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Engineering vs. Science?
• One story

• NLP took formal language theory and generative 
linguistics (same source?),

• Built small AI systems for a while,

• Then added statistics/machine learning (from speech 
recognition).

• What now?

• Shouldn’t AI tell us about natural intelligence?

• Are all NLP models lousy linguistics?



Zipf’s Law
The Roots of Quantitative Linguistics



Zipf’s Law
• Distribution of word frequencies is very skewed 

– a few words occur very often, many words hardly ever 
occur 

– e.g., two most common words (“the”, “of”) make up 
about 10% of all word occurrences in text documents 

• Zipf’s “law” (more generally, a “power law”): 
– observation that rank (r) of a word times its frequency 

(f) is approximately a constant (k) 
• assuming words are ranked in order of decreasing frequency 

– i.e.,  r.f ≈ k or  r.Pr ≈ c, where Pr is probability of word 
occurrence and c ≈ 0.1 for English



Zipf’s Law



News Collection (AP89) Statistics

Total documents                
84,678 
Total word occurrences       39,749,179 
Vocabulary size             198,763 
Words occurring > 1000 times         4,169 
Words occurring once               70,064

Word        Freq.           r              Pr(%)  r.Pr 
assistant     5,095        1,021         .013              0.13 
sewers          100      17,110    2.56 × 10−4      0.04 
toothbrush      10      51,555    2.56 × 10−5      0.01 
hazmat              1    166,945    2.56 × 10−6      0.04



Top 50 Words from AP89



Zipf’s Law for AP89

• Log-log plot: Note problems at high and low frequencies



Zipf’s Law

• What is the proportion of words with a 
given frequency? 
– Word that occurs n times has rank rn = k/n 
– Number of words with frequency n is 

• rn − rn+1  =  k/n − k/(n + 1)  =  k/n(n + 1) 

– Proportion found by dividing by total number of 
words = highest rank = k 

– So, proportion with frequency n is 1/n(n+1)



Zipf’s Law 

• Example word  
    frequency ranking 

• To compute number of words with frequency 5,099  
– rank of “chemical” minus the rank of “summit” 
– 1006 − 1002 = 4



Example

• Proportions of words occurring n times in 
336,310 TREC documents 

• Vocabulary size is 508,209



Vocabulary Growth

• As corpus grows, so does vocabulary size 
– Fewer new words when corpus is already large 

• Observed relationship (Heaps’ Law):  
  

               v = k.nβ 

       where v is vocabulary size (number of unique 
words),                 n is the number of  words in 
corpus, 

  k, β are parameters that vary for each corpus    
(typical values given are 10 ≤ k ≤ 100 and β ≈ 0.5)    



AP89 Example



Heaps’ Law Predictions

• Predictions for TREC collections are 
accurate for large numbers of words 
– e.g., first 10,879,522 words of the AP89 

collection scanned 
– prediction is 100,151 unique words 
– actual number is 100,024 

• Predictions for small numbers of words (i.e.    
< 1000) are much worse



GOV2 (Web) Example



Ever Upwards

• Heaps’ Law works with very large corpora 
– new words occurring even after seeing 30 million! 
– parameter values different than typical TREC 

values 

• New words come from a variety of sources 
• spelling errors, invented words (e.g. product, company 

names), code, other languages, email addresses, etc. 

• Language models (and other NLP and IR 
systems) need to handle open, growing 
vocabulary



Power-Law Distributions

• For discrete data (Clauset et al., 2009): 

• which diverges at 0, thus requiring a lower 
bound  

• which normalizes to 

• with Hurwitz zeta  

Power-law distributions in empirical data 3

Box 1: Recipe for analyzing power-law distributed data

This paper contains much technical detail. In broad outline, however, the recipe we
propose for the analysis of power-law data is straightforward and goes as follows.

1. Estimate the parameters xmin and α of the power-law model using the methods
described in Section 3.

2. Calculate the goodness-of-fit between the data and the power law using the
method described in Section 4. If the resulting p-value is greater than 0.1 the
power law is a plausible hypothesis for the data, otherwise it is rejected.

3. Compare the power law with alternative hypotheses via a likelihood ratio test,
as described in Section 5. For each alternative, if the calculated likelihood ratio
is significantly different from zero, then its sign indicates whether the alternative
is favored over the power-law model or not.

Step 3, the likelihood ratio test for alternative hypotheses, could in principle be replaced
with any of several other established and statistically principled approaches for model
comparison, such as a fully Bayesian approach [32], a cross-validation approach [59], or a
minimum description length approach [20], although none of these methods are described
here.

In the discrete case, x can take only a discrete set of values. In this paper we
consider only the case of integer values with a probability distribution of the form

p(x) = Pr(X = x) = Cx−α . (2.3)

Again this distribution diverges at zero, so there must be a lower bound xmin > 0 on
the power-law behavior. Calculating the normalizing constant, we then find that

p(x) =
x−α

ζ(α, xmin)
, (2.4)

where

ζ(α, xmin) =
∞
∑

n=0

(n + xmin)−α (2.5)

is the generalized or Hurwitz zeta function. Table 2.1 summarizes the basic functional
forms and normalization constants for these and several other distributions that will
be useful.

In many cases it is useful to consider also the complementary cumulative distri-
bution function or CDF of a power-law distributed variable, which we denote P (x)
and which for both continuous and discrete cases is defined to be P (x) = Pr(X ≥ x).
For instance, in the continuous case

P (x) =

∫ ∞

x
p(x′) dx′ =

(

x

xmin

)−α+1

. (2.6)

In the discrete case

P (x) =
ζ(α, x)

ζ(α, xmin)
. (2.7)
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Power Laws Everywhere!
24 A. Clauset, C. R. Shalizi and M. E. J. Newman
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Fig. 6.1. The cumulative distribution functions P (x) and their maximum likelihood power-law
fits for the first twelve of our twenty-four empirical data sets. (a) The frequency of occurrence of
unique words in the novel Moby Dick by Herman Melville. (b) The degree distribution of proteins in
the protein interaction network of the yeast S. cerevisiae. (c) The degree distribution of metabolites
in the metabolic network of the bacterium E. coli. (d) The degree distribution of autonomous systems
(groups of computers under single administrative control) on the Internet. (e) The number of calls
received by US customers of the long-distance telephone carrier AT&T. (f) The intensity of wars
from 1816–1980 measured as the number of battle deaths per 10 000 of the combined populations of
the warring nations. (g) The severity of terrorist attacks worldwide from February 1968 to June
2006, measured by number of deaths. (h) The number of bytes of data received in response to HTTP
(web) requests from computers at a large research laboratory. (i) The number of species per genus
of mammals during the late Quaternary period. (j) The frequency of sightings of bird species in the
United States. (k) The number of customers affected by electrical blackouts in the United States.
(l) The sales volume of bestselling books in the United States.

(Clauset et al., 2009)
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Fig. 6.2. The cumulative distribution functions P (x) and their maximum likelihood power-law
fits for the second twelve of our twenty-four empirical data sets. (m) The populations of cities
in the United States. (n) The sizes of email address books at a university. (o) The number of
acres burned in California forest fires. (p) The intensities of solar flares. (q) The intensities of
earthquakes. (r) The numbers of adherents of religious sects. (s) The frequencies of surnames in
the United States. (t) The net worth in US dollars of the richest people in America. (u) The
numbers of citations received by published academic papers. (v) The numbers of papers authored
by mathematicians. (w) The numbers of hits on web sites from AOL users. (x) The numbers of
hyperlinks to web sites.

the alternatives we tested using the likelihood ratio test, implying that these data sets
are not well-characterized by any of the functional forms considered here.)

Tables 6.2 and 6.3 show the results of likelihood ratio tests comparing the best fit
power laws for each of our data sets to the alternative distributions given in Table 2.1.
For reference, the first column repeats the p-values given in Table 6.1. Based on the
results of our tests, we summarize in the final column of the table how convincing the

(Clauset et al., 2009)
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Poisson log-normal exponential stretched exp. power law + cut-off support for
data set p LR p LR p LR p LR p LR p power law
Internet 0.29 5.31 0.00 −0.807 0.42 6.49 0.00 0.493 0.62 −1.97 0.05 with cut-off
calls 0.63 17.9 0.00 −2.03 0.04 35.0 0.00 14.3 0.00 −30.2 0.00 with cut-off
citations 0.20 6.54 0.00 −0.141 0.89 5.91 0.00 1.72 0.09 −0.007 0.91 moderate
email 0.16 4.65 0.00 −1.10 0.27 0.639 0.52 −1.13 0.26 −1.89 0.05 with cut-off
metabolic 0.00 3.53 0.00 −1.05 0.29 5.59 0.00 3.66 0.00 0.000 1.00 none
papers 0.90 5.71 0.00 −0.091 0.93 3.08 0.00 0.709 0.48 −0.016 0.86 moderate
proteins 0.31 3.05 0.00 −0.456 0.65 2.21 0.03 0.055 0.96 −0.414 0.36 moderate
species 0.10 5.04 0.00 −1.63 0.10 2.39 0.02 −1.59 0.11 −3.80 0.01 with cut-off
terrorism 0.68 1.81 0.07 −0.278 0.78 2.457 0.01 0.772 0.44 −0.077 0.70 moderate
words 0.49 4.43 0.00 0.395 0.69 9.09 0.00 4.13 0.00 −0.899 0.18 good

Table 6.3
Tests of power-law behavior in the data sets with discrete (integer) data. Statistically significant p-values are denoted in bold. Results for the continuous

data sets are given in Table 6.2; see that table for a description of the individual column entries.

(Clauset et al., 2009)



Learning in the Limit 
Gold’s Theorem



Observe some values of a function



Guess the whole function



Another guess: Just as good?



More data needed to decide



Poverty of the Stimulus



Poverty of the Stimulus

! Never enough input data to completely determine 
the polynomial … 
! Always have infinitely many possibilities 

! … unless you know the order of the polynomial 
ahead of time. 
! 2 points determine a line 
! 3 points determine a quadratic 
! etc.

! In language learning, is it enough to know that the 
target language is generated by a CFG? 
! without knowing the size of the CFG?
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Language learning: 

!Children listen to language  [unsupervised]

!Children are corrected??  [supervised]

!Children observe language in context
!Children observe frequencies of language

Remember: Language = set of strings



Poverty of the Stimulus (1957)

!Children listen to language 
!Children are corrected?? 
!Children observe language in context 
!Children observe frequencies of language



Poverty of the Stimulus (1957)

!Children listen to language 
!Children are corrected?? 
!Children observe language in context 
!Children observe frequencies of language

Chomsky: Just like polynomials: never enough data unless 
you know something in advance.  So kids must be born 
knowing what to expect in language.



Gold’s Theorem (1967)

!Children listen to language 
!Children are corrected?? 
!Children observe language in context 
!Children observe frequencies of language

a simple negative result along these lines:  
kids (or computers) can’t learn much 
without supervision, inborn knowledge, or statistics
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eventually uttered by Mom (even if infinitely many)



The Idealized Situation
! Mom talks
! Baby listens

! 1. Mom outputs a sentence
! 2. Baby hypothesizes what the language is 

  (given all sentences so far)
! 3. Goto step 1

! Guarantee: Mom’s language is in the set of hypotheses 
that Baby is choosing among

! Guarantee: Any sentence of Mom’s language is 
eventually uttered by Mom (even if infinitely many)

! Assumption: Vocabulary (or alphabet) is finite.
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! There is some point at which Baby’s hypothesis is correct and 
never changes again.  Baby has converged! 

! Baby doesn’t have to know that it’s reached this point – it can keep 
an open mind about new evidence – but if its hypothesis is right, no 
such new evidence will ever come along. 
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Can Baby learn under these 
conditions?
! Learning in the limit:  

! There is some point at which Baby’s hypothesis is correct and 
never changes again.  Baby has converged! 

! Baby doesn’t have to know that it’s reached this point – it can keep 
an open mind about new evidence – but if its hypothesis is right, no 
such new evidence will ever come along. 

! A class C of languages is learnable in the limit if one 
could construct a perfect C-Baby that can learn any 
language L ∈ C in the limit from a Mom who speaks L.

! Baby knows the class C of possibilities, but not L. 
! Is there a perfect finite-state Baby?  
! Is there a perfect context-free Baby?



Languages vs. Grammars

!Does Baby have to get the right grammar?  
! (E.g., does VP have to be called VP?) 

!Assumption: Finite vocabulary.



Conservative Strategy

! Baby’s hypothesis should always be smallest 
language consistent with the data 

! Works for finite languages?  Let’s try it … 
! Language 1: {aa,ab,ac} 
! Language 2: {aa,ab,ac,ad,ae} 
! Language 3: {aa,ac} 
! Language 4: {ab}
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Evil Mom

! To find out whether Baby is perfect, we have to see 
whether it gets 100% even in the most adversarial 
conditions 

! Assume Mom is trying to fool Baby 
! although she must speak only sentences from L 
! and she must eventually speak each such sentence 

! Does Baby’s strategy work?



An Unlearnable Class

!Class of languages: 
!Let Ln = set of all strings of length < n 
!What is L0?   
!What is L1? 
!What is L∞? 

!If the true language is L∞, can Mom really follow rules? 

!Must eventually speak every sentence of L∞. Possible? 
!Yes: ε; a, b; aa, ab, ba, bb; aaa, aab, aba, abb, baa, … 

!Our class is C = {L0, L1, … L∞}
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!Our class is C = {L0, L1, … L∞}
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these depending on the input.
!But there is no perfect C-baby …
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!Suppose Baby adopts conservative strategy, 

always picking smallest possible language in 
C.

!So if Mom’s longest sentence so far has 75 
words, baby’s hypothesis is L76.

!This won’t always work: What language 
can’t a conservative Baby learn?
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An Unlearnable Class

! Our class is C = {L0, L1, … L∞}
! Could a non-conservative baby be a perfect C-

Baby, and eventually converge to any of these?
! Claim: Any perfect C-Baby must be “quasi-

conservative”:
! If true language is L76, and baby posits something else, 

baby must still eventually come back and guess L76 
(since it’s perfect).

! So if longest sentence so far is 75 words, and Mom 
keeps talking from L76, then eventually baby must 
actually return to the conservative guess L76.

! Agreed?



Mom’s Revenge
 If longest sentence so far is 75 words, and Mom keeps talking 

from L76, then eventually a perfect C-baby must actually return to 
the conservative guess L76. 

! Suppose true language is L∞. 
! Evil Mom can prevent our supposedly perfect C-Baby 

from converging to it. 
! If Baby ever guesses L∞, say when the longest sentence 

is 75 words:  
! Then Evil Mom keeps talking from L76 until Baby capitulates and 

revises her guess to L76 – as any perfect C-Baby must.   
! So Baby has not stayed at L∞ as required. 

! Then Mom can go ahead with longer sentences.  If Baby 
ever guesses L∞ again, she plays the same trick again.



Mom’s Revenge
 If longest sentence so far is 75 words, and Mom keeps talking 

from L76, then eventually a perfect C-baby must actually return to 
the conservative guess L76. 

! Suppose true language is L∞. 
! Evil Mom can prevent our supposedly perfect C-Baby 

from converging to it. 
! If Baby ever guesses L∞, say when the longest sentence 

is 75 words:  
! Then Evil Mom keeps talking from L76 until Baby capitulates and 

revises her guess to L76 – as any perfect C-Baby must.   
! So Baby has not stayed at L∞ as required. 

! Conclusion: There’s no perfect Baby that is guaranteed to 
converge to L0, L1, … or L∞ as appropriate.  If it always 
succeeds on finite languages, Evil Mom can trick it on 
infinite language.
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Implications

!We found that C = {L0, L1, … L∞} isn’t learnable 
in the limit.

!How about class of finite-state languages?
!Not unless you limit it further (e.g., # of states)
!After all, it includes all languages in C, and more, so 

learner has harder choice

!How about class of context-free languages?
!Not unless you limit it further (e.g., # of rules)



Punchline
! But class of probabilistic context-free languages is 

learnable in the limit!! (Horning, 1969) 

! If Mom has to output sentences randomly with the 
appropriate probabilities,  
! she’s unable to be too evil  
! there are then perfect Babies that are guaranteed to 

converge to an appropriate probabilistic CFG 
! I.e., from hearing a finite number of sentences, 

Baby can correctly converge on a grammar that 
predicts an infinite number of sentences.   
! Baby is generalizing!  Just like real babies!



Perfect fit to perfect, incomplete data
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Imperfect fit to noisy data

Will an ungrammatical sentence ruin baby forever?
(yes, under the conservative strategy ...)

Or can baby figure out which data to (partly) ignore?
Statistics can help again ... how?



Frequencies and 
Probabilities in Natural 

Languages

Chris Manning and others



Models for language
• Human languages are the 

prototypical example of a 
symbolic system

• From the beginning, logics and 
logical reasoning were invented 
for handling natural language 
understanding

• Logics and formal languages have 
a language-like form that draws 
from and meshes well with 
natural languages

• Where are the numbers?
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Dominant answer in 
linguistic theory: Nowhere
Chomsky again (1969: 57; also 1956, 1957, etc.): 

• “It must be recognized that the notion ‘probability of a 
sentence’ is an entirely useless one, under any 
known interpretation of this term.” 

Probabilistic models wrongly mix in world knowledge 

• New York vs. Dayton, Ohio 
They don’t model grammaticality [also, Tesnière 1959] 

• Colorless green ideas sleep furiously 

• Furiously sleep ideas green colorless 

• [But see Pereira 2005]
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Categorical linguistic 
theories (GB, Minimalism, LFG, HPSG, CG, …)

• Systems of variously rules, principles, and 
representations is used to describe an infinite set 
of grammatical sentences of the language 

• Other sentences are deemed ungrammatical 

• Word strings are given a (hidden) structure



The need for frequencies / 
probability distributions
The motivation comes from two sides: 

• Categorical linguistic theories claim too much: 

• They place a hard categorical boundary of 
grammaticality, where really there is a fuzzy edge, 
determined by many conflicting constraints and 
issues of conventionality vs. human creativity 

• Categorical linguistic theories explain too little: 

• They say nothing at all about the soft constraints 
which explain how people choose to say things 
• Something that language educators, computational NLP 

people – and historical linguists and sociolinguists dealing with 
real language – usually want to know about
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1. The hard constraints of 
categorical grammars

• Sentences must satisfy all the rules of the grammar 

• One group specifies the arguments that different 
verbs take – lexical subcategorization information 
• Some verbs must take objects: *Kim devoured                            

[ * means ungrammatical] 

• Others do not: *Kim’s lip quivered the straw 

• Others take various forms of sentential complements 

• In NLP systems, ungrammatical sentences don’t parse 

• But the problem with this model was noticed early on: 

• “All grammars leak.” (Sapir 1921: 38)
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Example: verbal clausal 
subcategorization frames

• Some verbs take various types of sentential 
complements, given as subcategorization frames: 

• regard: __ NP[acc] as {NP, AdjP} 

• consider: __ NP[acc] {AdjP, NP, VP[inf]} 

• think: __ CP[that];  __ NP[acc] NP 

• Problem: in context, language is used more 
flexibly than this model suggests 

• Most such subcategorization ‘facts’ are wrong 



Subcat on the MBTA

�The

?The Conductor of this train is responsible to ensure that your trip is both safe and enjoyable.

…responsible for ensuring…

?…responsible that it be ensured that …
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Standard subcategorization 
rules (Pollard and Sag 1994)

• We consider Kim to be an acceptable candidate 

• We consider Kim an acceptable candidate 

• We consider Kim quite acceptable 

• We consider Kim among the most acceptable 
candidates 

• *We consider Kim as an acceptable candidate 

• *We consider Kim as quite acceptable 

• *We consider Kim as among the most acceptable 
candidates 

• ?*We consider Kim as being among the most 
acceptable candidates
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Subcategorization facts 
from The New York Times

Consider as: 
• The boys consider her as family and she participates 

in everything we do. 

• Greenspan said, “I don't consider it as something 
that gives me great concern. 

• “We consider that as part of the job,” Keep said. 

• Although the Raiders missed the playoffs for the 
second time in the past three seasons, he said he 
considers them as having championship potential. 

• Culturally, the Croats consider themselves as 
belonging to the “civilized” West, … 



57

More subcategorization 
facts: regard

Pollard and Sag (1994): 

• *We regard Kim to be an acceptable candidate 

• We regard Kim as an acceptable candidate 

The New York Times: 

• As 70 to 80 percent of the cost of blood tests, like 
prescriptions, is paid for by the state, neither 
physicians nor patients regard expense to be a 
consideration. 

• Conservatives argue that the Bible regards 
homosexuality to be a sin.
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More subcategorization 
facts: turn out and end up
Pollard and Sag (1994): 

• Kim turned out political 

• *Kim turned out doing all the work 

The New York Times: 

• But it turned out having a greater impact than any of us dreamed. 

Pollard and Sag (1994): 

• Kim ended up political 

• *Kim ended up sent more and more leaflets 

The New York Times: 

• On the big night, Horatio ended up flattened on the ground like a fried egg with 
the yolk broken.
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Probability mass functions: 
subcategorization of regard

0.0%

20.0%

40.0%

60.0%

80.0%

__ NP as NP __ NP NP __ NP as AdjP __ NP as PP __ NP as VP[ing] __ NP VP[inf]
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Leakage leads to change

• People continually stretch the ‘rules’ of grammar 
to meet new communicative needs, to better 
align grammar and meaning, etc. 

• As a result language slowly changes 

• while: used to be only a noun (That takes a while); 
now mainly used as a subordinate clause introducer 
(While you were out) 

• e-mail: started as a mass noun like mail (most junk 
e-mail is annoying); it’s moving to be a count noun 
(filling the role of e-letter): I just got an interesting 
email about that.
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Blurring of categories: 
“Marginal prepositions”

• An example of blurring in syntactic category 
during linguistic change is so-called ‘marginal 
prepositions’ in English, which are moving from 
being participles to prepositions 

• Some still clearly maintain a verbal existence, like 
following, concerning, considering; for some it is 
marginal, like according, excepting; for others 
their verbal character is completely lost, such as 
during [cf. endure], pending, notwithstanding.
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Verb (VBG) � Preposition IN

As verbal participle, understood subject agrees with noun: 

• They moved slowly, toward the main gate, following 
the wall 

• Repeat the instructions following the asterisk 
A temporal use with a controlling noun becomes common: 

• This continued most of the week following that ill-
starred trip to church 

Prep. uses (meaning is after, no controlling noun) appear 

• He bled profusely following circumcision 

• Following a telephone call, a little earlier, Winter had 
said …
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Mapping the recent change of 
following: participle →  prep.

• Fowler (1926): “there is a continual change going on by 
which certain participles or adjectives acquire the 
character of prepositions or adverbs, no longer needing 
the prop of a noun to cling to … [we see] a 
development caught in the act” 

• Fowler (1926) -- no mention of following in particular 

• Fowler [Gowers] (1948): “Following is not a 
preposition. It is the participle of the verb follow and 
must have a noun to agree with” 

• Fowler [Gowers] (1954): generally condemns temporal 
usage, but says it can be justified in certain 
circumstances
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2. Explaining more:  
What do people say?

• What people do say has two parts: 

• Contingent facts about the world 

• People in Minnesota have talked a lot about snow 
falling, not stocks falling, lately 

• The way speakers choose to express ideas using 
the resources of their language 
• People don’t often put that-clauses pre-verbally: 

• That we will have to revise this program is almost certain 

• The latter is properly part of people’s Knowledge 
of Language—i.e., part of linguistics.
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What do people say?

• Simply delimiting a set of grammatical sentences 
provides only a very weak description of a language, 
and  of the ways people choose to express ideas in it 

• Probability densities over sentences and sentence 
structures can give a much richer view of language 
structure and use 

• In particular, we find that the same soft generalizations 
and tendencies of one language often appear as 
(apparently) categorical constraints in other languages 

• A syntactic theory should be able to uniformly capture 
these constraints, rather than only recognizing them 
when they are categorical
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Example: Bresnan, Dingare 
& Manning

• Project modeling English diathesis alternations 
(active/passive, locative inversion, etc.) 

• In some languages passives are categorically 
restricted by person considerations: 

• In Lummi (Salishan, Washington state), 1/2 person 
must be the subject if other argument is 3rd person.  
There is variation if both arguments are 3rd person. 
(Jelinek and Demers 1983)    [cf. also Navajo, etc.] 

• *That example was provided by me 

• *He likes me 

• �I am liked by him



• In English, there is no such categorical constraint, but 
we can still see it at work as a soft constraint. 

• Collected data from verbs with an agent and patient 
argument (canonical transitives) from treebanked 
portions of the Switchboard corpus of conversational 
American English, analyzing for person and act/pass

67

Bresnan, Dingare & 
Manning
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Bresnan, Dingare & 
Manning

• While person is only a small part of the picture in 
determining the choice of active/passive in English 
(information structure, genre, etc. is more important), 
there is nonetheless a highly significant (X2 p < 
0.0001) effect of person on active/passive choice 

• The exact same hard constraint of Lummi appears as a 
soft constraint in English 

• This behavior is predicted by the universal hierarchies 
within a stochastic OT model (which extends existing 
OT approaches to valence – Aissen 1999, Lødrup 1999) 

• Conversely linguistic model predicts that no “anti-
English” [which is just the opposite] exists



Syntactic Matching
Roger Levy
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Conclusions

• There are many phenomena in language that 
cry out for non-categorical and probabilistic 
modeling and explanation 

• Probabilistic models can be applied on top of 
one’s favorite sophisticated linguistic 
representations! 

• Frequency evidence can enrich linguistic 
theory by revealing soft constraints at work in 
language use



What Next?

• Courses you could take

• Machine Learning

• Information Retrieval

• Data Mining

• Special Topics



What Next?
• People you could talk to

• Lu Wang

• Byron Wallace

• Jay Aslam

• Tim Bickmore

• People in network science, the social 
sciences, the humanities, and linguistics 
working on language data




