
DEBUGGINGF. Tip and

M. Weintraub

Thanks go to Andreas Zeller for allowing incorporation of his materials

THE PROBLEM

2

FACTS ON DEBUGGING

 Software bugs cost ~$60B per year in US

 Improvements could reduce cost by 30%

 Validation (including debugging) can easily eat up to 50-75% of

the development time

 When debugging, some people are three times as efficient than

others

What do we do with this??

THE DEVIL’S GUIDE TO DEBUGGING

(OR, SADLY, HOW MANY APPROACH THE PROBLEM)

 Find the defect by guessing:

 Scatter debugging statements everywhere

 Try changing code until something works

 Don’t back up old versions of the code

 Don’t bother understanding what the program should do

T

R

A

F

F

I

C

THE DEVIL’S GUIDE TO DEBUGGING

Don’t waste time understanding the problem.

Most problems are trivial, anyway.

(and, who’s going to notice besides?)

T

R

A

F

F

I

C

THE DEVIL’S GUIDE TO DEBUGGING

Use the most obvious fix.

Just fix what you see:

x = compute(y)

// compute(17) is wrong – fix it

if (y == 17) // workaround

x = 25.15

Why bother going into compute()?

T

R

A

F

F

I

C

HOW TO DEBUG
(SOMMERVILLE 2004)

Locate Error

Design Error Repair

Repair Error

Re-test Program

THE PROCESS

T

R

A

F

F

I

C

rack the problem

eproduce

utomate

ind Origins

ocus

solate

orrect

TRACKING PROBLEMS

T

R

A

F

F

I

C

TRACKING PROBLEMS

1. Every problem gets entered into a problem database

2. The priority determines which problem is handled next

3. The product is ready when all problems are resolved

T

R

A

F

F

I

C

PROBLEM LIFE CYCLE

T

R

A

F

F

I

C

REPRODUCE

Program

Data

Interaction

Communication

Randomness Operating System

Concurrency

Physics

Debugger

T

R

A

F

F

I

C

AUTOMATE

T

R

A

F

F

I

C

AUTOMATE

// Test for host
public void testHost() {

int noPort = -1;
assertEquals(askigor_url.getHost(), "www.askigor.org");
assertEquals(askigor_url.getPort(), noPort);

}

// Test for path
public void testPath() {

assertEquals(askigor_url.getPath(), "/status.php");
}

// Test for query part
public void testQuery() {

assertEquals(askigor_url.getQuery(), "id=sample");
}

T

R

A

F

F

I

C

AUTOMATE

1. Every problem should be reproducible automatically

2. Achieved via appropriate (unit) tests

3. After each change, we re-run the tests

T

R

A

F

F

I

C

FINDING ORIGINS

1. The programmer creates a

defect in the code.

2. When executed, the defect

creates an infection.

3. The infection propagates.

4. The infection causes a failure.

T

R

A

F

F

I

C

✘

✘

✘ ✘

Variables

This infection chain must be traced

back – and broken. t

✘

Not every defect creates an infection – not every infection results in a failure

FINDING ORIGINS

T

R

A

F

F

I

C

t

Variables

✔

✘

State Transitions

t

THE DEFECT

T

R

A

F

F

I

C

t

Variables

✔

✘ t

✘

FINDING ORIGINS

1. We start with a known

infection (say, at the failure)

2. We search the infection in

the previous state

T

R

A

F

F

I

C

✘

✘

✘ ✘

Variables

t

✘

T

R

A

F

F

I

C

T

R

A

F

F

I

C

SEARCH

T

R

A

F

F

I

C

FOCUS

During our search for infection, we focus upon locations

that

1. Are possibly wrong

(e.g., because they were buggy before)

2. Are explicitly wrong

(e.g., because they violate an assertion)

Assertions are the best way to find infections!

T

R

A

F

F

I

C

FINDING INFECTIONS

class Time {
public:

int hour(); // 0..23
int minutes(); // 0..59
int seconds(); // 0..60 (incl. leap seconds)

void set_hour(int h);
…

}

Every time between 00:00:00 and 23:59:60 is

valid

T

R

A

F

F

I

C

FINDING ORIGINS

void Time::set_hour(int h)
{

assert (sane()); // Precondition
…
assert (sane()); // Postcondition

}

bool Time::sane()
{

return (0 <= hour() && hour() <= 23) &&
(0 <= minutes() && minutes() <= 59) &&
(0 <= seconds() && seconds() <= 60);

}

T

R

A

F

F

I

C

FINDING ORIGINS

sane() is the invariant of a Time object:

 valid before every public method

 valid after every public method

bool Time::sane()
{

return (0 <= hour() && hour() <= 23) &&
(0 <= minutes() && minutes() <= 59) &&
(0 <= seconds() && seconds() <= 60);

}

T

R

A

F

F

I

C

FINDING ORIGINS

 Precondition fails = Infection before method

 Postcondition fails = Infection after method

 All assertions pass = no infection

void Time::set_hour(int h)
{

assert (sane()); // Precondition
…
assert (sane()); // Postcondition

}

T

R

A

F

F

I

C

COMPLEX INVARIANTS

class RedBlackTree {
…
boolean sane() {

assert (rootHasNoParent());
assert (rootIsBlack());
assert (redNodesHaveOnlyBlackChildren());
assert (equalNumberOfBlackNodesOnSubtrees());
assert (treeIsAcyclic());
assert (parentsAreConsistent());

return true;
}

}

T

R

A

F

F

I

C

ASSERTIONS

t

✔

✘ t

✔
✔
✔
✔
✔
✔
✔

✔
✔
✔
✔
✔
✔
✔

✔
✔
✔
✔
✔
✔
✔

T

R

A

F

F

I

C

FOCUSING

 All possible influences must be checked

 Focusing on most likely candidates

 Assertions help in finding infections fast

T

R

A

F

F

I

C

ISOLATION

 Failure causes should be

narrowed down systematically

 Use observation and experiments

T

R

A

F

F

I

C

USING OBSERVATIONS BASED ON EXPERIMENTS IS

THE SCIENTIFIC METHOD

1. Observe some aspect of the universe.

2. Invent a hypothesis that is consistent with the observation.

3. Use the hypothesis to make predictions.

4. Tests the predictions by experiments or observations and

modify the hypothesis.

5. Repeat 3 and 4 to refine the hypothesis.

T

R

A

F

F

I

C

T

R

A

F

F

I

C

Hypothesis

Problem Report

Code

Run

More Runs

Prediction Experiment
Observation

+ Conclusion

Hypothesis is supported:

refine hypothesis

Hypothesis is rejected:
create new hypothesis

Diagnosis

Scientific Method

T

R

A

F

F

I

C

Hypothesis

Prediction

Experiment

Observation

Conclusion

EXPLICIT HYPOTHESES

T

R

A

F

F

I

C

The execution causes a[0] = 0

At Line 37, a[0] = 0 should hold.

Observe a[0] at Line 37.

a[0] = 0 holds as predicted.

Hypothesis is confirmed.

T

R

A

F

F

I

C

ISOLATE

We repeat the search for infection origins until we found the defect

1. We proceed systematically along the scientific method

2. Explicit steps guide the search – and make it repeatable at

any time

CORRECTION

Before correcting the defect, we must check whether the defect

 actually is an error and

 causes the failure

Only when we understood both, can we correct the defect

T

R

A

F

F

I

C

SUCCESSFUL CORRECTION

T

R

A

F

F

I

C

THE PROCESS

T

R

A

F

F

I

C

rack the problem

eproduce

utomate

ind Origins

ocus

solate

orrect

AUTOMATED DEBUGGING
(WS 2016/17)

43

