
What is Procedural Content Generation?
Mario on the borderline

Julian Togelius, Emil Kastbjerg, David Schedl and Georgios N. Yannakakis
IT University of Copenhagen

Rued Langgaards Vej 7
Copenhagen, Denmark

{juto, eeka, dasc, yannakakis}@itu.dk

ABSTRACT
We try to clarify the concept of procedural content genera-
tion (PCG) through contrasting it to other forms of content
generation in games with which it could easily be mistaken,
and through discussing some properties of PCG which are
sometimes thought of as necessary but are actually not. Af-
ter drawing up some clear demarcations for what is and what
is not PCG, we present two versions of a content genera-
tion system for Infinite Mario Bros which is intentionally de-
signed to question these same demarcations. We argue that,
according to our own definition, one version of the system is
an example of PCG while the other is not, even though they
are mostly identical. We hope that this paper answers some
questions but raises others, and inspires researchers and de-
velopers to thread some less common ground in developing
content generation techniques.

1. INTRODUCTION
Procedural content generation (PCG) in games refers to

the creation of game content automatically using algorithms.
Some famous examples are the dungeon generation in Rogue
(AI Design 1980) (and successors such as Diablo (Blizzard
1996), the map generation in Civilization (MicroProse 1991),
the weapon generation in Borderlands (Gearbox 2009) and
the vegetation generation by the SpeedTree (Interactive Data
Visualization 2003) software, included in many modern games.
However, this definition is far from precise (could be both
too exclusive and too inclusive) and the examples cited are
not representative of the most interesting research on PCG
that goes on today.

It would be futile to hope to come up with a definition
of procedural content generation in games that everybody
agrees on. PCG has been attempted by too many people
with too many different perspectives for this to happen. A
graphics researcher, a game designer in the industry and an
academic working on artificial intelligence techniques would
be unlikely to agree even on what “content” is, and much
less which generation techniques to consider interesting. We

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PCGames 2011 June 28, 2011, Bordeaux, France
Copyright 2011 ACM 978-1-4503-0023-0/10/06 ...$10.00.

argue that PCG is a concept with fuzzy and unclear bound-
aries. Besides, exact definitions of concepts are common
only in mathematics.

This, however, is no reason to try to clarify the concept
of procedural content generation and delineate the field a
bit. Probing the borders of the field could generate useful
discussion, and maybe identify understudied topics and new
methods.

The current paper tries to do exactly this. Our strat-
egy is to first give a few examples of what PCG is not,
and some examples of what PCG is sometimes taken to be,
but is not necessarily. It is expected that some readers will
disagree with these statements, and hoped that these dis-
agreements will seed interesting discussions. The discussion
here is meant to complement the taxonomy of PCG given
in [9, 10], and we believe the distinctions drawn here to be
fully compatible with that taxonomy. PCG algorithms are
classified in four main clusters according to the taxonomy
presented in this paper.

Next, we describe a small PCG-like system that was built
around the popular Infinite Mario Bros framework used in
the Mario AI Championship, and designed intentionally to
uneasily straddle the borders drawn up in the previous dis-
cussion. To make matters worse, two versions of this system
were constructed, which differ in important respects related
to these examples. It is entirely possible to argue that both
versions of the system presented here are procedural content
generators, that only one of them is (even though they are
very similar in most respects), or perhaps that none of them
is.

1.1 What PCG is not: offline player-created
content

Many games contain, or come with, some form of content
editors. These could be map editors, level editors, character
editors (both for appearance and for traits relevant to the
game mechanics), item editors and so on. Sometimes there
can be much satisfaction to be had from the assemblage and
editing of the content itself, quite regardless of its use in
the game; a good example of this is Spore (Electronic Arts
2009), a game which was preceded by a separate release of a
limited version of its creature creator. The creature creator
was free to download and became a very popular game-like
toy in its own right; likely, many more people “played” the
creature creator than those who played the full game, which
features the creature creator.

Some game editors are connected to online systems for
sharing the player-created content. A recent very successful

example of this is LittleBigPlanet (Sony 2009), where the
level editor allows uploading of completed levels to a central
server, and another interface allows the browsing, download-
ing and playing of levels created by other players. However,
the history of sharing user-created levels goes back at least
to Doom (id Software 1993). Spore also features mecha-
nisms for sharing player-created content, including creatures
and whole planets. (A non-trivial amount of the uploaded
Spore creatures bear clear resemblance to human male ex-
ternal reproductive organs, a fact which might explain why
some game developers are reluctant to include mechanisms
for sharing of player-created content.)

At this point, it would be easy to say that player-created
content is not procedurally generated content because the
content is created by human players. However, there are
PCG algorithms that feature significant human input. In
the mixed-initiative paradigm, a human and an algorithm
or a set of algorithms cooperate on creating content, e.g.
through taking turns. Examples include the Tanagra system
for level generation in 2D platform games, where a human
designer draws part of a level and a constraint satisfaction
algorithm is used to generate parts of the level that accom-
modate the human-generated part while retaining playabil-
ity [6]; and the Sketchaworld framework for creating land-
scapes and cityscapes on multiple levels of detail, where a
set of PCG algorithms ensure the consistency of the world
on levels below that currently being edited [5].

The difference between mixed-initiative PCG and level ed-
itors seems to be the directness of the editing. In a typical
level editor, there is a direct, immediate and typically local
connection between what the user does and how the con-
tent changes. In contrast, a (mixed-initiative) PCG system
involves a non-trivial amount of computation (the “procedu-
ral” part of PCG) between the user input and the content
change; the change might not be immediate, not local and
not direct in the sense that it is not straightforward for the
human to predict the exact changes that will come about as
a result as a particular input.

1.2 What PCG is not: online player-created
content

Many games are about building things. In particular, this
goes for strategy games and God games. An extreme exam-
ple is Sim City (Maxis 1990), where all of the gameplay is
about building and maintaining a city. There are no pre-
determined goals, and the game even includes functions for
destroying the city in fanciful ways, such as earthquakes
and monster invasions. Given the lack of goals, it could
be argued that Sim City is not really a game, and in fact
its creator Will Wright has claimed that he is building toys
rather than games. (An even more extreme version of this
freeform building approach to games/toys is the recent indie
game phenomenon Minecraft (Markus Persson 2010).)

However, even strategy games with clear goals, such as
Civilization, feature building as a key element of the game.
In Civilization, the player has considerable freedom in steer-
ing his civilization in whatever direction he or she wants,
building and naming cities, building facilities and troops in
cities and connecting them with roads, and guiding scien-
tific development. For many players, the building process is
the main and most enjoyable part of gameplay, and military
conflict is of secondary importance; the military conflict is
based on the civilization that the player has already built,

and the building phases of the game can thus be consid-
ered as content generation for the military conflict phases.
(Though there is no clear separation between phases, and
city/road building can be performed for tactical as well as
strategical reasons.)

Further, the effects of the player’s action are rather in-
direct: the player can control where to place a city, but
cannot directly control how fast it will grow or how much
it will produce (this depends on game mechanics specified
by the designer and opaque to the player). A similar situa-
tion applies to Sim City, and the non-directness is arguably
what turns Sim City into a successful game/toy rather than
an editor. It would, therefore, qualify as PCG according to
the discussion in the previous section.

For precisely this reason we propose to rather arbitrarily
stipulate that if the human input to the content generator is
part of a game, and the player directly intends to create con-
tent in the game, it is not procedural content generation. We
draw this line simply to make sure that PCG is something
distinct from strategy game gameplay. This is of course not
to say that PCG could not exist in strategy games: in fact,
the (non-interactive) map generation at the beginning of a
Civilization game is a good example of PCG. It could also
be argued that the development of the non-player civiliza-
tions is an example of online PCG, as their development is
informed by the player’s actions, but the player cannot pre-
dict in detail how non-player civilizations will respond. To
put it succinctly, a player can decide where to place his/her
own city, but not where the opponent places it’s city.

1.3 What PCG might and might not be: ran-
dom

The Civilization map generator is often casually described
as a random map generator. Likewise, the dungeon genera-
tion in Rogue and the level generation in Infinite Mario Bros
(Markus Persson 2009) are often referred to as random map
generation. These are somewhat problematic statements —
what does “random” mean in this context?

It presumably does not, or at least should not, mean that
the generated content is an assortment of design elements
(islands, walls, monsters, platforms) spread more or less uni-
formly over some play area without any regard to structure.
Such content would simply be unplayable, and this is in
fact not how the aforementioned content generators work.
In fact, almost all existing content generators (including
those of Rogue and Infinite Mario Bros) include provisions
to ensure playability and promote engagement by creating
content that somehow adheres to rules (such as that there
should be a path from entrance to exit, all islands should
have some resources etc).

A much better interpretation of randomness in this con-
text is that the generators include some stochasticity: there
are strong constraints on what kinds of content can be gener-
ated, but that within these constraints the content can vary
according to some pseudo-random process. This is true for
most PCG implementations that we know of.

However, there is no reason that a content generator needs
to include stochasticity. (Though note the dissenting opin-
ion of Roguelike developer Andrew Doull, whose definition
of PCG includes randomness [1].) One interesting example
of a deterministic content generator is the representation of
star systems in space trading/fighting game Elite (Acornsoft
1984). Due to memory limitations on home computers of the

day, it was impossible to explicitly store all the star system
information (names, coordinates and sizes of stars and plan-
ets, prices of common resources, frequency of pirates etc) in
working memory. Therefore, a PCG algorithm was devel-
oped that generated all of this information deterministically
from a single seed value, and the game universe was simply
stored as a list of seed values. PCG is here used as a form
of data compression.

Finally, it should be pointed out that “random” is not
the same as “statistically uniform”. PCG algorithms could
take parameters that affect either the constraints on gener-
ated content (e.g. the maximum damage of a weapon) or
the statistical properties of the stochastic process (e.g. the
probability of requiring non-standard ammunition) or both.
Biased or non-biased, randomness can act upon nominal,
ordinal or numerical scales.

1.4 What PCG might and might not be: adap-
tive

A particular case of parametrizable PCG is where the
parameters somehow depend on the player’s (or group of
players’) previous behaviour. This yields adaptive or player-
driven PCG, which is currently an active research direction
in academia [7, 2, 4] (see also [10] for an extensive review),
but is so far more or less absent from PCG in commercial
games. Adaptive PCG could have various motivations, such
as adjusting the difficulty level of the newly generated con-
tent to suit the estimated playing skill of the player, or to
generate more content similar to content the player seems
to have liked in the past.

The timescale at which adaptation occurs could conceiv-
ably vary immensely: between games, between levels or
even on a second-to-second level, though we do not know of
any example of the latter. (There are examples of second-
to-second non-adaptive PCG though, such as the iPhone
shooter Phoenix (Firi Games 2010). There are also many
games that feature online dynamic difficulty adjustment, but
this is usually much too simple to qualify as content genera-
tion.) Further, just as PCG in general could be determinis-
tic, it would certainly be possible to design a deterministic
adaptive PCG game, where the character of the newly gener-
ated content depends solely on the player’s previous action.

Let us now imagine a game with deterministic adaptive
PCG on a second-to-second scale. This means that new
game content is continuously created based solely on the
player’s recent actions. What differentiates this form of
content generation from “content created during gameplay”,
such as the placement of cities and roads in Civilization,
which we argued in section 1.2 was not PCG?

Our answer is again to do with intention: when a player
places a city in Civilization, it is because he or she has an
intention of placing a city there; were a PCG algorithm to
place a city, it would probably be as a result of something
else the player did. Of course, if the actions of the con-
tent generator are easy enough for the player to predict, the
player could use it as a gameplay device, and it would then
cease to be PCG.

2. DIRECT LEVEL GENERATION IN
INFINITE MARIO BROS

We now turn our attention from dichotomizing in the ab-
stract towards a very concrete project. Below, we will de-

scribe two versions of a method that was developed to do
PCG in ways which it is not usually done, and which un-
easily straddles the border between PCG and other forms of
content creation.

The implementation is based on Infinite Mario Bros, an
open-source Java clone of Nintendo’s classic platform game
Super Mario Bros. We have previously used this game as a
basis for a series of AI competitions [8] and also for a series
of experiments in adaptive level generation [3, 4]. Infinite
Mario Bros is very well suited to these kinds of experiments,
as the game mechanics and iconography are among the most
well-known of any game ever, and levels are natively repre-
sented as straightforward grids of blocks; each block is 8× 8
pixels and a standard screen is 22 × 15 blocks. In the ex-
periments presented in [3, 4], models were created of how
enjoyable players with different playing styles found differ-
ent levels. (Neural network models using level features and
gameplay features as input and delivering predicted player
engagement as output were trained based on forced choice
preference data from hundreds of players.) These models
were then used to automatically find level parameters that
were predicted to be as fun as possible for individual play-
ers, based on the playing style exhibited during the previous
levels.

In other words, in our previous experiments new levels
were created based on the playing style of the previous level.
This means a timescale of about a minute, given that rel-
atively short levels were produced. The generation was
stochastic and highly indirect: a player (even one who un-
derstood the general architecture of the content generator)
would be unlikely to understand what aspects of his playing
style in the previous level gave rise to any particular feature
of the new level (such as the frequency of gaps, much less
why there was a gap at a particular location).

The level generator we present here starts with doing away
the indirectness and almost all of the randomness that fea-
ture in our previous level generators. The game featuring
the level generator is playable online1 and we recommend
the reader to take a few minutes to play with it in connec-
tion with reading this paper.

2.1 Offline version
The offline version of the direct level generator starts with

letting the player play an ordinary level (of about two to
three minutes length) of the game, which has been randomly
generated using the standard level generator included with
Infinite Mario Bros. This level is meant to be easy to com-
plete, and merely make sure that there is some diversity
among the player’s actions. Initially completely flat levels
were used, but this meant that some players would only walk
from left to right and never press the jump or shoot button
(see figure 1). All actions taken by the player during game-
play are recorded with frame resolution (the game runs at
24 frames per second).

Following completion of the first level, a new level is gen-
erated for the player to play. The generation process starts
with a copy of the previous level. The level generator then
steps through the recorded actions of the player, and mod-
ifies the new level according to the actions taken. A sim-
ple set of rules determines how to modify the level at each
position depending on what action the player took at that
position. If there can be said to be an overarching princi-

1http://www.itu.dk/people/eeka/PCGMario.jar

!
!
!
!
!

"#$%&'(#)*!+$,-&,-!.&,&#)-/$,!/,!.)0&1! !2343! 5!
!
6)7/'!8%9&'*!),'!:0/*!;)1-<=&#>!

seconds depending on the system specs. The process is often based on 1000+ recorded values
(input, time and position), depending on how far the player made it in the previous level. The
input is this large because the position of Mario is recorded for each frame.

The algorithm has some inherent issues. If the player dies before having completed the level,
the next level will not have input from the position of the death and forward, thus, generating
a flat landscape from this position and onward. We first tried to solve this by reusing data
from previous games, but this approach still requires the player to finish a level at least once
to get a complete level. Our current solution for this problem is to wrap the data from the
previous level until the generated level is filled with terrain. Although it still faces some
problems when the player dies early at the beginning of the level, we think of this as a better
solution. Too short level data also results in a too repetitive terrain as shown in Figure 2.

If a player continuously play the levels generated by the offline version in a single session the
levels tends to grow upwards for each round because the player usually jumps higher and
higher from the platforms. Currently there is a maximum height to restrict the generation of
hills outside the game area, but this does not solve the general issue of the level growing
upwards.

Our first implementations generated content for the whole level including the start area and
this content co
game. We fixed this issue by defining a fixed flat area at the beginning of each level and also
in the end of the level for visual beauty.

The beauty of this algorithm is that the content generated is always passable by the player, as
landscape is restricted based on previous positions of the player. That is, if a player can jump
and generate a hill at his feet, the level generated based on this will not be higher than the
previous jump. Tanagra (Smith, Whitehead, & Mateas, 2010) uses constraint satisfaction to
make sure the level is consistent. We avoid this overhead.

Though, randomly placed tubes sometimes made the level impassable if placed on a steep hill
that is barely reachable (without the tube). A less aggressive tube placement algorithm solved
this issue, where the tubes can be overwritten by new actions.

F igure 2!
Figure 1: An almost flat part of a level used as initial
level. The tiny gaps require the player to at least
occasionally press either the jump or run button.

ple for the generator, it is balance or “a reaction for every
action”. The whole level generation process happens virtu-
ally instantly, and is invisible for the player. Each recorded
action is interpreted as follows:

• Jump button pressed: at positions where the jump
button was pressed, a block is created 64 pixels (4
blocks) above Mario. This block is randomly selected
to be either a question mark block with a power-up
inside, a question mark block with a coin inside or an
empty block.

• Jump button released: where the jump button was
released, the ground is modified. The modification de-
pends on Mario’s height and direction when the but-
ton was released. If Mario was in the lower half of
the screen, the ground of the level is raised below the
current position up to where Mario was standing. If
Mario was instead in the upper half of the screen, a
new platform is created below Mario. For the sake of
balance, a lethal gap in the ground is created in front
of every newly created stretch of ground or platform;
the width of the gap equals the height of the created
ground or platform. See figure 2 for an example of the
type of ground and platform modification performed
by the generator in response to jumping.

• Speed/fire button pressed: Where the speed/fire but-
ton was pressed, enemies are created a number of blocks
to the right of Mario (in the direction of Mario’s move-
ment). The enemy type is randomly selected among
all available types (Koopas, Goombas etc).

After each modification, numerous corrective actions are
performed by the generator to maintain consistency. This
includes removing pipes that miss one side because of ele-
vation changes and extending the supporting pillar for can-
nons that suddenly find themselves floating in thin air. All
of these actions are deterministic.

After the player has completed the newly generated level,
a new level is generated based on the previous level and the

!
!
!
!
!

"#$%&'(#)*!+$,-&,-!.&,&#)-/$,!/,!.)0&1! !2343! 5!
!
6)7/'!8%9&'*!),'!:0/*!;)1-<=&#>!

This level generation approach can be used in three different ways.

 O ffline generation. The player plays a level and the algorithm creates a new level
based on the input.

 Online generation as a gameplay mechanic. The player plays a level and the algorithm
instantly generates content in the game based on the input. The player literally
generates hills, gaps, enemies and obstacles as he play.

 Online generation as level design tool. You play the game in the same dynamic way
as above to create the level, but then save it as a static map and ship it with the game.

!
Online

Our online algorithm works by modifying the level currently in memory, while it is being
rendered and used by the game engine. The level is instantly updated based on the player
input. A modification of the level can occur whenever either of the following events happens
during gameplay: a button is pressed, a button is released, a button is held down during a
game tick or some event external to Mario happens in the game environment, such as a coin is

collected or an enemy is killed.

This algorithm is more or less separated in two areas

 The general outline of the level, i.e. grass, ground hills and gaps.
 The placement of enemies, canons, tubes, bricks and coins.

, whenever the jump button

is pressed, a block is created 64 pixels (4 blocks) above Mario. This block is randomly
selected among these:

 Question mark with a power-up inside
 Question mark with a coin inside
 Empty block

If Mario jumps the ground is modified when the jump button is released. Depending on the
height and the direction of Mario different modifications are applied:

 -position is below half of the screen-height the ground level gets modified.
 If Mario is above the mid-screen line a second floor is generated (Hills).

The modification always affects a region around the player. The more height Mario gains the

F igure 1
Figure 2: Ground raised and platforms created in re-
sponse to recorded presses and releases of the jump
button. Note the large gap to the right of Mario,
the width of which matches the raised and/or cre-
ated segments to the left.

actions taken by the player. This goes on for as long as
the player wants, potentially leading to ever more intricate
levels.

2.2 Online version
The offline generator works at roughly the same timescale

as our previous level generation experiments — one level, or
about a minute. Next, we decided to drastically shorten this
timescale. In the online version of the generator, the same
generation process is carried out as in the offline version.
Additionally, two additional rules are added to the generator
ruleset:

• Coin collected: where coins were collected, enemies are
created to the right of Mario (in the same way as where
the speed/fire button was pressed).

• Enemy stomped: where enemies were stomped, coins
are placed either to right or left.

The above two rules taken together ensure a balanced
game: the more coins the player collects, the more enemies
are added to the next level, and the more enemies are added
the more coins are collected.

The most important difference, however, is that instead
of waiting until the next level is generated the modifications
happen instantly on the level currently being played. This
means that ground literally appears below the feet of Mario,
gaping holes appear in front of him and enemies and coins
spawn out of thin air, all in immediate response to the ac-
tions taken. Figure 3 illustrates what happens when a long
row of coins have just been collected: this greed is punished
by unleashing a veritable onslaught of enemies.

2.3 Player reactions
Both versions of the game were tested on a handful of stu-

dents and academics at the IT University of Copenhagen.
The offline level generator was relatively straightforward to

Figure 3: Enemies created in response to coins col-
lected.

play for most subjects. In fact, unless told so, most play-
ers did not realize that the second level was created based
on their own actions in the previous level. Some players re-
marked that the first level was boring, and subsequent levels
were strange and often unpredictable, with easy segments
mixed up with very hard segments.

The online version took all players by surprise. The level
changing in real time is nothing you expect from a game, es-
pecially not a game strongly resembling a very well-known
game for which the player already has a mental model. In
particular, nobody expects local changes relating to player
actions. Some players burst out laughing at the absurd-
ness of it all. Most players found the online version hard to
play, and the rules for content generation hard to compre-
hend even though they are actually very simple. This was
probably both because of the discord between the estab-
lished mental model of Super Mario Bros and the events on
screen, and because there is sometimes very much happening
on screen when playing with the online content generator.

2.4 Issues and possible future developments
While the individual modifications are quite simple in na-

ture, the compounded effect of several modifications might
have undesirable effects. When several levels are played in
sequence with the offline generation mode, the height of
ground and platforms tends to rise for each level, due to
the effects of the ground being raised and platforms created
multiple times above each other. Currently this issue is han-
dled by specifying a maximum height at which platforms can
be generated, but a better solution would be to occasionally
lower the whole level so as to keep a medium height. For the
offline generation one issue is how to deal with few recorded
data in cases where the player is dying too early in the pre-
vious level. Another issue is that the placement of pipes and
cannons can, in conjunction with the raising of ground and
opening of gaps, sometimes make levels unplayable. This
could be solved simply by adding more constraints on the
pipe and cannon placement. It should be noted, though,
that the algorithm never generates gaps that are too wide
to jump over, as the gap is never wider than the length of

the jump that preceded it.
The ideas behind this level generator could be extended

to other games. It is quite possible to imagine a first person
shooter map where more non-player characters are spawned
in places where the player picked up items in the last level
and items spawned where the player previously took dam-
age, or a strategy game where the map geometry changes
between turns to reflect which parts of the map are used
or not used by the units. However, getting these designs to
work in actual games is another matter.

2.5 Discussion
The level generation described above is quite different

from all PCG examples we know of. So, is it still PCG?
We would argue that, according to our discussion in the
first part of the paper, the offline version is an example
of PCG, whereas the online version is probably a tool for
player-created content.

Comparing the offline version of the current generation
to our previous experiments (see [4]), the level generation
is still adaptive to the actions of the player in the previous
level and arguably even more so, as the adaptation is not
only based on high-level metrics (the number of times the
player jumped, proportion of time spent running, etc.) but
on the position of each particular action. There is still some
degree of randomness, though much less than in our pre-
vious experiments. It is in theory possible to predict and
intentionally shape the next level (as the effects of actions
are local and quite direct) by conducting actions in the cur-
rent level, but we seriously doubt whether human memory
capacity is enough for this.

The online version is another matter. The effects of ac-
tions on the level are not only local and relatively direct,
but also instant. As the results of all actions up until the
current one are visible and exploitable by the player, it is
possible to intentionally modify the level either in order to
progress through the game or to just edit the level as the
player sees fit. In other words, if the player has the intention
to complete the level, it is most appropriate to see the level
generator as a gameplay mechanism and the generated levels
as content generated during gameplay, similar to Minecraft
or Civilization. If the player has the intention to create an
interesting level rather than just play it through to the end,
it is more appropriate to think of the level generator as an
interactive level editor and the generated levels as player-
generated content, similar to the editors in LittleBigPlanet
or Spore.

3. WHAT IS PROCEDURAL CONTENT
GENERATION, AGAIN?

Let us revisit the sentence that started this paper: Proce-
dural content generation (PCG) in games refers to the cre-
ation of game content automatically using algorithms. For
the reader who agrees with the arguments made so far in
the paper, or at least with the conclusions of those argu-
ments, this definition becomes too broad, as it encompasses
things that we do not consider PCG — in particular, con-
tent created directly by players in an editor or as part of
gameplay, but assisted by algorithms. At the same time,
the definition could be too narrow: the word “automatic”
could suggest that the designer or player’s input can not be
considered by a PCG algorithm, which would exclude both

adaptive and mixed-initiative approaches to PCG. In fact,
some input from a designer or player is typically required for
the generation of content, even if it so simple as clicking the
“start” button. We can therefore tentatively redefine PCG
as the algorithmical creation of game content with limited or
indirect user input. Note that this definition does not con-
tain the words “random” and “adaptive”, as PCG methods
could be both, either or none.

4. CONCLUSIONS?
In this paper, we have tried to clarify what procedural

content generation is by first talking about what it is not
and what it is only sometimes. We have then described two
versions of a level generator that was designed to do content
generation in a way it is not typically done, and to test the
limits of PCG as we have just defined it. It turns out that
the way we have defined PCG, one version of the content
generator falls inside the demarcation while the other (which
works identically but on a different timescale) falls outside.
This way, we hope to have helped you and us understand
what we talk about when we talk about procedural content.

Of course, one might also take the view that all these
demarcations are rather phony — after all, who cares how we
choose to apply the rather artificial label“procedural content
generation”? What matters is individual algorithms, designs
and ideas. This is an entirely reasonable position. However,
discussions such as the current can be valuable also as a
way of charting the research field and point to overlooked
combinations of ideas. Such as the generator presented here,
which is the only example we know of a both adaptive and
direct level generator, and also the only example we know of
an almost deterministic online generator. We hope to have
inspired you similarly to explore new directions in PCG,
even if you do not agree with the distinctions we have drawn
and the arguments we have made.

5. ACKNOWLEDGMENTS
This research was supported in part by the Danish Re-

search Agency, Ministry of Science, Technology and Innova-
tion; project name: Adaptive Game Content Creation using
Computational Intelligence (AGameComIn); project num-
ber: 274-09-0083. Thanks to Noor Shaker for additional
input.

6. REFERENCES
[1] A. Doull. The death of the level designer, 2008.

[2] E. Hastings, R. Guha, and K. O. Stanley. Evolving
content in the galactic arms race video game. In
Proceedings of the IEEE Symposium on
Computational Intelligence and Games (CIG), 2009.

[3] C. Pedersen, J. Togelius, and G. N. Yannakakis.
Modeling Player Experience for Content Creation.
IEEE Transactions on Computational Intelligence and
AI in Games, 2(1):54–67, 2010.

[4] N. Shaker, G. N. Yannakakis, and J. Togelius.
Towards Automatic Personalized Content Generation
for Platform Games. In Proceedings of Artificial
Intelligence and Interactive Digital Entertainment
(AIIDE’10), pages 63–68, Palo Alto, CA, October
2010. AAAI Press.

[5] R. M. Smelik, T. Tutenel, K. J. de Kraker, and
R. Bidarra. Integrating procedural generation and
manual editing of virtual worlds. In Proceedings of the
ACM Foundations of Digital Games. ACM Press,
June 2010.

[6] G. Smith, J. Whitehead, and M. Mateas. Tanagra: A
mixed-initiative level design tool. In Proceedings of the
International Conference on the Foundations of
Digital Games, 2010.

[7] J. Togelius, R. De Nardi, and S. M. Lucas. Towards
automatic personalised content creation in racing
games. In Proceedings of the IEEE Symposium on
Computational Intelligence and Games (CIG), 2007.

[8] J. Togelius, S. Karakovskiy, and R. Baumgarten. The
2009 mario ai competition. In Proceedings of the IEEE
Congress on Evolutionary Computation, 2010.

[9] J. Togelius, G. N. Yannakakis, K. O. Stanley, and
C. Browne. Search-based procedural content
generation. In Proceedings of EvoApplications, volume
6024. Springer LNCS, 2010.

[10] G. N. Yannakakis and J. Togelius. Experience-driven
Procedural Content Generation. IEEE Transactions
on Affective Computing, 2011. (to appear).

