"
* Not in the language:
- "ba","‘!","ab!","bbaaa!", "alibaba!"
- Regular expression: baa*!
- Finite state automaton

Regular Languages

Regular Languages

the accepted strings

Finite-state Automata
machinery for accepting

Regular Expressions a way to type the automata

Finite-State Automata

- A (deterministic) finite-state automaton is a 5 -tuple ($\mathrm{Q}, \Sigma, \mathrm{q}_{0}, \mathrm{~F}, \delta(\mathrm{q}, \mathrm{i})$)
$\because Q$: finite set of states $q_{0}, q_{1}, q_{2}, \ldots, q_{N}$
$\because \quad \sum$: finite set of terminals
$\because \delta(\mathrm{q}, \mathrm{i})$: transition function (relation if non-deterministic)
- q_{0} : start state
\therefore F: set of final states

The FSA

State marker

\mathbf{b}	\mathbf{a}	\mathbf{a}	\mathbf{a}	\mathbf{a}	$\mathbf{!}$

Transition Table

	Input		
State	b	a	$!$
0	1	\varnothing	\varnothing
1	\varnothing	2	\varnothing
2	\varnothing	2	3
3	\varnothing	\varnothing	\varnothing

Regular Expressions

- Two types of characters
- Literal
* Every "normal" alphanumeric character is an RE, and matches itself
- Meta-characters
* Special characters that allow you to combine REs in various ways
- Example:
\div a matches a
* a* matches ε or a or $a a$ or aaa or ...

Regular Expressions

	Pattern	Matches
Concatenation	abc	$a b c$
Disjunction	$\begin{aligned} & a \mid b \\ & (a \mid b b) d \end{aligned}$	$\begin{array}{ll} a & b \\ a d & b b d \end{array}$
Kleene star	$\begin{aligned} & a * \\ & c(a \mid b b) \text { * } \end{aligned}$ The e	в a aа aаa ca cbba string

Regular expressions / FSAs are closed under these operations

Practical Applications

- Word processing find \& replace
- Validate fields in database (dates, email, ...)
- Searching for linguistic patterns
- Finite-state machines
© Language modeling in speech recognition (where things need to be real-time or better)
* Information extraction
* Morphology

Syntactic Sugar

	Pattern	Matches
Character Concat	went	went
Alternatives	(go\|went)	go went
[aeiou]	a o u	
disjunc. negation	[^aeiou]	b c d f g
wildcard char	•	
Loops \& skips	a*	a a aa aaa ... one or more zero or one
	colou?r	a aa aaa color colour

Syntactic Sugar

- Special characters

$-\backslash \boldsymbol{t}$	tab	\v	vertical tab
$-\backslash \mathbf{n}$	newline	$\backslash \mathbf{r}$	carriage return

- Aliases (shorthand)
- \d
digits
- \D non-digits
- \w alphabetic
- \w non-alphabetic
- \s whitespace
- \w alphabetic
[0-9]
[^0-9]
[a-zA-Z]
[^a-zA-Z]
[|t|th|r|flv]
[a-zA-Z]
- Examples
- \d+ dollars 3 dollars, 50 dollars, 982 dollars
- \w*oo\w* food, boo, oodles
- Escape character
- \backslash is the general escape character; e.g. \backslash. is not a wildcard, but matches a period.
- if you want to use \backslash in a string it has to be escaped $\backslash \backslash$

Syntactic Sugar

- Anchors. AKA, "zero width characters".
- They match positions in the text.
beginning of line
$\$$ end of line
- \b word boundary, i.e. location with \w on one side but not on the other.
- \B negated word boundary, i.e. any location that would not match \b
- Examples:
- \bthe $\backslash \mathrm{b}$ the together
- Counters $\{1\},\{1,2\},\{3$,

Syntactic Sugar

- Grouping
- a (good|bad) movie
- He said it (again and)*again.
- Parens also indicate Registers (saved contents)
$-\mathrm{b}(\backslash \mathrm{w}+\mathrm{h} \backslash 1$ matches boohoo and baha, but not boohaa The digit after the \indicates which of multiple paren groups, as ordered by when then were opened.
- Grouping without the cost of register saving
- He went (?:this|that) way.

Syntactic Sugar

- Non-consuming tests
- (?=...) - Positive lookAHEAD
- (?!...) - Negative lookAHEAD
- (?<=...) - Positive lookBEHIND
- (? $<$!...) - Negative lookBEHIND
- Example
- (?<=[Hh]e) \w+ed (?=\w+ly)

ELIZA (Weizenbaum I966)

> User: Men are all alike.
> ELIZA: IN WHAT WAY?
> User: They're always bugging us about something or other.
> ELIZA: CAN YOU THINK OF A SPECIFIC EXAMPLE?
> User: Well, my boyfriend made me come here.
> ELIZA: YOUR BOYFRIEND MADE YOU COME HERE.
> User: He say's I'm depressed much of the time.
> ELIZA: I'M SORRY TO HEAR THAT YOU ARE DEPRESSED.

Implemented with regular expression substitution!
s/.* I'm (depressed|sad) .*/I AM SORRY TO HEAR THAT YOU ARE \1/
s/.* always .*/CAN YOU THINK OF A SPECIFIC EXAMPLE?/

Background Reading

- Karttunen, Chanod, Grefenstette, Schiller. Regular expressions for language engineering.JNLE, 1997.
http://www.stanford.edu/~laurik/ publications/jnle-97/rele.pdf
- RE/FSA: Jurafsky \& Martin, c. 2

Finite-State Machines: Acceptors and Transducers

Finite state acceptors (FSAs)

Finite state acceptors (FSAs)

- Regexps

Finite state acceptors (FSAs)

- Regexps

- Union, Kleene *, concat, intersect, complement, reversal

Finite state acceptors (FSAs)

- Regexps

- Union, Kleene *, concat, intersect, complement, reversal
- Determinization, minimization

Finite state acceptors (FSAs)

- Regexps

- Union, Kleene *, concat, intersect, complement, reversal
- Determinization, minimization
- Pumping, Myhill-Nerode

A useful FSA ...

Wordlist

```
clear
clever
    ear
    ever
    fat
father
```

/usr/dict/words 25K words 206K chars

A useful FSA ...

Network

Wordlist

Weights are useful here too!

Network
Wordlist

clear	0
clever	1
ear	2
ever	3
fat	4
father	5

Computes a perfect hash!

Example: Weighted acceptor

Network

- Compute number of paths from each state (Q: how?)
- Successor states partition the path set
- Use offsets of successor states as arc weights
- Q: Would this work for an arbitrary numbering of the words?

Example: Unweighted transducer

$\mathbf{V P}$ [head=vouloir,...]

V[head=vouloir, tense=Present, num=SG, person=P3]
veut

Example: Unweighted transducer

VP [head=vouloir,...]
the problem \mathbf{V} [head= vouloir, of morphology \longrightarrow veut ("word shape") tense=Present, num=SG, person=P3] an area of linguistics

Example: Unweighted transducer

VP [head=vouloir,...]

V [head=vouloir, tense=Present, num=SG, person=P3]
veut

Example: Unweighted transducer

VP [head=vouloir,...]

V[head=vouloir, tense=Present, num=SG, person=P3]
veut

Example: Unweighted transducer

VP [head=vouloir,...]

V[head=vouloir, tense=Present, num=SG, person=P3]

Example: Unweighted transducer

Finite-state transducer
" Bidirectional: generation or analysis

- Compact and fast
- Xerox sells for about 20 languages including English, German, Dutch, French, Italian, Spanish, Portuguese, Finnish, Russian, Turkish, Japanese, ...
- Research systems for many other languages, including Arabic, Malay

Regular Relation (of strings)

Regular Relation (of strings)

- Relation: like a function, but multiple outputs ok

Regular Relation (of strings)

- Relation: like a function, but multiple outputs ok
- Regular: finite-state

Regular Relation (of strings)

- Relation: like a function, but multiple outputs ok
- Regular: finite-state
- Transducer: automaton w/ outputs

Regular Relation (of strings)

- Relation: like a function, but multiple outputs ok
- Regular: finite-state
- Transducer: automaton w/ outputs

$$
=b \rightarrow \text { ? } a \rightarrow \text { ? }
$$

Regular Relation (of strings)

- Relation: like a function, but multiple outputs ok
- Regular: finite-state
- Transducer: automaton w/ outputs

$$
=b \rightarrow\{b\} \quad a \rightarrow ?
$$

Regular Relation (of strings)

- Relation: like a function, but multiple outputs ok
- Regular: finite-state
- Transducer: automaton w/ outputs
$=b \rightarrow\{b\} \quad a \rightarrow\{ \}$

Regular Relation (of strings)

- Relation: like a function, but multiple outputs ok
- Regular: finite-state
- Transducer: automaton w/ outputs
$=b \rightarrow\{b\} \quad a \rightarrow\{ \}$
\{ac, aca, acab, acabc\}

Regular Relation (of strings)

- Relation: like a function, but multiple outputs ok
- Regular: finite-state
- Transducer: automaton w/ outputs
$=b \rightarrow\{b\} \quad a \rightarrow\{ \}$
\{ac, aca, acab, acabc\}
- Invertible?

Regular Relation (of strings)

- Relation: like a function, but multiple outputs ok
- Regular: finite-state
- Transducer: automaton w/ outputs
$=b \rightarrow\{b\} \quad a \rightarrow\{ \}$
\{ac, aca, acab, acabc\}
- Invertible?
- Closed under composition?

Regular Relation (of strings)

Regular Relation (of strings)

- Can weight the arcs: \rightarrow vs. \rightarrow

Regular Relation (of strings)

- Can weight the arcs: \rightarrow vs. \rightarrow
$=b \rightarrow\{b\} \quad a \rightarrow\{ \}$

Regular Relation (of strings)

- Can weight the arcs: \rightarrow vs. \rightarrow
$-b \rightarrow\{b\} \quad a \rightarrow\{ \}$
- aaaaa \rightarrow \{ac, aca, acab, acabc\}

Regular Relation (of strings)

- Can weight the arcs: \rightarrow vs. \rightarrow
$-b \rightarrow\{b\} \quad a \rightarrow\{ \}$
- aaaaa \rightarrow \{ac, aca, acab, acabc\}
- How to find best outputs?

Function from strings to ...

Acceptors (FSAs)
 Transducers (FSTs)

Unweighted $>\underbrace{a}_{\varepsilon}$

Weighted

Function from strings to ...

Acceptors (FSAs)
 Transducers (FSTs)

Weighted

Function from strings to ...

Acceptors (FSAs)

Weighted

Function from strings to ...

Acceptors (FSAs)

Weighted

Function from strings to ...

Acceptors (FSAs)

Weighted

Transducers (FSTs)

c/. 7 (string, num) pairs $\mathrm{c}: / \mathrm{z} .7$

Sample functions

Acceptors (FSAs)
 \{false, true\}

 Transducers (FSTs)

 Transducers (FSTs) strings

 strings}
Unweighted

numbers

(string, num) pairs

Weighted

Sample functions

Acceptors (FSAs)

\{false, true\}
Unweighted Grammatical?

Transducers (FSTs)
strings
numbers
(string, num) pairs
Weighted

Sample functions

Acceptors (FSAs)

\{false, true\}
Unweighted Grammatical?

Transducers (FSTs)
strings

Sample functions

Acceptors (FSAs)

\{false, true\}
Unweighted Grammatical?

Transducers (FSTs)

strings

Markup
Correction
Translation
numbers
How grammatical?
Better, how likely?
(string, num) pairs

Sample functions

Acceptors (FSAs)

\{false, true\}
Unweighted Grammatical?

Transducers (FSTs)

strings

Markup
Correction
Translation
numbers
How grammatical? Better, how likely?
(string, num) pairs
Good markups Good corrections Good translations

Terminology (acceptors)

Terminology (acceptors)

Terminology (transducers)

Terminology (transducers)

Regular relation

Terminology (transducers)

Regular relation

Perspectives on a Transducer

- Given 0 strings, generate a new string pair (by picking a path)
- Given one string (upper or lower), transduce it to the other kind
- Given two strings (upper \& lower), decide whether to accept the pair

FST just defines the regular relation (mathematical object: set of pairs).
What's "input" and "output" depends on what one asks about the relation.
The 0, 1, or 2 given string(s) constrain which paths you can use.

Functions

ab?d

Functions

Functions

Functions

Function composition: $\mathrm{f}^{\circ} \mathrm{g}$

Functions

Function composition: $\mathrm{f}^{\circ} \mathrm{g}$

[first f , then g - intuitive notation, but opposite of the traditional math notation]

From Functions to Relations

Often in NLP, all of the functions or relations involved can be described as finite-state machines, and manipulated using standard algorithms.

Inverting Relations

Inverting Relations

Inverting Relations

Building a lexical transducer

big | clear | clever | ear | fat | ...

```
Regular Expression
    Lexicon
```


Building a lexical transducer

big | clear | clever | ear | fat | ...

Compiler

Building a lexical transducer

big | clear | clever | ear | fat | ...

Compiler
Regular Expressions
for Rules

Building a lexical transducer

big | clear | clever | ear | fat | ...

one path

Building a lexical transducer

big | clear | clever | ear | fat | ...

Building a lexical transducer

- Actually, the lexicon must contain elements like big +Adj +Comp

Building a lexical transducer

big | clear | clever | ear | fat | ...

- Actually, the lexicon must contain elements like big +Adj +Comp
- So write it as a more complicated expression: (big | clear | clever | fat | ...) +Adj (ε | +Comp | +Sup) \leftarrow adjectives
| (ear | father | ...) +Noun (+Sing | +PI)

Building a lexical transducer

big | clear | clever | ear | fat | ...

- Actually, the lexicon must contain elements like big +Adj +Comp
- So write it as a more complicated expression: (big | clear | clever | fat | ...) +Adj (ε | +Comp | +Sup) < adjectives
| (ear | father | ...) +Noun (+Sing | +PI)
\leftarrow nouns
...
- Q: Why do we need a lexicon at all?

Weighted version of transducer: Assigns a weight to each string pair

Constructing

Regular Languages

Xerox Regex Notation (Paper)

	concatenation	$E F$
$*+$	iteration	$E^{*}, E+$
I	union	$E \mid F$
$\&$	intersection	$E \& F$
$\sim \backslash-$	complementation, minus	$\sim E, \mid \times, F-E$
.x.	crossproduct	$E . X . F$
.0.	composition	E.O.F
. \mathbf{u}	upper (input) language	E.u "domain"
.1	lower (output) language	E.l "range"

Common Regular Expression Operators (in XFST notation)

concatenation

EF

$$
E F=\{e f: e \in E, f \in F\}
$$

ef denotes the concatenation of 2 strings.
EF denotes the concatenation of 2 languages.

- To pick a string in $E F$, pick $e \in E$ and $f \in F$ and concatenate them.
- To find out whether $w \in E F$, look for at least one way to split w into two "halves," $w=$ ef, such that $e \in E$ and $f \in F$.

A language is a set of strings.
It is a regular language if there exists an FSA that accepts all the strings in the language, and no other strings.
If E and F denote regular languages, than so does EF . (We will have to prove this by finding the FSA for EF!)

Common Regular Expression Operators (in XFST notation)

concatenation

* + iteration

$$
E^{*}=\left\{e_{1} e_{2} \ldots e_{n}: n \geq 0, e_{1} \in E, \ldots e_{n} \in E\right\}
$$

= To pick a string in E^{*}, pick any number of strings in E and concatenate them.

- To find out whether $w \in E^{*}$, look for at least one way to split w into 0 or more sections, $e_{1} e_{2} \ldots e_{n}$, all of which are in E.

$$
E+=\left\{e_{1} e_{2} \ldots e_{n}: n>0, e_{1} \in E, \ldots e_{n} \in E\right\}=E E^{*}
$$

Common Regular Expression Operators (in XFST notation)

	concatenation	$E F$
iteration	$E^{*}, E+$	
union	$E \mid F$	
	$E \mid F=\{w: w \in E$ or $w \in F\}$	$=E \cup F$

- To pick a string in $E \mid F$, pick a string from either E or F.
- To find out whether $w \in E \mid F$, check whether $w \in E$ or $w \in F$.

Common Regular Expression Operators (in XFST notation)

	concatenation	$E F$
$*+$	iteration	$E^{*}, \mathrm{E}+$
।	union	$E \mid F$
$\&$	intersection	$E \& F$

$$
E \& F=\{w: w \in E \text { and } w \in F\}=E \cap F
$$

- To pick a string in E \& F, pick a string from E that is also in F.
- To find out whether $w \in E \& F$, check whether $w \in E$ and $w \in F$.

Common Regular Expression Operators (in XFST notation)

concatenation

* + iteration
\&
~ \ - complementation, minus
union intersection
$\sim E=\{e: e \notin E\}=\Sigma^{*}-E$
$E-F=\{e: e \in E$ and $e \notin F\}=E \& \sim F$
$\backslash E=\Sigma-E \quad$ (any single character not in E)
Σ is set of all letters; so Σ^{\star} is set of all strings; ?* in XFST

Regular Expressions

A language is a set of strings.
It is a regular language if there exists an FSA that accepts all the strings in the language, and no other strings.
If E and F denote regular languages, than so do EF , etc.
Regular expression: EF*|(F \& G)+

Syntax:

Semantics:
Denotes a regular language. As usual, can build semantics compositionally bottom-up. E, F, G must be regular languages. As a base case, e denotes $\{e\}$ (a language containing a single string), so ef*|(f\&g)+ is regular.

Regular Expressions for Regular Relations

A language is a set of strings.
It is a regular language if there exists an FSA that accepts all the strings in the language, and no other strings.
If E and F denote regular languages, than so do EF , etc.
A relation is a set of pairs - here, pairs of strings.
It is a regular relation if here exists an FST that accepts all the pairs in the language, and no other pairs.
If E and F denote regular relations, then so do $E F$, etc.
$E F=\left\{\left(e f, e^{\prime} f^{\prime}\right):\left(e, e^{\prime}\right) \in E_{,}\left(f, f^{\prime}\right) \in F\right\}$
Can you guess the definitions for $\mathrm{E}^{*}, \mathrm{E}+, \mathrm{E} \mid \mathrm{F}, \mathrm{E} \& \mathrm{~F}$ when E and F are regular relations?
Surprise: E \& F isn't necessarily regular in the case of relations; so not supported.

Common Regular Expression Operators (in XFST notation)

concatenation

* + iteration
\& intersection
~ \ - complementation, minus
.x. crossproduct

$$
E . x . F=\{(e, f): e \in E, f \in F\}
$$

- Combines two regular languages into a regular relation.

Common Regular Expression Operators (in XFST notation)

	concatenation	$E F$
$*+$	iteration	$E^{*}, E+$
\prime	union	$E \mid F$
$\&$	intersection	$E \& F$
$\sim \backslash-$	complementation, minus	$\sim E, \mid \times, F-E$
.x.	crossproduct	$E . X . F$
.o.	composition	$E . O . F$
	$E . O . F=\{(\mathrm{e}, \mathrm{f}): \exists m .(\mathrm{e}, \mathrm{m}) \in \mathrm{E},(\mathrm{m}, \mathrm{f}) \in \mathrm{F}\}$	

- Composes two regular relations into a regular relation.
" As we've seen, this generalizes ordinary function composition.

Common Regular Expression Operators (in XFST notation)

	concatenation	$E F$
$*+$	iteration	$E^{*}, E+$
$।$	union	$E \mid F$
$\&$	intersection	$E \& F$
$\sim \backslash-$	complementation, minus	$\sim E, \backslash x, F-E$
.x.	crossproduct	$E \cdot x \cdot F$
.0.	composition	$E .0 . F$
.u	upper (input) language	$E . u \quad$ "domain"
	$E . u=\{e: \exists m .(e, m) \in E\}$	

Common Regular Expression

 Operators (in XFST notation)| | concatenation | $E F$ |
| :--- | :--- | :--- |
| $*+$ | iteration | $E^{*}, E+$ |
| I | union | $E \mid F$ |
| $\&$ | intersection | $E \& F$ |
| $\sim \backslash$ | complementation, minus | $\sim E, \backslash \times, F-E$ |
| . \mathbf{x} | crossproduct | $E . x . F$ |
| .0. | composition | $E . O . F$ |
| .u | upper (input) language | E.u "domain" |
| .1 | lower (output) language | E.I "range" |

Finite-State
 Programming

Finite-state "programming"

Function

Source code Object code

Compiler
Optimization of object code

Function on (set of) strings

Regular expression
Finite state machine

Regexp compiler
Determinization, minimization, pruning

Finite-state "programming"

Function composition
Higher-order function
Function inversion (available in Prolog)

Structured programming
(Weighted) composition
Operator
Function inversion

Ops + small regexps

Finite-state "programming"

Parallelism

Nondeterminism
Stochasticity

Apply to set of strings
Nondeterminism
Prob.-weighted arcs

Some Xerox Extensions

\$ containment
 => restriction
 -> @-> replacement

Make it easier to describe complex languages and relations without extending the formal power of finite-state systems.

Containment

Containment

$$
\$[a b * c]
$$

"Must contain a substring that matches $a b * c$."

Accepts xxxacyy
Rejects bcba

Containment

$$
\$[a b * c]
$$

"Must contain a substring that matches $a b * c$."

Accepts xxxacyy
Rejects bcba

Containment

$$
\$[a b * c]
$$

"Must contain a substring that matches $a b * c$."

Accepts xxxacyy
Rejects bcba
?* [ab*c] ?*

Equivalent expression

Containment

\$ [ab*c]
"Must contain a substring that matches ab *c."

Accepts xxxacyy Rejects bcba

Warning: ? in regexps means "any character at all."
But ? in machines means "any character not explicitly mentioned anywhere ?* $\left[a b^{*} c\right]$?* in the machine."

Equivalent expression

Restriction

Restriction

$$
a=>b-c
$$

"Any a must be preceded by b and followed by c."

Accepts bacbbacde
Rejects baca

Restriction

$$
a=>b-c
$$

"Any a must be preceded by b and followed by c."

Accepts bacbbacde Rejects baca

Restriction

$$
a=b \quad c
$$

"Any a must be preceded by b and followed by c."

Accepts bacbbacde
Rejects baca

$$
\sim[\sim[? * \quad b] a \quad ? *] \& \sim\left[? * a \sim\left[\begin{array}{ll}
c & ? *
\end{array}\right]\right.
$$

Equivalent expression

Restriction

$$
a=b _c
$$

"Any a must be preceded by b and followed by c."

Accepts bacbbacde
Rejects baca

Equivalent expression

Restriction

$$
a=b \quad c
$$

"Any a must be preceded by b and followed by c."

Accepts bacbbacde
Rejects back not preceded by b

Equivalent expression

Replacement

Replacement

$$
\mathrm{a} b->\mathrm{b} a
$$
"Replace 'ab’ by 'ba'."
Transduces abcdbaba to bacdbbaa

Replacement

$$
a \quad b->b a
$$

"Replace 'ab’ by 'ba'."

Transduces $a b c d b a b a$ to bacdbbaa

Replacement

$$
\mathrm{a} b->\mathrm{b} a
$$

"Replace 'ab' by 'ba'."

Transduces abcdbaba to bacdbbaa

Equivalent expression

Replacement is Nondeterministic

Replacement is Nondeterministic

$$
\text { a b }->\mathrm{b} \text { a } \mid \mathrm{x}
$$

"Replace 'ab' by 'ba' or 'x', nondeterministically."

Transduces abcdbaba
to \{bacdbbaa, bacdbxa, xcdbbaa, xcdbxa\}

Replacement is Nondeterministic

$\left[\begin{array}{lll}\mathrm{a} & \mathrm{b} & -> \\ \mathrm{b} & \mathrm{a} \mid \mathrm{x}] & \mathrm{O} . \quad[\mathrm{x}=>-\mathrm{c}]\end{array}\right.$
"Replace 'ab' by 'ba' or 'x', nondeterministically."

Transduces abcdbaba
to \{bacdbbaa, bacdbxa, xcdbbaa, xcdbxa\}

Replacement is Nondeterministic

$\left[\begin{array}{llll}\mathrm{a} & \mathrm{b} & -> & \mathrm{b} \\ \mathrm{a} & \mathrm{l} & \mathrm{x}] & \text {.O. }[\mathrm{x}=>-\mathrm{c}]\end{array}\right.$
"Replace 'ab' by 'ba' or 'x', nondeterministically."

Transduces abcdbaba
to \{bacdbbaa, bacedbxa, xcdbbaa, xedoxa\}

Replacement is Nondeterministic

$$
a b|b| b a \mid a b a->x
$$

applied to "aba"
Four overlapping substrings match; we haven't told it which one to replace so it chooses nondeterministically
$a \quad b a$
$z-b a$
a x a

a x
$\times \quad \mathrm{a}$
x

More Replace Operators

Optional replacement: a b (->) b a

- Directed replacement
" guarantees a unique result by constraining the factorization of the input string by
- Direction of the match (rightward or leftward)
- Length (longest or shortest)
@-> Left-to-right, Longest-match Replacement
a b | b | b a | a b a @-> x
applied to "aba"

@> left-to-right, shortest match
$->$ right-to-left, longest match
>@ right-to-left, shortest match

Using "..." for marking

a|e|i|o|u -> [...]

Using "..." for marking

a|e|i|o|u -> [...]

$$
\begin{aligned}
& p \circ t a t o \\
& p[0] t[a] t[0]
\end{aligned}
$$

Using "..." for marking

$$
\begin{aligned}
& \text { ale|ilolu -> [...] } \\
& \text { potato } \\
& \text { p[o]t[a]t[o] }
\end{aligned}
$$

Note: actually have to write as $->$ \% [... \%]
or -> "[" ... "]"
since [] are parens in the regexp language

Using "..." for marking

$$
\begin{aligned}
& \text { alelilolu -> [...] } \\
& \text { potato } \\
& \text { p[o]t[a]t[o] }
\end{aligned}
$$

Which way does the FST transduce potatoe?

$$
\begin{array}{lll}
p \circ t a t o e \\
p[o] t[a] t[o][e]
\end{array} \quad \text { vs. } \quad \begin{aligned}
& p \circ t a t \circ e \\
& p[o] t[a] t[0 \\
& \hline
\end{aligned}
$$

Using "..." for marking

$$
\begin{aligned}
& \text { ale|ilolu -> [...] } \\
& \text { potato } \\
& \text { p[o]t[a]t[o] }
\end{aligned}
$$

Which way does the FST transduce potatoe?

$$
\begin{array}{lll}
p \circ t a t o f e \\
p[o] t[a] t[o][e]
\end{array} \quad \text { vs. } \quad \begin{aligned}
& p \circ t a t \circ e \\
& p[o] t[a] t[0 \\
& \hline
\end{aligned}
$$

How would you change it to get the other answer?

Example: Finnish Syllabification

Example: Finnish Syllabification

```
define C [ b | c | d | f ...
define v [ a | e | i | o | u | y | ä | ...
```


Example: Finnish Syllabification

$$
\begin{aligned}
& \text { define C [b | c | d | f... } \\
& \text { define } v \text { [a | e | i | o | u | y | ä |... } \\
& \text { [C* V+ C*] @-> ... "-" II _ [C V] }
\end{aligned}
$$

"Insert a hyphen after the longest instance of the C* V+ C* pattern in front of a C vattern."

Example: Finnish Syllabification

"Insert a hyphen after the longest instance of the C* V+ C* pattern in front of a C V pattern."

$$
\begin{aligned}
& s t r u k \quad t u r a \quad l i s i m i \\
& s t r u k-t u-r a-l i s-m i
\end{aligned}
$$

Example: Finnish Syllabification


```
[C* V+ C*] @-> ... "-" || _ [C V]
```

"Insert a hyphen after the longest instance of the C* V+ C* pattern in front of a C Vattern." why?

	$t r u k-t u-r a-1 i s$

slide courtesy of L. Karttunen

Conditional Replacement

Conditional Replacement

A $->B$
 Replacement

$L-R$
Context
The relation that replaces A by B between L and R leaving everything else unchanged.

Conditional Replacement

$$
\begin{gathered}
\text { A -> B } \\
\text { Replacement }
\end{gathered}
$$

$$
L _R
$$

Context
The relation that replaces A by B between L and R leaving everything else unchanged.

Sources of complexity:
Replacements and contexts may overlap
® Alternative ways of interpreting "between left and right."

Hand-Coded Example: Parsing Dates

Today is [Tuesday, July 25, 2000].

Hand-Coded Example: silie currey. ofL Karttunen Parsing Dates

Today is [Tuesday, July 25, 2000].

Today is Tuesday, [July 25, 2000].
Today is [Tuesday, July 25], 2000.
Today is Tuesday, [July 25], 2000.
Today is [Tuesday], July 25, 2000.

Best result

Bad results

Hand-Coded Example: silie currey. ofL Karttunen Parsing Dates

Today is [Tuesday, July 25, 2000].
Best result

Today is Tuesday, [July 25, 2000].
Today is [Tuesday, July 25], 2000.
Today is Tuesday, [July 25], 2000.
Today is [Tuesday], July 25, 2000.
Bad results

Need left-to-right, longest-match constraints.

Source code: Language of Dates

Source code: Language of Dates

Day = Monday | Tuesday | ... | Sunday
Month = January | February | ... | December
Date $=1$ | 2 | 3 | ... 131
Year $=\%$ OTo9 (\%OTo9 (\%OTo9 (\%OTo9))) - \%0?* from 1 to 9999

Source code: Language of Dates

```
Day = Monday | Tuesday | ... | Sunday
Month = January | February | ... | December
Date = 1 | 2 | 3 | ... | 3 1
Year = %OTo9 (%OTo9 (%OTo9 (%OTo9))) - %O?*
    from 1 to 9999
AllDates = Day | (Day ", ") Month " " Date (",
    " Year))
```


Object code: All Dates from I/I/I to I2/3 I/9999

Object code: All Dates from I/I/I to I2/3 I/9999

actually represents 7 arcs, each labeled by a string

Parser for Dates

Parser for Dates

AllDates @-> "[DT " ... "]"

Parser for Dates

AllDates @-> "[DT " ... "]"

Compiles into an unambiguous transducer (23 states, 332 arcs).

Parser for Dates

AllDates @-> "[DT " ... "]"

Compiles into an unambiguous transducer (23 states, 332 arcs).

Today is [DT Tuesday, July 25, 2000] because yesterday was [DT Monday] and it was [DT July 24] so tomorrow must be [DT Wednesday, July 26] and not [DT July 27] as it says on the program.

Parser for Dates

AllDates @-> "[DT " ... "]"
Compiles into an unambiguous transducer (23 states, 332 arcs).

Xerox left-to-right replacement operator

Today is [DT Tuesday, July 25, 2000] because yesterday was [DT Monday] and it was [DT July 24] so tomorrow must be [DT Wednesday, July 26] and not [DT July 27] as it says on the program.

Problem of Reference

Valid dates

Tuesday, July 25, 2000
Tuesday, February 29, 2000
Monday, September 16, 1996
Invalid dates
Wednesday, April 31, 1996
Thursday, February 29, 1900
Tuesday, July 26, 2000

Refinement by Intersection

slide courtesy of L. Karttunen (modified)

Refinement by Intersection
 AllDates

slide courtesy of L. Karttunen (modified)

Refinement by Intersection

slide courtesy of L. Karttunen (modified)

Refinement by Intersection

Refinement by Intersection

Refinement by Intersection

 start with spaces?
(And is it enough?)

Refinement by Intersection

 start with spaces?
(And is it enough?)

Refinement by Intersection

Refinement by Intersection

 (And is it enough?)

Defining Valid Dates

AllDates
$\&$
MaxDaysInMonth
$\&$
LeapYears
$\&$
WeekdayDates

AllDates: 13 states, 96 arcs 29760007 date expressions
= ValidDates

ValidDates: 805 states, 6472 arcs
7307053 date expressions

Parser for Valid and Invalid Dates

[AllDates - ValidDates] @-> "[ID " ... "]"
 ValidDates @-> "[VD " ... "]"
 2688 states,
 20439 arcs

Today is [VD Tuesday, July 25, 2000], not [ID Tuesday, July 26, 2000].
valid date
invalid date

Parser for Valid and Invalid Dates

Today is [VD Tuesday, July 25, 2000], not [ID Tuesday, July 26, 2000].
valid date
invalid date

More Engineering Applications

More Engineering Applications

- Markup

More Engineering Applications

- Markup
- Dates, names, places, noun phrases; spelling/grammar errors?

More Engineering Applications

- Markup
- Dates, names, places, noun phrases; spelling/grammar errors?
- Hyphenation

More Engineering Applications

- Markup
- Dates, names, places, noun phrases; spelling/grammar errors?
- Hyphenation
- Informative templates for information extraction (FASTUS)

More Engineering Applications

- Markup
- Dates, names, places, noun phrases; spelling/grammar errors?
- Hyphenation
- Informative templates for information extraction (FASTUS)
- Word segmentation (use probabilities!)

More Engineering Applications

- Markup
- Dates, names, places, noun phrases; spelling/grammar errors?
- Hyphenation
- Informative templates for information extraction (FASTUS)
- Word segmentation (use probabilities!)
- Part-of-speech tagging (use probabilities - maybe!)

More Engineering Applications

- Markup
- Dates, names, places, noun phrases; spelling/grammar errors?
- Hyphenation
- Informative templates for information extraction (FASTUS)
- Word segmentation (use probabilities!)
- Part-of-speech tagging (use probabilities - maybe!)
- Translation

More Engineering Applications

- Markup
- Dates, names, places, noun phrases; spelling/grammar errors?
- Hyphenation
- Informative templates for information extraction (FASTUS)
- Word segmentation (use probabilities!)
- Part-of-speech tagging (use probabilities - maybe!)
- Translation
- Spelling correction / edit distance

More Engineering Applications

- Markup
- Dates, names, places, noun phrases; spelling/grammar errors?
- Hyphenation
- Informative templates for information extraction (FASTUS)
- Word segmentation (use probabilities!)
- Part-of-speech tagging (use probabilities - maybe!)
- Translation
- Spelling correction / edit distance
- Phonology, morphology: series of little fixups? constraints?

More Engineering Applications

- Markup
- Dates, names, places, noun phrases; spelling/grammar errors?
- Hyphenation
- Informative templates for information extraction (FASTUS)
- Word segmentation (use probabilities!)
- Part-of-speech tagging (use probabilities - maybe!)
- Translation
- Spelling correction / edit distance
- Phonology, morphology: series of little fixups? constraints?
- Speech

More Engineering Applications

- Markup
- Dates, names, places, noun phrases; spelling/grammar errors?
- Hyphenation
- Informative templates for information extraction (FASTUS)
- Word segmentation (use probabilities!)
- Part-of-speech tagging (use probabilities - maybe!)
- Translation
- Spelling correction / edit distance
- Phonology, morphology: series of little fixups? constraints?
- Speech
- Transliteration / back-transliteration

More Engineering Applications

- Markup
- Dates, names, places, noun phrases; spelling/grammar errors?
- Hyphenation
- Informative templates for information extraction (FASTUS)
- Word segmentation (use probabilities!)
- Part-of-speech tagging (use probabilities - maybe!)
- Translation
- Spelling correction / edit distance
- Phonology, morphology: series of little fixups? constraints?
- Speech
- Transliteration / back-transliteration
- Machine translation?

More Engineering Applications

- Markup
- Dates, names, places, noun phrases; spelling/grammar errors?
- Hyphenation
- Informative templates for information extraction (FASTUS)
- Word segmentation (use probabilities!)
- Part-of-speech tagging (use probabilities - maybe!)
- Translation
- Spelling correction / edit distance
- Phonology, morphology: series of little fixups? constraints?
- Speech
- Transliteration / back-transliteration
- Machine translation?
- Learning ...

FASTUS - Information Extraction
 Appelt et al, 1992-?

Input: Bridgestone Sports Co. said Friday it has set up a joint venture in Taiwan with a local concern and a Japanese trading house to produce golf clubs to be shipped to Japan. The joint venture, Bridgestone Sports Taiwan Co., capitalized at 20 million new Taiwan dollars, will start production in January 1990 with ...

Output:

Relationship:
Entities:

TIE-UP
"Bridgestone Sports Co."
"A local concern"
"A Japanese trading house"
Joint Venture Company: "Bridgestone Sports Taiwan Co."
Amount:
NT\$20000000

FASTUS: Successive Markups

(details on subsequent slides)

Tokenization
. 0.
Multiwords

. 0.
Basic phrases (noun groups, verb groups ...)
. 0.
Complex phrases
. 0.
Semantic Patterns
. 0.
Merging different references

FASTUS: Tokenization

- Spaces, hyphens, etc.
- wouldn't \rightarrow would not
their \rightarrow them 's
- company. \rightarrow company . but
Co. \rightarrow Co.

FASTUS: Multiwords

" "set up"
" "joint venture"
" "San Francisco Symphony Orchestra," "Canadian Opera Company"
${ }^{-}$... use a specialized regexp to match musical groups.
"... what kind of regexp would match company names?

FASTUS : Basic phrases

Output looks like this (no nested brackets!):
... [NG it] [VG had set_up] [NP a joint_venture] [Prep in] ...
Company Name: Bridgestone Sports Co.
Verb Group:
said
Noun Group:
Noun Group:
Verb Group:
Noun Group:
Preposition:
Location:
Preposition:
Noun Group:

Friday

it
had set up
a joint venture
in
Taiwan
with
a local concern

FASTUS: Noun Groups

Build FSA to recognize phrases like
approximately 5 kg
more than 30 people
the newly elected president
the largest leftist political force
a government and commercial project
Use the FSA for left-to-right longest-match markup

What does FSA look like? See next slide ...

FASTUS: Noun Groups

Described with a kind of non-recursive CFG ...
(a regexp can include names that stand for other regexps)

NG \rightarrow Pronoun | Time-NP | Date-NP
NG \rightarrow (Det) (Adjs) HeadNouns

Adjs \rightarrow sequence of adjectives maybe with commas, conjunctions, adverbs

Det \rightarrow DetNP | DetNonNP
DetNP \rightarrow detailed expression to match "the only five, another three, this, many, hers, all, the most ..."

FASTUS: Semantic patterns

BusinessRelationship =
NounGroup(Company/ies) VerbGroup(Set-up)
NounGroup(JointVenture) with NounGroup(Company/ies)
| ...

ProductionActivity = VerbGroup(Produce) NounGroup(Product)

NounGroup(Company/ies) \rightarrow NounGroup \& ... is made easy by the processing done at a previous level

Use this for spotting references to put in the database.

Weighted FSMs

Function from strings to ...

Acceptors (FSAs)
 Transducers (FSTs)

Unweighted $>\underbrace{a}_{\varepsilon}$

Weighted

Function from strings to ...

Acceptors (FSAs)
 Transducers (FSTs)

Weighted

Function from strings to ...

Acceptors (FSAs)

Weighted

Function from strings to ...

Acceptors (FSAs)

Weighted

Function from strings to ...

Acceptors (FSAs)

Weighted

Transducers (FSTs)

c/. 7 (string, num) pairs $\mathrm{c}: / \mathrm{z} .7$

Weighted Relations

- If we have a language [or relation], we can ask it: Do you contain this string [or string pair]?
- If we have a weighted language [or relation], we ask: What weight do you assign to this string [or string pair]?
- Pick a semiring: all our weights will be in that semiring. What?!

Semirings

	Set	\oplus	\otimes	0	I
Prob	R^{+}	+	x	0	I
Max	R^{+}	\max	x	0	I
Log	$\mathrm{R} \cup\{ \pm \infty\}$	$\log +$	+	$-\infty$	0
"Tropical"	$\mathrm{R} \cup\{ \pm \infty\}$	\max	+	$-\infty$	0
Shortest path	$\mathrm{R} \cup\{ \pm \infty\}$	\min	+	∞	0
Boolean	$\{0, \mathrm{I}\}$	\vee	\wedge	F	T
String	$\Sigma^{*} \cup\{\infty\}$	longest commmon prefix	concat	∞	ε

Weighted Relations

- If we have a language [or relation], we can ask it: Do you contain this string [or string pair]?
- If we have a weighted language [or relation], we ask: What weight do you assign to this string [or string pair]?
- Pick a semiring: all our weights will be in that semiring.

Don't panic! We will cover this again when we get to HMMs and parsing.

- The unweighted case is the boolean semiring \{true, false\}.
- If a string is not in the language, it has weight ©.
- If an FST or regular expression can choose among multiple ways to match, use \oplus to combine the weights of the different choices.
- If an FST or regular expression matches by matching multiple substrings, use
\otimes to combine those different matches.
" Remember, \oplus is like "or" and \otimes is like "and"!

Which Semiring Operators are Needed?

	concatenation	$E F$
$*+$	iteration	$E^{*}, E+$
I	union	$E \mid F$
$\sim \backslash-$	complementation, minus	$\sim E, \backslash x, E-F$
$\&$	intersection	$E \& F$
.x.	crossproduct	$E . x . F$
.0.	composition	$E .0 . F$
.u	upper (input) language	$E . u$ "domain"
.1	lower (output) language	$E . I$ "range"

Which Semiring Operators are Needed?

	concatenation	$E F$
$*+$	iteration	$E^{*}, E+$
।	union to sum over 2 choices	$E \mid F$
$\sim \backslash-$	complementation, minus	$\sim E, \mid x, E-F$
$\&$	intersection	$E \& F$
.x.	crossproduct	$E . x . F$
.0.	composition	$E . O . F$
.u	upper (input) language	E.u "domain"
.1	lower (output) language	E.I "range"

Which Semiring Operators are Needed?

	concatenation iteration		EF
* +			E*, E+
	union		E\|F
~ 1 -	complementation, minus		$\sim E, \ \times, E-F$
\&	intersection	¢ to combine	E \& F
	crossproduct	against E and F	E.x.F
	composition		E.o. F
u	upper (input)	anguage	E.u "domain"
	lower (output)	language	E.l "range"

Common Regular Expression Operators (in XFST notation)

$$
\begin{aligned}
& \text { union } \quad \oplus \text { to sum over } 2 \text { choices } E \mid F \\
& E \mid F=\{w: w \in E \text { or } w \in F\}=E \cup F
\end{aligned}
$$

- Weighted case: Let's write $E(w)$ to denote the weight of w in the weighted language E.

$$
(E \mid F)(w)=E(w) \oplus F(w)
$$

Which Semiring Operators are Needed?

	concatenation	$E F$
$*+$	iteration	$E^{*}, E+$
।	union to sum over 2 choices	$E \mid F$
$\sim \backslash-$	complementation, minus	$\sim E, \mid x, E-F$
$\&$	intersection	$E \& F$
.x.	crossproduct	$E . x . F$
.0.	composition	$E . O . F$
.u	upper (input) language	E.u "domain"
.1	lower (output) language	E.I "range"

Which Semiring Operators are Needed?

	concatenation iteration		EF
* +			E*, E+
	union		E\|F
~ 1 -	complementation, minus		$\sim E, \ \times, E-F$
\&	intersection	¢ to combine	E \& F
	crossproduct	against E and F	E.x.F
	composition		E.o. F
u	upper (input)	anguage	E.u "domain"
	lower (output)	language	E.l "range"

Which Semiring Operators are Needed?

* +	ion		EF*,$~$+
	iteration		
	union \oplus to sum	over 2 ch	E\|F
	complementation, minus		$\sim E, \ \times, E-F$
\&	intersection	\otimes to combine the matche	E \& F
	crossproduct	against E and F	E.x. F
	composition		E.o. F
.	upper (input) la	language	E.u "domain"
1	lower (output)	language	E.l "range"

Which Semiring Operators are Needed?

concatenation
iteration

$$
E F=\{e f: e \in E, f \in F\}
$$

- Weighted case must match two things (\otimes), but there's a choice (\oplus) about which two things:

$$
(E F)(w)=\underset{\substack{e, f \text { such } \\ \text { that w=ef }}}{\overbrace{2}(e) \otimes F(f)), ~(E)}
$$

Which Semiring Operators are Needed?

* +	ion		EF*,$~$+
	iteration		
	union \oplus to sum	over 2 ch	E\|F
	complementation, minus		$\sim E, \ \times, E-F$
\&	intersection	\otimes to combine the matche	E \& F
	crossproduct	against E and F	E.x. F
	composition		E.o. F
.	upper (input) la	language	E.u "domain"
1	lower (output)	language	E.l "range"

Which Semiring Operators are Needed?

* +	nation	both	
	ation		E*, E+
	union \oplus to sum	nov	E\|F
~ 1	complementation, minus		$\sim E, \ \times, E-F$
	intersection		E \& F
	crossproduct	against and	E.x. F
	composition	© and \otimes (why	E.o. F
. 4	upper (input) la	language	E.u "domain"
	lower (output)	language	E.l "range"

Which Semiring Operators are Needed?

	concatenation iteration	need both	$\begin{aligned} & \mathrm{d} \mathrm{EF} \\ & \mathrm{E}^{*}, \mathrm{E}+ \end{aligned}$
	union complementation, minus		E\|F
			$\sim E, \ \times, E-F$
*	complementation, minusintersection $\left.\begin{array}{l}\text { to combine } \\ \text { crossproduct }\end{array}\right\}$ tha enantchesaginst and		E \& F
			E.x.F
	composition both \oplus and \otimes (why? ${ }^{\text {a }}$ E.O. F		
	upper (input) la	guage	E.u "domain"
	lower (output)	anguage	E.l "ran

Definition of FSTs

Definition of FSTs

" [Red material shows differences from FSAs.]

Definition of FSTs

" [Red material shows differences from FSAs.]

- Simple view:
- An FST is simply a finite directed graph, with some labels.
- It has a designated initial state and a set of final states.
" Each edge is labeled with an "upper string" (in Σ^{*}).

Definition of FSTs

" [Red material shows differences from FSAs.]

- Simple view:
- An FST is simply a finite directed graph, with some labels.
- It has a designated initial state and a set of final states.
" Each edge is labeled with an "upper string" (in Σ^{*}).
" Each edge is also labeled with a "lower string" (in Δ^{*}).
- [Upper/lower are sometimes regarded as input/output.]

Definition of FSTs

" [Red material shows differences from FSAs.]

- Simple view:
- An FST is simply a finite directed graph, with some labels.
- It has a designated initial state and a set of final states.
" Each edge is labeled with an "upper string" (in Σ^{*}).
" Each edge is also labeled with a "lower string" (in Δ^{*}).
- [Upper/lower are sometimes regarded as input/output.]
- Each edge and final state is also labeled with a semiring weight.

Definition of FSTs

- [Red material shows differences from FSAs.]
- Simple view:
- An FST is simply a finite directed graph, with some labels.
- It has a designated initial state and a set of final states.
" Each edge is labeled with an "upper string" (in Σ^{*}).
- Each edge is also labeled with a "lower string" (in Δ^{*}).
- [Upper/lower are sometimes regarded as input/output.]
- Each edge and final state is also labeled with a semiring weight.
- More traditional definition specifies an FST via these:
- a state set Q
- initial state i
- set of final states F
- input alphabet Σ (also define $\Sigma^{*}, \Sigma+, \Sigma$?)
- output alphabet Δ

Definition of FSTs

- [Red material shows differences from FSAs.]
- Simple view:
- An FST is simply a finite directed graph, with some labels.
- It has a designated initial state and a set of final states.
" Each edge is labeled with an "upper string" (in Σ^{*}).
- Each edge is also labeled with a "lower string" (in Δ^{*}).
- [Upper/lower are sometimes regarded as input/output.]
- Each edge and final state is also labeled with a semiring weight.
- More traditional definition specifies an FST via these:
- a state set Q
- initial state i
- set of final states F
- input alphabet Σ (also define $\Sigma^{*}, \Sigma+, \Sigma$?)
- output alphabet Δ
= transition function $\mathrm{d}: \mathrm{Q} \times \Sigma$? --> 2^{Q}

Definition of FSTs

" [Red material shows differences from FSAs.]

- Simple view:
- An FST is simply a finite directed graph, with some labels.
- It has a designated initial state and a set of final states.
" Each edge is labeled with an "upper string" (in Σ^{*}).
" Each edge is also labeled with a "lower string" (in Δ^{*}).
- [Upper/lower are sometimes regarded as input/output.]
- Each edge and final state is also labeled with a semiring weight.
- More traditional definition specifies an FST via these:
- a state set Q
- initial state i
- set of final states F
- input alphabet Σ (also define $\Sigma^{*}, \Sigma+, \Sigma$?)
- output alphabet Δ
- transition function d: Q $\times \Sigma$? --> 2^{Q}
= output function s: Q x Σ ? x Q --> Δ ?

How to implement?

	concatenation	$E F$
$*+$	iteration	$E^{*}, E+$
I	union	$E \mid F$
$\sim \backslash-$	complementation, minus	$\sim E, \mid x, E-F$
$\&$	intersection	$E \& F$
. \mathbf{x}	crossproduct	$E . X . F$
.0.	composition	$E . O . F$
.u	upper (input) language	E.u "domain"
.1	lower (output) language	E.l "range"

Concatenation

Concatenation

Union

Union

Closure (this example has outputs too)

Closure (this example has outputs too)

eps:eps/0.7

Closure (this example has outputs too)

eps:eps/0.7

Closure (this example has outputs too)

Upper language (domain)

Upper language (domain)

similarly construct lower language .I

Upper language (domain)

similarly construct lower language .I also called input \& output languages

Reversal

Reversal

Reversal

Reversal

Inversion

Inversion

Inversion

Inversion

Complementation

Given a machine M, represent all strings not accepted by M

- Just change final states to non-final and vice-versa
Works only if machine has been determinized and completed first

Intersection

Intersection

fat/ 0.5

$=0,0 \xrightarrow{\mathrm{fat} / 0.7} \xrightarrow{\mathrm{pig} / 0.7} \underbrace{\text { eats } / 0.6}_{\text {sleeps } / 1.9} \overbrace{(2,2 / 1.3)}^{\text {(2,0/0.8) }}$

Intersection

Intersection

Intersection

$=0,0$
Paths 00 and 01 both accept fat
So must the new machine: along path $0,0 \quad 0,1$

Intersection

$$
=0,0 \xrightarrow{\text { fat } / 0.7} 0,1
$$

Paths 00 and 01 both accept fat
So must the new machine: along path $0,0 \quad 0,1$

Intersection

$=0,0 \xrightarrow{\text { fat } / 0.7} 0,1$
Paths 00 and 11 both accept pig
So must the new machine: along path $0,11,1$

Intersection

$=0,0 \xrightarrow{\text { fat } / 0.7} \xrightarrow{\text { pig } / 0.7} \xrightarrow{(1,1)}$
Paths 00 and 11 both accept pig
So must the new machine: along path $0,11,1$

Intersection

$$
=0,0 \xrightarrow{\text { fat } / 0.7} 0,1
$$

Paths 12 and 12 both accept fat So must the new machine: along path 1,1 2,2

Intersection

Intersection

Intersection

What Composition Means

Relation $=$ set of pairs

f

Relation $=$ set of pairs

 any pair of the form abjd \rightarrow...
f

Relation $=$ set of pairs

Relation $=$ set of pairs

Intersection vs. Composition

Intersection

Composition

pig:pink/0.4

Intersection vs. Composition

Intersection mismatch

Composition mismatch

Composition

Relation $=$ set of pairs

Composition with Sets

Composition with Sets

- We've defined A .o. B where both are FSTs

Composition with Sets

- We've defined A.o. B where both are FSTs
- Now extend definition to allow one to be a FSA

Composition with Sets

- We've defined A .o. B where both are FSTs
- Now extend definition to allow one to be a FSA
- Two relations (FSTs):

$$
A^{\circ} B=\{x \rightarrow z: \exists y(x \rightarrow y \in A \text { and } y \rightarrow z \in B)\}
$$

Composition with Sets

- We've defined A .o. B where both are FSTs
- Now extend definition to allow one to be a FSA
- Two relations (FSTs):

$$
A^{\circ} B=\{x \rightarrow z: \exists y(x \rightarrow y \in A \text { and } y \rightarrow z \in B)\}
$$

- Set and relation:

Composition with Sets

- We've defined A .o. B where both are FSTs
- Now extend definition to allow one to be a FSA
- Two relations (FSTs):

$$
A^{\circ} B=\{x \rightarrow z: \exists y(x \rightarrow y \in A \text { and } y \rightarrow z \in B)\}
$$

- Set and relation:

$$
A^{\circ} B=\{x \rightarrow z: \quad x \in A \text { and } x \rightarrow z \in B\}
$$

Composition with Sets

- We've defined A .o. B where both are FSTs
- Now extend definition to allow one to be a FSA
- Two relations (FSTs):

$$
A^{\circ} B=\{x \rightarrow z: \exists y(x \rightarrow y \in A \text { and } y \rightarrow z \in B)\}
$$

- Set and relation:

$$
A^{\circ} B=\{x \rightarrow z: \quad x \in A \text { and } x \rightarrow z \in B\}
$$

Relation and set:

$$
A^{\circ} B=\{x \rightarrow z: \quad x \rightarrow z \in A \text { and } \quad z \in B\}
$$

Composition with Sets

- We've defined A .o. B where both are FSTs
- Now extend definition to allow one to be a FSA
- Two relations (FSTs):

$$
A^{\circ} B=\{x \rightarrow z: \exists y(x \rightarrow y \in A \text { and } y \rightarrow z \in B)\}
$$

- Set and relation:

$$
A^{\circ} B=\{x \rightarrow z: \quad x \in A \text { and } x \rightarrow z \in B\}
$$

Relation and set:

$$
A^{\circ} B=\{x \rightarrow z: \quad x \rightarrow z \in A \text { and } \quad z \in B\}
$$

Two sets (acceptors) - same as intersection:

$$
A^{\circ} B=\{x: \quad x \in A \text { and } \quad x \in B\}
$$

Composition and Coercion

- Really just treats a set as identity relation on set $\{a b c, p q r, \ldots\}=\{a b c \rightarrow a b c, p q r \rightarrow p q r, \ldots\}$
Two relations (FSTs):

$$
A^{\circ} B=\{x \rightarrow z: \exists y(x \rightarrow y \in A \text { and } y \rightarrow z \in B)\}
$$

- Set and relation is now special case (if $\exists y$ then $y=x$):

$$
A^{\circ} B=\{x \rightarrow z: \quad x \rightarrow x \in A \text { and } x \rightarrow z \in B\}
$$

Relation and set is now special case (if $\exists y$ then $y=z$):

$$
A^{\circ} B=\{x \rightarrow z: \quad x \rightarrow z \in A \text { and } z \rightarrow z \in B\}
$$

Two sets (acceptors) is now special case:

$$
A^{\circ} B=\{x \rightarrow x: \quad x \rightarrow x \in A \text { and } x \rightarrow x \in B\}
$$

3 Uses of Set Composition:

3 Uses of Set Composition:

Feed string into Greek transducer:

3 Uses of Set Composition:

Feed string into Greek transducer:
" $\{$ abed \rightarrow abed $\}$.o. Greek $=\{$ abed $\rightarrow \alpha \beta \varepsilon \delta$, abed $\rightarrow \alpha \beta \in \delta\}$

3 Uses of Set Composition:

Feed string into Greek transducer:

- \{abed \rightarrow abed $\}$.o. Greek $=\{$ abed $\rightarrow \alpha \beta \varepsilon \delta$, abed $\rightarrow \alpha \beta \in \delta\}$ $\{$ abed $\}$.o. Greek $=\{$ abed $\rightarrow \alpha \beta \varepsilon \delta$, abed $\rightarrow \alpha \beta \in \delta\}$

3 Uses of Set Composition:

Feed string into Greek transducer:

- \{abed \rightarrow abed $\}$.o. Greek $=\{$ abed $\rightarrow \alpha \beta \varepsilon \delta$, abed $\rightarrow \alpha \beta \in \delta\}$ $\{$ abed $\}$.o. Greek $=\{$ abed $\rightarrow \alpha \beta \varepsilon \delta$, abed $\rightarrow \alpha \beta \in \delta\}$
[\{abed\} .o. Greek].I $=\{\alpha \beta \varepsilon \delta, \alpha \beta \in \delta\}$

3 Uses of Set Composition:

Feed string into Greek transducer:

- \{abed \rightarrow abed $\}$.o. Greek $=\{$ abed $\rightarrow \alpha \beta \varepsilon \delta$, abed $\rightarrow \alpha \beta \in \delta\}$ $\{$ abed $\}$.o. Greek $=\{$ abed $\rightarrow \alpha \beta \varepsilon \delta$, abed $\rightarrow \alpha \beta \in \delta\}$
[\{abed\} .o. Greek].I = \{ $\alpha \beta \varepsilon \delta, \alpha \beta \in \delta\}$
Feed several strings in parallel:

3 Uses of Set Composition:

Feed string into Greek transducer:

- \{abed \rightarrow abed $\}$.o. Greek $=\{$ abed $\rightarrow \alpha \beta \varepsilon \delta$, abed $\rightarrow \alpha \beta \in \delta\}$ $\{$ abed $\}$.o. Greek $=\{$ abed $\rightarrow \alpha \beta \varepsilon \delta$, abed $\rightarrow \alpha \beta \in \delta\}$ [\{abed\} .o. Greek].I = \{ $\alpha \beta \varepsilon \delta, \alpha \beta \in \delta\}$
Feed several strings in parallel:
- \{abcd, abed\} .o. Greek

$$
=\{\text { abcd } \rightarrow \alpha \beta \gamma \delta, \text { abed } \rightarrow \alpha \beta \varepsilon \delta, \text { abed } \rightarrow \alpha \beta \in \delta\}
$$

3 Uses of Set Composition:

Feed string into Greek transducer:

- \{abed \rightarrow abed $\}$.o. Greek $=\{$ abed $\rightarrow \alpha \beta \varepsilon \delta$, abed $\rightarrow \alpha \beta \in \delta\}$ $\{$ abed $\}$.o. Greek $=\{$ abed $\rightarrow \alpha \beta \varepsilon \delta$, abed $\rightarrow \alpha \beta \in \delta\}$ [\{abed\} .o. Greek].I = \{ $\alpha \beta \varepsilon \delta, \alpha \beta \in \delta\}$
Feed several strings in parallel:
- \{abcd, abed\} .o. Greek

$$
=\{\text { abcd } \rightarrow \alpha \beta \gamma \delta, \text { abed } \rightarrow \alpha \beta \varepsilon \delta, \text { abed } \rightarrow \alpha \beta \in \delta\}
$$

$[\{$ abcd,abed $\}$.o. Greek] $I=\{\alpha \beta \gamma \delta, \alpha \beta \varepsilon \delta, \alpha \beta \in \delta\}$

3 Uses of Set Composition:

Feed string into Greek transducer:

- \{abed \rightarrow abed $\}$.o. Greek $=\{$ abed $\rightarrow \alpha \beta \varepsilon \delta$, abed $\rightarrow \alpha \beta \in \delta\}$ $\{$ abed $\}$.o. Greek $=\{$ abed $\rightarrow \alpha \beta \varepsilon \delta$, abed $\rightarrow \alpha \beta \in \delta\}$ [\{abed\} .o. Greek].I = \{ $\alpha \beta \varepsilon \delta, \alpha \beta \in \delta\}$
Feed several strings in parallel:
- \{abcd, abed\} .o. Greek

$$
=\{\text { abcd } \rightarrow \alpha \beta \gamma \delta, \text { abed } \rightarrow \alpha \beta \varepsilon \delta, \text { abed } \rightarrow \alpha \beta \in \delta\}
$$

$[\{$ abcd, abed $\}$.o. Greek] $I=\{\alpha \beta \gamma \delta$, a $1=\delta, \alpha \beta \in \delta\}$
Filter result via No $\varepsilon=\{\alpha \beta \gamma \delta, \quad \alpha \beta \in \delta, \ldots\}$

3 Uses of Set Composition:

" Feed string into Greek transducer:

- \{abed \rightarrow abed $\}$.o. Greek $=\{$ abed $\rightarrow \alpha \beta \varepsilon \delta$, abed $\rightarrow \alpha \beta \in \delta\}$ $\{$ abed $\}$.o. Greek $=\{$ abed $\rightarrow \alpha \beta \varepsilon \delta$, abed $\rightarrow \alpha \beta \in \delta\}$ [\{abed\} .o. Greek].I = \{ $\alpha \beta \varepsilon \delta, \alpha \beta \in \delta\}$
Feed several strings in parallel:
- \{abcd, abed\} .o. Greek

$$
=\{\text { abcd } \rightarrow \alpha \beta \gamma \delta, \text { abed } \rightarrow \alpha \beta \varepsilon \delta, \text { abed } \rightarrow \alpha \beta \in \delta\}
$$

[\{abcd,abed\} .o. Greek]. $I=\{\alpha \beta \gamma \delta, \alpha \beta \delta \delta, \alpha \beta \in \delta\}$
Filter result via No $\varepsilon=\{\alpha \beta \gamma \delta, \quad \alpha \beta \in \delta, \ldots\}$

- \{abcd,abed\} .o. Greek . O. Noє

$$
=\{\text { abcd } \rightarrow \alpha \beta \gamma \delta, \text { abed } \rightarrow \alpha \beta \in \delta\}
$$

What are the "basic" transducers?

- The operations on the previous slides combine transducers into bigger ones
- But where do we start?
-a: ε for $a \in \Sigma$

" $\varepsilon: x$ for $x \in \Delta$

" Q: Do we also need a:x? How about $\varepsilon: \varepsilon$?

