
STRUCTURAL TESTINGF. Tip and M.

Weintraub

AKA White Box Testing

Thanks go to Andreas Zeller for allowing incorporation of his materials

STRUCTURAL TESTING

Testing based on the

structure of the code

Test covers as much

implemented behavior

as possible

WHY DO STRUCTURAL TESTING?

Defects may lurk in the darkness of

code parts that are never executed.

Code parts may be

a statement,

function,

transition,

condition…

Attractive because it can be

automated and it can be finer

grained than functional testing

STRUCTURAL TESTING COMPLEMENTS

FUNCTIONAL TESTING

Run functional tests first, then measure what is missing

Structural testing can cover low-level details missed in high-

level specifications

BACK TO OUR ROOTS

class Roots {

// Solve ax
2
+ bx + c = 0

public roots(double a,

double b,

double c)

{ … }

// Result: values for x

double root_one, root_two;

}

 For which values for a, b, c

should we test?

 If a, b, c, are 32-bit integers,

there are (232)3 ≈ 1028 legal

inputs

 At 1,000,000,000,000 tests/s

(1012 tests/s), you still need

~2.5 billion years to test everything

THE CODE BEHIND THE INTERFACE

// Solve ax
2
+ bx + c = 0

public roots(double a, double b, double c)

{

double q = b * b - 4 * a * c;

if (q > 0 && a ≠ 0) {

// code for handling two roots

}

else if (q == 0) {

// code for handling one root

}

else {

// code for handling no roots

}

}

THE CODE BEHIND THE INTERFACE

// Solve ax
2
+ bx + c = 0

public roots(double a, double b, double c)

{

double q = b * b - 4 * a * c;

if (q > 0 && a ≠ 0) {

// code for handling two roots

}

else if (q == 0) {

// code for handling one root

}

else {

// code for handling no roots

}

}

Three cases

to test

The specification

THE TEST CASES

// Solve ax
2
+ bx + c = 0

public roots(double a, double b, double c)

{

double q = b * b - 4 * a * c;

if (q > 0 && a ≠ 0) {

// code for handling two roots

}

else if (q == 0) {

// code for handling one root

}

else {

// code for handling no roots

}

}

The specification

Test this case

and this!

Case0: (a, b, c) = (3, 4, 1)

Case1: (a, b, c) = (0, 0, 1)

Case2:(a, b, c) = (3, 2, 1)

Finding appropriate input values may require

significant domain skills.

FILLING IN THE CODE

// Solve ax
2
+ bx + c = 0

public roots(double a, double b, double c)

{

double q = b * b - 4 * a * c;

if (q > 0 && a ≠ 0) {

// code for handling two roots

}

else if (q == 0) {

// code for handling one root

}

else {

// code for handling no roots

}

}

Case1: (a, b, c) = (0, 0, 1)

FILLING IN THE CODE REVEALS A DEFECT

// Solve ax
2
+ bx + c = 0

public roots(double a, double b, double c)

{

double q = b * b - 4 * a * c;

if (q > 0 && a ≠ 0) {

// code for handling two roots

}

else if (q == 0) {

// code for handling one root

x = (-b) / (2 * a);

}

else {

// code for handling no roots

}

}

Case1: (a, b, c) = (0, 0, 1)

code must handle a = 0

EXPRESSING STRUCTURE

// Solve ax
2
+ bx + c = 0

public roots(double a, double b, double c)

{

double q = b * b - 4 * a * c;

if (q > 0 && a ≠ 0) {

// code for handling two roots

}

else if (q == 0) {

// code for handling one root

x = (-b) / (2 * a);

}

else {

// code for handling no roots

}

}

What is important is the program

structure.

The failure occurs only if

1. a specific condition is true AND

2. a specific branch is taken.

CONTROL FLOW GRAPH (CFG)

A control flow graph expresses

paths of program execution

1. Nodes are basic blocks –

sequences of statements with

one entry and one exit point

2. Edges represent control flow

– the possibility that the

program execution proceeds

from the end of one basic

block to the beginning of

another

TEST ADEQUACY CRITERIA

The CFG can serve as an

adequacy criterion for test

cases

The more parts that are

covered (executed) by tests,

the better the chance that a

test uncovers a defect

Parts can be: nodes, edges,

paths, conditions, …

CONTROL FLOW PATTERNS

/**

* @title cgi_decode

* @desc

* Translate a string from the CGI encoding to plain ascii text

* ’+’ becomes space, %xx becomes byte with hex value xx,

* other alphanumeric characters map to themselves

*

* returns 0 for success, positive for erroneous input

* 1 = bad hexadecimal digit

*/

int cgi_decode(char *encoded, char *decoded)

{

char *eptr = encoded;

char *dptr = decoded;

int ok = 0; A

CGI_DECODE

while (*eptr) /* loop to end of string (‘\0’ character) */

{

char c;

c = *eptr;

if (c == ’+’) { /* ‘+’ maps to blank */

*dptr = ’ ’;

} else if (c == ’%’) { /* ’%xx’ is hex for char xx */

int digit_high = Hex_Values[*(++eptr)];

int digit_low = Hex_Values[*(++eptr)];

if (digit_high == -1 || digit_low == -1)

ok = 1; /* Bad return code */

else

*dptr = 16 * digit_high + digit_low;

} else { /* All other characters map to themselves */

*dptr = *eptr;

}

++dptr; ++eptr;

}

dptr = ‘\0’; / Null terminator for string */

return ok;

}

B

C

D

E

G

F

H

I

L

M

A

B

C

D E

GF

H I

L
M

cgi_decode

as a CFG

A

B

C

D E

GF

H I

L
M

“test”
✔

✔

✔

✔

✔

✔
✔

A

B

C

D E

GF

H I

L
M

“test”
✔

✔

✔

✔

✔

✔
✔

“a+b”

✔

A

B

C

D E

GF

H I

L
M

“test”
✔

✔

✔

✔

✔

✔
✔

“a+b”

✔

“%3d”

✔

✔

A

B

C

D E

GF

H I

L
M

“test”
✔

✔

✔

✔

✔

✔
✔

“a+b”

✔

“%3d”

✔

✔

“%g”

✔

TEST ADEQUACY CRITERIA

• How do we know a test suite is “good enough”?

• A test adequacy criterion is a Boolean predicate for a pair

⟨program, test suite⟩

• Usually expressed in form of a rule – e.g., all statements

must be covered

STATEMENT TESTING

Adequacy criterion: each statement (or node in the CFG) must be

executed at least once

Rationale: a defect in a statement can only be revealed by executing

the defect

Coverage: # executed statements

statements

A

B

C

D E

GF

H I

L
M

“test”
✔

✔

✔

✔

✔

✔
✔

63

0

25

50

75

100

Coverage

A

B

C

D E

GF

H I

L
M

“test”
✔

✔

✔

✔

✔

✔
✔

“a+b”

✔

72

0

25

50

75

100

Coverage

A

B

C

D E

GF

H I

L
M

“test”
✔

✔

✔

✔

✔

✔
✔

“a+b”

✔

“%3d”

✔

✔

91

0

25

50

75

100

Coverage

A

B

C

D E

GF

H I

L
M

“test”
✔

✔

✔

✔

✔

✔
✔

“a+b”

✔

“%3d”

✔

✔

“%g”

✔

10
0

0

25

50

75

100

Coverage

COMPUTING COVERAGE

Coverage is computed automatically while the program executes

Requires instrumentation at compile time

For example with GCC, use options

-ftest-coverage -fprofile-arcs

After execution, coverage tool assesses and summarizes results

Again with GCC,

use gcov source-file to obtain readable .gcov file

GCOV COVERAGE OUTPUT FOR cgi_decode

N
u
m

b
e
r

o
f
e
x
e
c
u
ti
o
n
s

ADEQUACY OF A TEST SUITE

1. Statement testing is a simple criterion

2. Branch testing is another a criterion.

It subsumes statement testing.

→if the branch testing criterion is satisfied by a pair ⟨program, test

suite⟩, then so is the statement testing criterion for the same pair.

A

B

C

D E

GF

H I

L
M

✔

✔

✔

✔

✔
✔

✔

✔

✔ ✔

10
0

0

25

51

76

101

Coverage

“+%0d+%4j”

If the conditional fails and the failure case coding is

missing, statement coverage would still get to

100%, even though there is a defect

“+%0d+%4j”

87

0

25

50

75

100

Coverage

“+%0d+%4j”

✔

✔✔

✔

✔ ✔

✔

“+%0d+%4j”

✔

✔✔

✔

✔ ✔

✔

“abc”

✔

87

0

25

50

75

100

Coverage

10
0

0

25

50

75

100

Coverage

BRANCH TESTING

Adequacy criterion:

each branch in the CFG must be executed at

least once

Coverage: # executed branches

branches

Subsumes statement testing criterion because traversing all edges

implies traversing all nodes

Most widely used criterion in industry

TEST CRITERIA

Statement

testing

Branch testing

Basic

condition testing

MCDC testing

Compound

condition testing

Path testing

Loop boundary

testing

Branch and

condition testing
LCSAJ testing

Boundary

interior testing

P
ra

c
ti
c
a
l
C

ri
te

ri
a

T
h
e

o
re

ti
c
a
l
C

ri
te

ri
a

subsumes

Basic condition criterion is

not comparable with

branch or statement

coverage criteria.

Neither implies

(subsumes) the other.

CONDITION TESTING

Consider

(digit_high == 1 || digit_low == -1)

Branch adequacy criterion can be achieved by changing only digit_low

i.e., the defective sub-expression may never determine the result

Faulty sub-condition is never tested although we tested both outcomes of

the branch

Key idea: cover individual conditions in compound boolean expressions

e.g., both parts of digit_high == 1 || digit_low == -1

CONDITION TESTING

Adequacy criterion

each basic condition must be evaluated at least
once

Coverage:

truth values taken by all basic conditions
2 * # basic conditions

 In cgi_decode, Test Case “test+%9k%k9” gives 100% basic condition
coverage, but only 87% branch coverage

TEST CRITERIA

Statement

testing

Branch testing

Basic

condition testing

MCDC testing

Compound

condition testing

Path testing

Loop boundary

testing

Branch and

condition testing
LCSAJ testing

Boundary

interior testing

P
ra

c
ti
c
a
l
C

ri
te

ri
a

T
h
e

o
re

ti
c
a
l
C

ri
te

ri
a

subsumes

Basic condition criterion is

not comparable with

branch or statement

coverage criteria.

Neither implies

(subsumes) the other.

TEST CRITERIA

Statement

testing

Branch testing

Basic

condition testing

MCDC testing

Compound

condition testing

Path testing

Loop boundary

testing

Branch and

condition testing
LCSAJ testing

Boundary

interior testing

P
ra

c
ti
c
a
l
C

ri
te

ri
a

T
h
e

o
re

ti
c
a
l
C

ri
te

ri
a

subsumes

Expanding the test criteria

to cover both branch and

condition testing by

covering all conditions

and all decisions.

• Every sub-condition

must be true and false,

as well as the entire

condition.

TEST CRITERIA

Statement

testing

Branch testing

Basic

condition testing

MCDC testing

Compound

condition testing

Path testing

Loop boundary

testing

Branch and

condition testing
LCSAJ testing

Boundary

interior testing

P
ra

c
ti
c
a
l
C

ri
te

ri
a

T
h
e

o
re

ti
c
a
l
C

ri
te

ri
a

subsumes

Compound condition

testing considers all

possible combinations.

COMPOUND CONDITION TESTING EXAMPLE

Consider

(((a ∨ b) ∧ c) ∨ d) ∧ e)

This requires 13 tests

to cover all possible

combinations

 In general, this involves

a combinatorial explosion!

Why compound condition testing is a

theoretical, rather than a practical,

criterion

TEST CRITERIA

Statement

testing

Branch testing

Basic

condition testing

MCDC testing

Compound

condition testing

Path testing

Loop boundary

testing

Branch and

condition testing
LCSAJ testing

Boundary

interior testing

P
ra

c
ti
c
a
l
C

ri
te

ri
a

T
h
e

o
re

ti
c
a
l
C

ri
te

ri
a

subsumes

Modified

Condition/Decision

Coverage testing

MCDC TESTING
MODIFIED CONDITION DECISION COVERAGE

Key idea: Test important combinations of conditions, avoiding

exponential blowup

A combination is “important” if each basic condition is shown to

independently affect the outcome of each decision

MC/DC TESTING
MODIFIED CONDITION DECISION COVERAGE

For each basic condition C, we need two test cases: T1 and T2

Values of all evaluated conditions except C are the same

Compound condition as a whole evaluates to

TRUE for T1 and FALSE for T2

A good balance of thoroughness and test size (and therefore widely

used)

used in avionics software development guidance DO-178B, DO-178C

to ensure adequate testing of the most critical (Level A) software

For (((a ∨ b) ∧ c) ∨ d) ∧ e)

We need six tests to cover MCDC combinations to effect 100% coverage

MC/DC TESTING
MODIFIED CONDITION DECISION COVERAGE

Underlined values independently affect the outcome of the decision.

TEST CRITERIA

Statement

testing

Branch testing

Basic

condition testing

MCDC testing

Compound

condition testing

Path testing

Loop boundary

testing

Branch and

condition testing
LCSAJ testing

Boundary

interior testing

P
ra

c
ti
c
a
l
C

ri
te

ri
a

T
h
e

o
re

ti
c
a
l
C

ri
te

ri
a

subsumes

BEYOND INDIVIDUAL BRANCHES: PATH TESTING

Key idea: explore all paths in the

code

 i.e., sequences of branches

Since loops give rise to an

unbounded number of paths, this

is generally not feasible and

therefore just a theoretical

criterion.

 Its advantage, though, is that it

subsumes almost all criteria

TEST CRITERIA

Statement

testing

Branch testing

Basic

condition testing

MCDC testing

Compound

condition testing

Path testing

Loop boundary

testing

Branch and

condition testing
LCSAJ testing

Boundary

interior testing

P
ra

c
ti
c
a
l
C

ri
te

ri
a

T
h
e

o
re

ti
c
a
l
C

ri
te

ri
a

subsumes

Boundary interior

testing groups together

paths that differ only in

the sub-path they follow

when repeating the

body of a loop.

In other words, we

follow each path in the

CFG up to the first

repeated node.

BOUNDARY INTERIOR ADEQUACY FOR cgi_decode

Original CFG Paths to be covered

BOUNDARY INTERIOR TESTING: ISSUES

The number of paths may still grow

exponentially

 In this example, there are 24 = 16 paths

Forcing paths may be infeasible

or even impossible if conditions are not

independent

Therefore, boundary interior testing

belongs more to the “theoretical” criteria.

TEST CRITERIA

Statement

testing

Branch testing

Basic

condition testing

MCDC testing

Compound

condition testing

Path testing

Loop boundary

testing

Branch and

condition testing
LCSAJ testing

Boundary

interior testing

P
ra

c
ti
c
a
l
C

ri
te

ri
a

T
h
e

o
re

ti
c
a
l
C

ri
te

ri
a

subsumes

Loop boundary

testing imposes

constraints on how

often loops are to be

executed.

LOOP BOUNDARY ADEQUACY

A test suite satisfies this criterion if for every loop L:

There is a test case that iterates L zero times

There is a test case that iterates L once

There is a test case that iterates L more than once

Typically combined with other adequacy criteria such as MCDC

0

1

≥ 2≥ 2

1

0

A

B

C

D E

GF

H I

L
M

“”

“a”

“abc”

3 Test Cases

Satisfy the LBA

Criterion for

cgi_decode’s

Main Loop

TEST CRITERIA

Statement

testing

Branch testing

Basic

condition testing

MCDC testing

Compound

condition testing

Path testing

Loop boundary

testing

Branch and

condition testing
LCSAJ testing

Boundary

interior testing

P
ra

c
ti
c
a
l
C

ri
te

ri
a

T
h
e

o
re

ti
c
a
l
C

ri
te

ri
a

subsumes

Linear Code Sequence

And Jump

LCSAJ ADEQUACY
LINEAR CODE SEQUENCE AND JUMP

Testing all paths up to a fixed length

A LCSAJ is a sequential subpath in the CFG starting and ending in a

branch

LCSAJ length corresponds to

1 statement coverage

2 branch coverage

n
coverage of n

consecutive LCSAJs

∞ path coverage

SATISFYING CRITERIA

Test criteria are not always satisfiable:

1. Statements may not be executed because of defensive programming

or code reuse

2. Conditions may not be satisfiable because of interdependent

conditions

3. Paths may not be executable because of interdependent decisions

SATISFYING CRITERIA

Reaching specific code can be very hard!

Even the best-designed, best-maintained systems may contain

unreachable code

A large amount of unreachable code/paths/conditions is a serious

maintainability problem

Options:

Allow coverage less than 100%,

Require justification for exceptions

MORE TESTING CRITERIA EXAMPLES/OPTIONS

Object-oriented testing

Every transition in the object’s FSM must be covered

Every method pair in the object’s FSM must be covered

 Interclass testing

Every interaction between two objects must be covered

Data flow testing

Every definition-use pair of a variable must be covered

A

B

C

D E

GF

H I

L
M

definitions

uses

DATA FLOW TESTING:

COMPUTING THE WRONG VALUE LEADS TO FAILURE ONLY WHEN THAT

VALUE IS LATER USED

 Typical data flow testing

criterion

the tests must

exercise every pair

(definition, uses) of a

variable

