F. Tip and M. STRUCTURAL TESTING

Weintraub

AKA White Box Testing

Thanks go to Andreas Zeller for allowing incorporation of his materials

Northeastern University
College of Computer and Information Science 440 Huntington Avenue « 202 West Village H « Boston, MA 02115 « T617.373.2462 « ccis.northeastern.edu

STRUCTURAL TESTING

+ Testing based on the
structure of the code

+ Test covers as much
Implemented behavior
as possible

WHY DO STRUCTURAL TESTING?

+ Defects may lurk in the darkness of
code parts that are never executed.

+ Code parts may be
+a statement,
+function,
+transition,
+condition...

+ Attractive because It can be
automated and it can be finer
grained than functional testing

STRUCTURAL TESTING COMPLEMENTS
FUNCTIONAL TESTING

Run functional tests first, then measure what iIs missing

Structural testing can cover low-level details missed in high-
level specifications

BACK TO OUR ROOTS

class Roots {

// Solve ax2 + bx + c = 0 + For which values for a, b, c

pubTlic roots(double a, should we test?
double b,
(o double c) + If a, b, c, are 32-bit integers,
there are (23%)% = 1028 legal

// Result: values for x

double root_one, root_two; Inputs

+ At 1,000,000,000,000 tests/s
(10%2 tests/s), you still need
~2.5 billion years to test everything

THE CODE BEHIND THE INTERFACE

// Solve ax?2 + bx + c =0

public roots(double a, double b, double c)

{
double g =b * b - 4 * a * c;

if (g >0 && a = 0) {
// code for handling two roots

}
else if (g == 0) {
// code for handling one root

}
else {

// code for handling no roots
}

THE CODE BEHIND THE INTERFACE

// Solve ax?2 + bx + c =0

public roots(double a, double b, double c)

{
double g =b * b - 4 * a * c;

if (g >0 && a = 0) {
// code for handling two roots

}
else if (g == 0) {
// code for handling one root

}
else {

// code for handling no roots
}

The specification

—b+ b2 — 4dac
2a

T —

.
Three cases

o test

.

~

J

[HE TEST CASES

The specification

—b+ b2 — 4dac
2a

// Solve ax? + bx + c = 0 —

public roots(double a, double b, double c)
{ - .

double g =b * b - 4 * a * c;

Case,: (a,b,c)=(3,4,1)
if (q>08 a=0) { /\)

// code for handling two roots
} 4 ™
else if (g == 0) {
// code for handling one root W= Cgse,: (a, b, c)=(0,0, 1)

}

else {
// code for handling no roots

} 4)
} \ Case,:(a, b, c) = (3, 2, 1)

- J

- J

Finding appropriate input values may require
significant domain skills.

FILLING IN THE CODE

// Solve ax?2 + bx + c =0

public roots(double a, double b, doubl

{
double g =b *b - 4 * a * c;

if (g >08& &% a = 0) {
// code for handling two roots

}
else if (g == 0) {
// code for handling one root

}
else {

// code for handling no roots
}

e C)

- /b2 — 4dac

2a

(

~

<4 Case,: (a, b, c) =(0,0, 1)

_

J

FILLING IN THE CODE REVEALS A DEFECT

// Solve ax?2 + bx + c =0

—b+ Vb2 — 4ac

public roots(double a, double b, double c) 2a
{

double g =b *b - 4 * a * c;

if (g >0& % a = 0) {
// code for handling two roots ()
}

else if (q == 0) { I Casel: (a’ b, C) - (O, 0, 1)
// code for handling one root _ Y

X = (-b) / (2 * a);

}

else {
// code for handling no roots

}

EXPRESSING STRUCTURE

// Solve ax?2 + bx + c =0

—b+ Vb2 — 4ac
T —

public roots(double a, double b, double c) 2a
{

double g =b *b - 4 * a * c;

if (g >08& &% a = 0) {

// code for handling two q//f ﬁ‘\\
} What is important is the program

else if (g == 0) {
// code for handling one i

X = (-b) / 2 % a);

structure.

) The failure occurs only If
else {

// code for handling no rd 1. & specific condition is true AND
} 2. a specific branch is taken.

} & /

CONTROL FLOW GRAPH (CFG)

E public roots(double a, double b, double c) A control flow graph EXPreSSeSs
: paths of program execution
doubleg=b*"b-4"a"c;
. 1. Nodes are basic blocks —

q>0&&al=0 sequences of statements with
one entry and one exit point

/i code for two rools

2. Edges represent control flow
— the possibility that the
program execution proceeds
from the end of one basic
block to the beginning of
another

code for one root

code for no roots

TEST ADEQUACY CRITERIA

| FFU"J”E rﬂﬂtﬁ{dﬂumﬂﬂ dﬂut}lﬂh double ﬂ} \ :
Idnubleqbbdacl

Q=0&%a'=0

/i code for two rools

f code for one root

code for no roots

+The CFG can serve as an
adequacy criterion for test
cases

+The more parts that are
covered (executed) by tests,
the better the chance that a
test uncovers a defect

+Parts can be: nodes, edges,
paths, conditions, ...

CONTROL FLOW PATTERNS

while (COND)

‘ BODY \
-

while (COND)
gooy:;

for

INIT

‘ BODY \

while (COND)

t

do {

_ BODY
‘ if (COND) \ 1while (COND):

‘ THEN-BLOCK \ ‘ ELSE-BLOCK \
for CINIT: COND; INCR)

if (COND) BODY,
THEN-BLOCK;

else
ELSE-BLOCK:

CGl DECODE

/**

* @title cgi_decode
* @desc
* Translate a string from the CGI encoding to plain ascii text
* '+ becomes space, %xx becomes byte with hex value xx,
* other alphanumeric characters map to themselves
*
* returns O for success, positive for erroneous input
* 1 = bad hexadecimal digit
*/
Int cgi_decode(char *encoded, char *decoded)
{
char *eptr = encoded,;
char *dptr = decoded,;
int ok = 0;

while (*eptr) /* loop to end of string (\O’ character) */

{

}

char c: @

C = *eptr;

if (c=="+){ /* '+ maps to bIan@
*dptr="";

}else if (c =="%") { /" "%xxX is hex for char xx */

Int digit_high = Hex_Values[*(++eptr)];
Int digit_low = Hex_Values[*(++eptr)];
iIf (digit_high == -1 || digit_low == -1)
ok = 1; /* Bad return code */
else
*dptr = 16 * digit_high + digit_low;
} else { /* All other characters map to themselves */

*dptr = *eptr;
) (®)
++dptr; ++eptr; @

dptr = \0’; / Null terminator for string */
return ok;

| intogi_dotodeichor "enoodes, char “decodod| |

J pmar oo = ancoded; A

cgi_decode crar apr = decoscs
as a CFG '

(whie :'H:"?[@
-] Tz -

charg; C
&= *mpir;

Fa

|.||.-_ m 'I'I l
% I'::lm-uA Trus & o
[-:-Imr'l-: =="%" [@ E'l:l.'."-f"': @
I
Falsi Trus

¥ .

e M . . '
B) it digit high = Hex Vakios{™|++apr]]:
[U'-"T " op @ it digint bow = Hias Valoes"[++apir]]; G

i (gl Fegh == -1 || Sl low == -1]

= ai5a

s |
‘dp¥r = 1€ * GQil_high + digk

¥ .[' toipdr L
5 ; vl
dplr = r;
[I'I;ll.r'l e M I

=

int ogi_decodedchor “encoded, char “decodod|

{ chiar “epdr = onoDoed;
chair "dodr = deondhed;
int ok = 0O,

(wugm:r[°~
b T >
[-:hr-:;
&= “mpir;
f [== a7 |

" F ok da ¥ J—
[ﬂmi‘r‘: - |“—-Ir o E-dw ---: @

Fa

False True ' —
jhﬂ) int digit_high = HexValies[®|++opir]); G
“ditr = "aplr: int digit_low = Ho_Values["[++ap¥jj;
| M (gl high == -1 || dagil == 1}
|
= T
ol S N -

e [
"dpy = 16 " digil_high + digk

“dipir = I,
rlurn Gk
b

|a#|'_
|Jq:]-|-_
i

intogi_docodedchor "enioded, char “decodoed | | I
T e
| G 1) I
J pmar oo = ancoded; - a+b

ciar AT = dEaCnechEd
intok=0;
¥
(whin aptr
Faks Tnae—

Char C;
&= "mpir;
j'||.-_ mm 'I'I [

% Faks TLHE &
[ﬂmi’l r': ==|ﬁ—.|r o E-dp':r ---: o

False T v —
il int digit_high = Hex_Valies[*{++opir]]; G
dpir = “Bpr; int digit_koew = Hi Values["[++ap¥j;
i H (gt high == -1 || digit low == -1}]
|
= T
§ T ¥ v

SEE |
"dp¥r = 1€ " il _kigh + digk
k]

“gpir = "I,
el ok

intogi_docodedchor "enioded, char “decodoed | |

¥
I phar oo = gncoded;
ey eas “%3d” \
¥
C muﬁpl=3[
Fiksn T -

ohimr o]
== *apir;
j'||.-_ m 'I'I [

% F ks g1t &
[u:.arr-:---m[O E"’”'”: 9

False Trus .

»

int digit_high = Hex vakies]"|{++opir]];
int digit_low = Hio Values["[++apir];
i (gl hgh == -1 || Gl low == -1]{

o He
“diplr = "apir;
L

= ai5a

asa |
“dptr =16 " il _high + digik
1

“dipir = I
maturn ok

int ogi_decodedchor “ancodes, char "decodad)

d Char opir = onoDoed;

ciar AT = dEaCnechEd
int ok =0;
¥
(whin aptr
Faks Thar -
charc;
&= “mplr;
j'||.-_ Em 'I'I [
F Fums ' T
[ﬂmi"r-: == "k
Fatse Trss x
_-|+5|:|) int digit_high = Hea Valias[®{++opir]];
dplr = “@pir: int digit_low = How Values["[++aptrl;
i H (g high == -1 || digil low == -1}
— I
y =g Tnas *

a5 |
"dp¥ = 16 " il _high + dig
K

“gpir = "I,
el ok

TEST ADEQUACY CRITERIA

* How do we know a test suite is "good enough”?

A test adequacy criterion is a Boolean predicate for a pair
(program, test suite)

« Usually expressed in form of arule —e.g., all statements
must be covered

STATEMENT TESTING

+ Adequacy criterion: each statement (or node in the CFG) must be
executed at least once

+ Rationale: a defect in a statement can only be revealed by executing
the defect

+ Coverage: # executed statements
statements

100

75

50

25

Coverage

intogi_docodedchor "enioded, char “decodoed |

¥
J phar "opdr = pnooded:
ciar AT = dEaCnechEd
intok=0;
¥
(whin aptr
Faks Tnae—

Char C;
&= "mpir;
j'||.-_ mm 'I'I [

- F ks T T —
[’HHI?' fc=="%"{ q, E-UF:" = @

False T v —
il int digit_high = Hex_Valies[*{++opir]]; G
dpir = “Bpr; int digit_koew = Hi Values["[++ap¥j;
i H (gt high == -1 || digit low == -1}]
|
= T
§ T ¥ v

SEE |
"dp¥r = 1€ " il _kigh + digk
k]

“gpir = "I,
el ok

ni tgi docodelchir "ancodec, char "decodad) | |
- A
{ ohar “epir = ancoded; e “a+ b” I
phar "dpdr = decoced;
100 int ok = O;
¥
& (whils ("aplo) | o
Fakr T .
charc;
== “mpir
50 f||.-_ mm 'I'I [
|
§ Foise Teue .
-t 1dp':r ---:
- -9 (9
False T|1_|u " o
alse — _
- ink digit_high = Hext_'valios®|++opr]];
Coverage f (gl nigh == -1 || cigit_low == -1}{

— |
. =alsd Tras X
elsa | H ok = 1 |
“dp¥r = 16 " chQil_high + digi _ 1
}
¥
|1m-|-_
r

=

“gpir = "I,
elurn G

nt cgi_dcodedchar "ancoded, char “decodad] | Wl
X
—— o]
100 char gt = dacoded; ~ “%3d” \

C rwp—y o

Fakr Trar -

75

ohimr o]
== *apir;
f ||.-_ m 'I'I.[

F ks

W

False Trus

»

50

|
X

[ﬂmi‘lr-: =="%"{

..

25

»

A ="";
’

¥

int digit_high = Hex vakies]"|{++opir]];

s
"ot = "agir int digit_kow = Hime Valoes"[++apal];
H (gl _high == -1 || Shgit_low == -1}

Coverage

— |
i Salsa Tras %
25 | ok=1:; l
"dpy = 16 * Qi _high + digi . i
]
L |
vl
i i

=

“dipir = I
maturn ok

intogi_docodedchor "enioded, char “decodoed |

X
J pivar opdT = onohoed;
char "oty = decoded;
100 rar e ‘m
1 b b
[b g |
75 (whin aptr o :
Fakse Thu -
char <
&= *apir;
50 f||.-_ m 'I'I.[
|
y obe P!
- dpr="";
2 (1w @) (@
Falso Trus .
sisa it dight_high = Hex_Vakios{™|++apr|];
0 E‘""T " o o it digit_low = Hi Valoes["[++apr];
Coverag i (chgt_nigh == -1 || cigit_low == -1} |

- |
§ LT Tnas %
sE ok=1;
“dptr =16 " il _high + digik - i
]
L |
|1m-|-_
i i

=

“dipir = I
mturn ok

COMPUTING COVERAGE

+ Coverage Is computed automatically while the program executes

+ Requires instrumentation at compile time

For example with GCC, use options
-ftest-coverage -fprofile-arcs

+ After execution, coverage tool assesses and summarizes results

Again with GCC,
use gcov source-f1ile to obtain readable .gcov file

GCOV COVERAGE OUTPUT FOR cgi_decode

Number of executions

30 :
38 :
1:
29:
3:
3:
50
s
1:
2o
38
&
4

int ok = @;

while (*eptr) /* loop to end of string (@' character) */

{

b

char c;
C = *eptr;
if (c="+'24{ /* "+'" maps to blank */
*dptr = ° 7§
} else if {c == "%") { 7* "%xx" is hex for char xx */
int digit_high = Hex_Values[*(++eptrl];
int digit_low Hex_Values[*(++eptr)];
if (digit_high == -1 || digit_low == -1)
ok = 1; /* Bad return code */
else
*dptr = 16 * digit_high + digit_low;
} else { /* All other characters map to themselwes */
*dptr = *eptr;
}

++dptr;, ++eptr;

dptr = "\@'; / Null terminator for string */
return ok

ADEQUACY OF A TEST SUITE

1. Statement testing Is a simple criterion

2. Branch testing is another a criterion.
It subsumes statement testing.

—If the branch testing criterion is satisfied by a pair (program, test
suite), then so Is the statement testing criterion for the same pair.

intogi_docodedchor "enioded, char “decodoed | |

101

76

51

25

Coverage

“+%0d+%4]" |

J Ciar “opir = oronded;
cirar "aodr = dboohad;
int ok =0;

C rwp—y o

Fakr Trar -

ohimr o]
== *apir;
f ||.-_ m 'I'I.[

F ks

W

|
X

[-I-IHIH [c=="%"7{
T

Trus

“iplr = I,
el ok

int digit_high = Hex vakies]"|{++opir]];
int digit_low = Hio Values["[++apir];

i (g _high == -1 || cigil_low == 1]
s |

@
*dpwr = 16" cigil_high ﬂ.;l:ig"

) If the conditional fails and the failure case coding is

100%, even though there is a defect

1missing, statement coverage would still get to
v ipir
|1m]1-.
)

intogi_dotodeichor "enoodes, char “decodod|

J Ciar “opir = oronded;
cirar "aodr = dboohad;
it ok =0;

(whils :'up"?[|
=

“+%0d+%4]" |

int digit kow = Hos Waloes"[++apir);
i (gl Fegh == -1 || Sl low == -1]

it digit high = Hex Vakios{™|++apr]]:

elsa |

‘dp¥r = 1€ * GQil_high + digk

- v cipr
“Gplr = i
mturn ok ,, i
k

intogi_docodedchor "enioded, char “decodoed |

“+%0d+%4]" |

¥
J pmar oo = ancoded;
100 veokeg,
75
50
25
int digit_high = Hex vakies]"|{++opir]];
0 int digit_low = Hi_ Values]"[++opr);
i (gl Ngh == -1 || ckZl low==-1]
Coverage

alse |
“dpr = 16 " dhgit_high + digk
}

(=2 ' 0 = Y

intogi_docodedchor "enioded, char “decodoed |

“+%0d+%4y’

{ friar “Edr = oronehed; . \
cidr "t = deaC ook
100 int ok = O;
75
50 7)
. |
o “dpr =T
25 o (c=="%"{ E \)
T
int digit_high = Hex vakies]"|{++opir]];
0 int digit_low = Hi_ Values]"[++opr); »
COVGT&g¢ i (gl Rgh == -1 |] &l low==-1]{

alse |
“dpr = 16 " dhgit_high + digk
}

[:;f.';;fv' 0 = Y

BRANCH TESTING

+ Adequacy criterion:

each branch 1n the CFG must be executed at
least once

+ Coverage: # executed branches
branches

+ Subsumes statement testing criterion because traversing all edges
Implies traversing all nodes

+ Most widely used criterion in industry

TEST CRITERIA

Basic condition criterion is
not comparable with
branch or statement
coverage criteria.

Neither implies
(subsumes) the other.

-
of
4 1

subsumes

Theoretical Criteria

Practical Criteria

CONDITION TESTING
4+ Consider
(digit_high == 1 || digit_low == -1)

+ Branch adequacy criterion can be achieved by changing only digit_1ow
l.e., the defective sub-expression may never determine the result

+ Faulty sub-condition is never tested although we tested both outcomes of
the branch

+ Key idea: cover individual conditions in compound boolean expressions
e.g., both parts of digit_high == 1 || digit_low == -1

CONDITION TESTING

+ Adequacy criterion

each basic condition must be evaluated at least
once

+ Coverage:

truth values taken by all basic conditions
2 * # basic conditions

+ In cgi_decode, Test Case “test+%9k%k9"” gives 100% basic condition
coverage, but only 87% branch coverage

TEST CRITERIA

Basic condition criterion is
not comparable with
branch or statement
coverage criteria.

Neither implies
(subsumes) the other.

=
of
4 1

subsumes

Theoretical Criteria

Practical Criteria

subsumes

TEST CRITERIA

Expanding the test criteria
to cover both branch and
condition testing by
covering all conditions
and all decisions.

* Every sub-condition
must be true and false,
as well as the entire
condition.

Theoretical Criteria

Practical Criteria

subsumes

TEST CRITERIA

Compound condition -
testing considers all :
possible combinations. a

Theoretical Criteria

Practical Criteria

COMPOUND CONDITION TESTING EXAMPLE

+ Consider
Test Case) b c d ¢
(((a Vb)) Acvd Ae) (17 True - True E True
{2y False | True | True - True
. _ 13 True e False | True | Truoe
+ This requires 13 tests (4y | False True | False | True | True
to cover all possible (3) | False | False | - | True | Truoe
: : (&) True - True E False
combinations (7) | False | True | True | — | False
(%) | True - False | True | False
. (9% False True | False | True | False
+ In general, this involves (107 False False | - | True | False
a combinatorial explosion! (11} | True - | False | False | -
. . (12 False True | False | False -
+ Why compound condition testing is a (13 | False False ~ False B

theoretical, rather than a practical,
criterion

> ©
subsumes E
O
TEST CRITERIA s
T
o
(D)
L
|_
Modified

Condition/Decision
Coverage testing

Practical Criteria

MCDC TESTING
MODIFIED CONDITION DECISION COVERAGE

+ Key idea: Test important combinations of conditions, avoiding
exponential blowup

+ A combination is “important” if each basic condition is shown to
Independently affect the outcome of each decision

MC/DC TESTING
MODIFIED CONDITION DECISION COVERAGE

4+ For each basic condition C, we need two test cases: T1 and T2

+ Values of all evaluated conditions except C are the same

+ Compound condition as a whole evaluates to
TRUE for T1and FALSE for T2

+ A good balance of thoroughness and test size (and therefore widely
used)

+ used In avionics software development guidance DO-178B, DO-178C
to ensure adequate testing of the most critical (Level A) software

MC/DC TESTING
MODIFIED CONDITION DECISION COVERAGE

For (((a v b)) Ac)vd A e)

We need six tests to cover MCDC combinations to effect 100% coverage

| a h C d ¢ | Decision
(13 | True - True | - True True
(2) | False True @ True - | Troe True
(3) | Troe - False | True | True True
(6) | True - | True | - | False | False
(11} | True - False | False . False
(13) | False False - | False | - False

Underlined values independently affect the outcome of the decision.

subsumes

TEST CRITERIA

Theoretical Criteria

Practical Criteria

BEYOND INDIVIDUAL BRANCHES: PATH TESTING

+ Key idea: explore all paths in the
code

+ 1.e., sequences of branches

+ Since loops give rise to an
unbounded number of paths, this
IS generally not feasible and
therefore just a theoretical

criterion.

+ Its advantage, though, Is that it
subsumes almost all criteria

subsumes

TEST CRITERIA

Boundary interior
testing groups together

__paths that differ only in
the sub-path they follow
when repeating the
body of a loop.

Theoretical Criteria

In other words, we
follow each path in the
CFG up to the first
repeated node.

Practical Criteria

BOUNDARY INTERIOR ADEQUACY FOR cgi_decode

A A
¥ ¥
B « B
r ¥ A ¥
il C M C
¥ = ¥ -
D E D E
e 'Y e A
F G F G
/4 ;\.
H | H |
4/ v v v v
> L - g L L L L
b b L4 b4
E =] B B

Original CFG Paths to be covered

BOUNDARY INTERIOR TESTING: ISSUES

—-

2

AUA VAR
AT

+ The number of paths may still grow
exponentially

+ In this example, there are 24 = 16 paths

+ Forcing paths may be infeasible
or even impossible if conditions are not
Independent

+ Therefore, boundary interior testing
belongs more to the “theoretical” criteria.

subsumes

TEST CRITERIA

Theoretical Criteria

Loop boundary
testing imposes
constraints on how
often loops are to be
executed.

Practical Criteria

LOOP BOUNDARY ADEQUACY

+ A test suite satisfies this criterion if for every loop L.
+ There iIs a test case that iterates L zero times
+ There Is a test case that iterates L once
+ There Is a test case that iterates L more than once

+ Typically combined with other adequacy criteria such as MCDC

e

| intogi_dotodeichor "enoodes, char “decodod| |
3 Test Cases Eﬁ:'ﬁﬁ:ﬁﬂi @ -
Satisfy the LBA ("™
Criterion for (“,,g,,,ﬂ@

cgi_decode’s R
Main Loop — [f;,-;f'.:-.,l Q
% Faks Trus & o
I TI— @ E'l:lp‘.r...: @
False Trus . o

'_H'“') F it digit high = Hex Vakios{™|++apr]]: G
“diptr = “apr: it digit bow = Hize Valoes[[++aov;
. i (gl hgh == -1 || Gl low == -1]{
1
= T
¥ ol 543 e *
25 | H ok=1; |
"dpdr = 16 " & high + digk o i

subsumes

TEST CRITERIA

Theoretical Criteria

Linear Code Sequence
And Jump

Practical Criteria

LCSAJ ADEQUACY
LINEAR CODE SEQUENCE AND JUMP

+ Testing all paths up to a fixed length

+ A LCSAJ is a sequential subpath in the CFG starting and ending in a
branch

LCSAJ length corresponds to
1 statement coverage
2 branch coverage

coverage of n
consecutive LCSAJs

00 path coverage

SATISFYING CRITERIA

Test criteria are not always satisfiable:

1. Statements may not be executed because of defensive programming
or code reuse

2. Conditions may not be satisfiable because of interdependent
conditions

3. Paths may not be executable because of interdependent decisions

SATISFYING CRITERIA

+ Reaching specific code can be very hard!

+Even the best-designed, best-maintained systems may contain
unreachable code

+ A large amount of unreachable code/paths/conditions is a serious
maintainability problem

+ Options:
+ Allow coverage less than 100%,
+ Require justification for exceptions

MORE TESTING CRITERIA EXAMPLES/OPTIONS

+ Object-oriented testing
+ Every transition in the object's FSM must be covered
+ Every method pair in the object's FSM must be covered

+ Interclass testing
+ Every interaction between two objects must be covered

+ Data flow testing
+ Every definition-use pair of a variable must be covered

DATA FLOW TESTING:

COMPUTING THE WRONG VALUE LEADS TO FAILURE ONLY WHEN THAT

VALUE IS LATER USED

int ogi_decodeichar “encoded, char “decodod]

+ Typical data flow testing
criterion

the tests must
exercise every pair
(definition, uses) of a
variable

definitions

¢ ey @-

Falkss Trias -
chir g C
&= "apln
|'||.-_ LR] 'l'l l

I'allwA

Falsa True

L d

25

§

USES

“wptr NuT
mh

. . int digit high = Hex Waloos]™|+]
tplr = “eplr; (F) int digit_low = Hi Values["[+JBprif;
HiEgh Fagh == -1 || Gl low -

5 |
"dpir = 16 * dhgil_high = digit_kok

