
(first module after the midterm)

Datastructures 1
Hash Tables

Red Black Trees

Week 8 Objectives

• Hash Tables, Hashing functions

• Red-Black Trees

Arrays VS Hash Tables

• typical computer storage is (key,value) pair

• arrays must have keys as integers
- keys=indices=positions
- due to how they work in computer’s memory
- have to be continuos
- Example A[1]=2; A[2]=-1; A[3]=0

• Hash Table also stores (key,value) pairs
- keys can be anything, like peoples names
- H[Alice]=1; H[Bob]=-1; H[Charlie]=3
- keys cannot be used as positions/indices

Basic hashing

• arrays are very nice, but keys have to be integers
- keys from 0 to N-1

• hashes very useful when keys are not integers
- names, words, addresses, phone numbers etc
- even if key=integer (like phone #) they are not the integers we

want as indices

• text processing : natural keys are words/n-grams/
phrases

• databases: natural keys can be anything

Hashing for integer keys

• Even if the keys are integers, they might be
inappropriate for storage indices.

• typically the case of few keys in a very large range.

• Example : phone numbers.
- Might have to use about 10,000 phone numbers as keys
- if each is used as a index, the resulting array must allocate 9Billion

locations (U.S. phone numbers have 10 digits)

Hash Tables

• key -> index -> use array[index] = value

Hash Tables - Collisions
• when several keys (words) map to the same key

(index)

• have to store the actual keys in a list
- list head stored at the index

• key -> index -> list_head -> search for that key

Hash Tables- Collisions with chaining
• when several keys (words) map to the same key

(index)

• have to store the actual keys in a list
- list head stored at the index

• key -> index -> list_head -> search for that key

Hash Tables- Collisions with chaining

• n=number of keys; m = MAXHASH; α= n/m

• simple uniform hashing: any key k equally likely to
be mapped on any of the indices [0...m)

• If collisions are handled with chaining linked lists,
assuming simple uniform hashing:
- unsuccessful search for a key takes Θ(1+α)

- successful search for a key also takes Θ(1+α)

- proof in the book

 Hash Function

• Easy for humans to use such a hash table

• but not easy for a computer
- need integer memory locations
- we have to map keys (names, colors etc) into integers

• hash function h: take input any key, returns an index
(int) h(key)=index

• basic operations: INSERT, DELETE, SEARCH; all use
the mapped value h(key)

Hash Function

• Usually two stages
- convert key to a [large] integer (not necessary if keys are already

large integers like phone numbers)
- map the integer in interval [0, MAXHASH)

Simple hash function for words
• return a simple combination of characters, modulo

MAXHASH

• int MAXHASH=100000;

• Example hashing word “Virgil” based on ASCII codes

• int hash_function(char[]) // returns integers
between 0 and MAXHASH
- int sum=0,i=0;

- while(char[i]>0) {sum+=char[i] * ++i*i;}

- return sum % MAXHASH;

V i r g i l
86*12 105* 22 114* 32 103* 42 105* 52 108* 62

Hash function: two qualities

• quality ONE: one-to-one (injection). Different inputs
result in different outputs
- collision: having many keys map to same index

• collisions eventually will happen, need to be solved
- collisions should be balanced (uniformly distributed) per output indices;

same as saying simple uniform hashing (approx) is desirable, even if not
exact.

• quality TWO: the set of returned indices must be
manageable
- for example returns integers from 1 to 100000
- or returns integers in range (0, MAXHASH)

Hash Function - division method

• map key to integer k (key=k if key is already integer)

• h(k) = k mod m (m=MAXHASH)
- this equation guarantees that h(k) is one of {0,1,2,..., MAXHASH-1}

• bad choices for m : close to powers of 2
- m=2p

- m=2p-1

• good choice for m : prime numbers far away from
powers of 2
- example: m=701

Hash Function - multiplication method

• fractional(x)= fractional part of x, or x -⎣x⎦
- example fractional(3.1472) = 0.1472

•h(k)=⎣m* fractional(kA)⎦

• typically m is a power of 2

• A is a fractional of form s/2w where s<2w

- for example A = 2654435769 / 232

Hash Function -Universal

• if the hash function is known, an adversary can
attack the hashing schema by using many keys that
all collide to the same index
- h(key1)=h(key2)=h(key3)...

• to prevent this, we can can use set H of hash
functions
- universal set H: for each pair of keys (k,l) the number of hash

functions h∈H that collide k and l h(k)=h(l) is no more than |H|/m

- each time we build a hash (run the code), a random hash function is
selected from the set

• building a universal set H of hash functions relies on
number theory - see book

Red-Black Trees
further reading necessary from textbook

Binary Search Trees - Recap

• each node has at
most two children

• any node value is
- not smaller than any value

in the left subtree
- not larger than than any

value in the right subtree
- h = height of tree

• Operations:
- search, min, max,

successor, predecessor,
insert, delete

- runtime O(h)

Binary Search Trees - Recap

• each node has at
most two children

• any node value is
- not smaller than any value

in the left subtree
- not larger than than any

value in the right subtree
- h = height of tree

• Operations:
- search, min, max,

successor, predecessor,
insert, delete

- runtime O(h)

left subtree
values⩽15

Binary Search Trees - Recap

• each node has at
most two children

• any node value is
- not smaller than any value

in the left subtree
- not larger than than any

value in the right subtree
- h = height of tree

• Operations:
- search, min, max,

successor, predecessor,
insert, delete

- runtime O(h)

left subtree
values⩽15

right subtree
values⩾15

Balanced Trees

• a) balanced tree: depth is about log(n) - logarithmic

• b) unbalanced tree : depth is about n - linear

Red-Black Trees
• binary search tree

• want to enforce balancing of the tree
- height logarithmic in n=number of nodes in the tree
- height = longest path root->leaf

• extra: each node stores a color
- color can be either red or black
- color can change during operations

• red-black properties
- root is black
- leafs (terminals) are black
- if a node is red, then both children are black
- for any given node, all paths to leaves (node->leaf) have the same

number of black nodes

Red-Black Trees

• Theorem: a red-black tree with n nodes has height
at most 2*log(n+1)
- or logarithmic height
- thus enforcing the balancing of the tree
- and so the all operations can be implemented in O(log n) time.

Tree operations

• insert, delete - need to account for colors
- rest of the lecture: insert and delete in red-black trees

• search, min, max, successor, predecessor - same as
for regular binary search trees

Red-Black Trees - Rotation

• Rotation is a utility
operation that facilitates
maintenance of red-black
properties
- during insert and delete, the

tree might temporarily violate
the red-black properties

- using rotation we can fix the
tree so it satisfies red-black.

• Rotate-left at node x
- x is replaced by its right child y

- β = left subtree of y becomes right
subtree of x

- x becomes the left child of y

• Rotate-right at y symmetric

Red-Black Trees - Rotation

• Example

Red-Black Trees - Insertion
• add node “z” as a leaf
- like usual in a binary search tree

• color z red, add terminal “NIL” nodes

• check red-black conditions
- most conditions are still satisfied or easy to fix
- the real problem might be the condition that requires children of

red nodes to be black.
- start fixing at the new node z, and as we proceed more fixes might

be necessary
- three “fixing cases”
- overall still O(log n) time.

• RB-INSERT-FIXUP procedure in the textbook

Fixing insertion case 1

• z.p = z.parent and
y=z.uncle are red

• fix:
- make z.p and y black
- make z.p.p red
- advance z to z.p.p

Fixing insertion case 2

• z.p is red, y is black,
z is the right child

• fix:
- rotate left at z.p
- z advances to its old

parent (now his left
child)

Fixing insertion case 3

• z.p red, y black,
z is left child

• fix:
- rotate right at z.p.p
- color z.p black
- color old z.p.p (now

z brother) red

Red-Black Trees - Deletion

• delete “z” as we usually delete from a binary search
tree
- maintain search property: left values⩽ node value ⩽ right values

• additionally keep track of
- y= the node to replace z
- y original color (its color might change in the process)

• Fix-up the tree red-black properties, if they are
violated
- a procedure with 4 cases
- RB-DELETE-FIXUP procedure in the textbook

Fixing deletion case 1

• case 1: x is black, brother w red

• fix :
- rotate left at x.p;
- color x.p red;
- color w (now x.p.p) black

Fixing deletion case 2

• case2: brother w is black, and w children also black

• fix:
- color w red
- advance x to its parent

Fixing deletion case 3

• case3: brother w is black; w’s left child is red; w’s
right child is black

• fix:
- rotate right at w
- color the new brother from red to black
- color the old brother from black to red

Fixing deletion case 4

• case4: brother w is black, w’s right child is red

• fix:
- rotate left at x.p
- color old w’s right child from red to black
- color x.p from red to black
- color old w from black to red

Running time

• most BST operations same running time as BST trees
- search, min, max, successor, predecessor
- these dont affect RB colors

• Insertion including fixup O(log n)

• Deletion including fixup O(log n)

