
Procedural Modeling of Buildings

Pascal M̈uller∗

ETH Zürich
Peter Wonka†

Arizona State University
Simon Haegler∗

ETH Zürich
Andreas Ulmer∗

ETH Zürich
Luc Van Gool∗

ETH Zürich / K.U. Leuven

Figure 1: This figure shows the application ofCGA shape, a novel shape grammar for the procedural modeling of computer graphics
architecture. First, the grammar generates procedural variations of the building mass model using volumetric shapes and then proceeds to
create façade detail consistent with the mass model. Context sensitive rules ensure that entities like windows or doors do not intersect with
other walls, that doors give out on terraces or the street level, that terraces are bounded by railings, etc.

Abstract

CGA shape, a novel shape grammar for the procedural modeling of
CG architecture, produces building shells with high visual quality
and geometric detail. It produces extensive architectural models for
computer games and movies, at low cost. Context sensitive shape
rules allow the user to specify interactions between the entities of
the hierarchical shape descriptions. Selected examples demonstrate
solutions to previously unsolved modeling problems, especially to
consistent mass modeling with volumetric shapes of arbitrary ori-
entation.CGA shapeis shown to efficiently generate massive urban
models with unprecedented level of detail, with the virtual rebuild-
ing of the archaeological site of Pompeii as a case in point.

CR Categories: F.4.2 [Mathematical Logic and Formal Lan-
guages]: Grammars and Other Rewriting Systems I.3.5 [Com-
puter Graphics]: Computational Geometry and Object Modeling
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Real-
ism I.6.3 [Simulation and Modeling]: Applications J.6 [Computer-
Aided Engineering]: Computer-Aided Design (CAD)

Keywords: Procedural Modeling, Architecture, Chomsky Gram-
mars, L-systems, Computer-Aided Design

1 Introduction

The creation of compelling models is a crucial task in the develop-
ment of successful movies and computer games. However, model-
ing large three-dimensional environments, such as cities, is a very
expensive process and can require several man years worth of la-
bor. In this paper we will employ procedural modeling using shape
grammars capable of efficiently creating large cities with high ge-
ometric detail and up to a billion polygons. It would be extremely

∗e-mail:{pmueller|shaegler|ulmeran|vangool}@vision.ee.ethz.ch
†e-mail: peter.wonka@asu.edu

time consuming to replicate these results with existing modeling
software.

We use a shape grammar (calledCGA shape) with production rules
that iteratively evolve a design by creating more and more details.
In the context of buildings, the production rules first create a crude
volumetric model of a building, called the mass model, then con-
tinue to structure the façade and finally add details for windows,
doors and ornaments. The main advantage of the method is that the
creation of the hierarchical structure and the annotation of a model
is specified in the modeling process. This semantic information is
important for reusing design rules for procedural variations (see fig-
ure 1) and thereby creating a large variety of architecture populating
a whole city.

The idea of modeling urban environments using shape grammars
was recently explored by Parish and Müller [2001] and Wonka et
al. [2003]: On the one hand, Parish and Müller showed how to
generatelarge urban environments where each building consists of
simple mass models and shaders for façade detail. On the other
hand, Wonka et al. [2003] demonstrated how to generategeometric
detailson façades of individual buildings. Ideally, we would like to
combine these two ideas to generate large and detailed urban envi-
ronments. However, there is a significant challenge in the context
of mass modeling that needs to be addressed and requires extensive
changes to both models. (1) Parish and Müller could generate sim-
ple models by adding translated and rotated boxes and details were
added with a shader. This strategy cannot generate sufficient geo-
metric detail and there will be numerous unwanted intersections of
architectural elements (see figure 2). (2) The split rules proposed by
Wonka et al. are only sufficient for simple mass models. Complex
mass models will require an excessive amount of splits. Further,
the mass model cannot be easily changedbecause novel configura-
tions will need additionalproduction rules and objects of arbitrary
orientation cannot be handled easily.

We present a grammar-based solution togenerate detailed building
shells stemming from complex mass models. Our approach is based
on a new model for context sensitive shape rules that is suitable
for computer graphics architecture. The major contributions of this
paper are as follows:

• We are the first to introduce a procedural approach to model
detailed buildings with consistent mass models. The build-
ings are not restricted to axis aligned shapes and include roof
surfaces and rotated shapes. This also allows us to amplify

given mass models such as GIS databases consisting of ex-
truded two-dimensional building footprints.

• We are the first to address application related details in the
context of procedural modeling of buildings, such as the defi-
nition of the most important shape rules, the concise notation,
and modeling examples detailing various modeling strategies.
Our results will show massive urban models with unprece-
dented level of geometric detail.

1.1 Related Work

Procedural modeling can draw from a large spectrum of production
systems such as Semi-Thue processes [Davis et al. 1994], Chomsky
grammars [Sipser 1996], graph grammars [Ehrig et al. 1999], shape
grammars [Stiny 1975], and attributed grammars [Knuth 1968].
However, the mere specification of a production system is only the
basis. Several questions, such as the geometric interpretation, con-
cise notation, control of the derivation, and the design of actual
models, still have to be addressed.

For the geometric modeling of plants, Prusinkiewicz and Linden-
mayer showed that wonderful results can be achieved by using
L-systems to generate strings that are interpreted with a LOGO-
style turtle [Prusinkiewicz and Lindenmayer 1991]. L-systems
have been extended to query the turtle position [Prusinkiewicz
et al. 1994], to incorporate general computer simulation [Měch and
Prusinkiewicz 1996], self-sensitivity [Parish and Müller 2001], and
user generated curves [Prusinkiewicz et al. 2001].

In architecture, shape grammars [Stiny 1975; Stiny 1980] were suc-
cessfully used for the construction and analysis of architectural de-
sign [Downing and Flemming 1981; Duarte 2002; Flemming 1987;
Koning and Eizenberg 1981; Stiny and Mitchell 1978]. The orig-
inal formulation of the shape grammar operates directly on an ar-
rangement of labeled lines and points. However, the derivation is
intrinsically complex and usually done manually, or by computer,
with a human deciding on the rules to apply. Shape grammars can
be simplified to set grammars [Stiny 1982; Wonka et al. 2003] to
make them more amenable to computer implementation. Cellular
textures [Legakis et al. 2001] can be used to compute brick patterns
and generative mesh modeling can generate complex manifold sur-
faces from simpler ones [Havemann 2005].

While the framework defined by the grammar is one essential
part of procedural modeling, it is then necessary to abstract
rules that create architectural configurations. While a larger li-
brary is necessary for this task, we would recommend start-
ing with books that emphasize structure of architecture, such as
a visual dictionary [Ching 1996], “The Logic of Architecture”
by Mitchell [1990], “Space Syntax” [Hillier 1996], Design pat-
terns [Alexander et al. 1977], and studies of symmetry [March and
Steadman 1974; Shubnikov and Koptsik 1974; Weyl 1952].

1.2 Overview

The paper is structured as follows: We will first explain the basic
shape grammar in section 2. In section 3 we will introduce exten-
sions that allow to model complex shape configurations and shape
interactions. Selected examples in section 4, 5, and 6 will show
the application of the grammar to several modeling problems on
a small scale. The results in section 7 will show the extension to
larger urban environments. In section 8 we discusse our contribu-
tion and advantages and disadvantages of the approach; conclusions
are given in section 9.

Figure 2: The motivation for our novel shape grammar. The mod-
eled building consists of 14 volumetric primitives (cubes, roofs)
placed by a stochastic shape grammar. Left: Existing methods
of procedural architecture can either place shaders on the individ-
ual volumes or use split rules for procedural refinement. In both
cases several unwanted intersections will cut windows (or other el-
ements) in unnatural ways, as the volumes are not aware of each
other. Right: Our approach allows the resolution of these conflicts.
Additionally, we can place geometry on polygons of different ori-
entation such as roof surfaces. This example was created using only
6 rules.

2 A Shape Grammar for CG Architecture

CGA Shapeis an extension of set grammars, introduced by Wonka
et al. [2003]. While the idea for the split rule was presented in pre-
vious work, the actual definition of the split including the repeat
split and the scaling of rules are our contribution. Further we in-
troduce a component split, the basis for modeling with one-, two-,
and three-dimensional shapes. The notation of the grammar and
general rules to add, scale, translate, and rotate shapes are in-
spired by L-systems [Prusinkiewicz and Lindenmayer 1991], but
are extended for the modeling of architecture.While parallel
grammars like L-systems are suited to capturegrowth over time,
a sequential application of rules allows for the characterization
of structure i.e. the spatial distribution of features and compo-
nents [Prusinkiewicz et al. 2001]. Therefore,CGA Shapeis a se-
quential grammar (similar to Chomsky grammars).

Figure 3: Left: The scope of a shape. The pointP, together with
the three axisX, Y, andZ and a sizeS define a box in spacethat
contains the shape. Right: A simple building mass model composed
of three shape primitives.

Shape:The grammar works with a configuration of shapes: a shape
consists of a symbol (string), geometry (geometric attributes) and
numeric attributes. Shapes are identified by their symbols which is
either a terminal symbol∈ Σ, or a non-terminal symbol∈ V. The
corresponding shapes are called terminal shapes and non-terminal
shapes. The most important geometric attributes are the position
P, three orthogonal vectorsX, Y, andZ, describing a coordinate

system, and a size vectorS. These attributes define an oriented
bounding box in space calledscope(see figure 3).

Production process:A configuration is a finite set of basic shapes.
The production process can start with an arbitrary configuration of
shapesA, called the axiom, and proceeds as follows: (1) Select
an active shape with symbolB in the set (2) choose a production
rule with B on the left hand side to compute a successor forB, a
new set of shapesBNEW (3) mark the shapeB as inactive and add
the shapesBNEW to the configuration and continue with step (1).
When the configuration contains no more non-terminals, the pro-
duction process terminates. Depending on the selection algorithm
in step one, the derivation tree [Sipser 1996] can be explored ei-
ther depth-first or breadth-first. However, both of these concepts
do not allow enough control over the derivation. Therefore, we as-
sign a priority to all rules according to the detail represented by
the shape to obtain a (modified) breadth-first derivation: we sim-
ply select the shape with the rule of highest priority in step one.
This strategy guarantees that the derivation proceeds from low de-
tail to high detail in a controlled manner. Please note, that we do
not delete shapes, but rather mark them as inactive, after they have
been replaced. This enables us to query the shape hierarchy, instead
of only the active configuration.

Notation: Production rules are defined in the following form:

id: predecessor : cond; successor : prob

whereid is a unique identifier for the rule,predecessor∈ V is a
symbol identifying a shape that is to be replaced withsuccessor,
andcond is a guard (logical expression) that has to evaluate to true
in order for the rule to be applied. The rule is selected with proba-
bility prob. For example, the rule

1: fac(h) : h> 9 ; floor(h/3) floor(h/3) floor(h/3)

replaces the shapef ac with three shapesf loor, if the parameterh
is greater than 9. To specify the successor shapes we use different
forms of rules explained in the remainder of this section.

Scope rules: Similar to L-systems we use general rules to mod-
ify shapes:T(tx, ty, tz) is a translation vector that is added to the
scope positionP, Rx(angle), Ry(angle), andRz(angle) rotate the
respective axis of the coordinate system, andS(sx,sy,sz) sets the
size of the scope. We use[and] to push and pop the current scope
on a stack. Any non-terminal symbol∈ V in the rule will be cre-
ated with the current scope. Similarly, the commandI(ob jId) adds
an instance of a geometric primitive with identifierob jId. Typi-
cal objects include a cube, a quad, and a cylinder, but any three-
dimensional model can be used. The example below illustrates the
design of the mass model depicted in figure 3 right:

1: A ; [T(0,0,6) S(8,10,18) I(”cube”)]
T(6,0,0) S(7,13,18) I(”cube”) T(0,0,16) S(8,15,8) I(”cylinder”)

Basic split rule: The basic split rule splits the current scope along
one axis. For example, consider the rule to split the façade of fig-
ure 4 left into four floors and one ledge:

1: fac; Subdiv(”Y”,3.5,0.3,3,3,3){ floor | ledge| floor | floor | floor }

The first parameter describes the split axis (”X”, ” Y”, or ”Z”) and
the remaining parameters describe the split sizes. Between the de-
limiter { and} a list of shapes is given, separated by|. We also use
similar split rules to split along multiple axis (”XY”, ” XZ”,” YZ”,
or ”XYZ”), nested splits, or nested combinations of splits and
L-system rules.

Scaling of rules: From the previous example we can see the first
challenge. The split is dimensioned to work well with a scope of
sizey = 12.8, but for other scopes the rule has to be scaled. From

Figure 4: Left: A basic façade design. Right: A simple split that
could be used for the top three floors.

our experience not all architectural parts scale equally well, and it
is important to have the possibility to distinguish between absolute
values (values that do not scale) and relative values (values that do
scale). Values are considered absolute by default and we will use
the letterr to denote relative values, e.g.

1: floor; Subdiv(”X”,2,1r,1r,2){ B | A | A | B }

where relative valuesr i are substituted asr i ∗ (Scope.sx−
∑absi)/∑ r i (Scope.sx represents the size of the x-length of the
current scope). Figure 4 right illustrates the application of the rule
above on two different sized floors (with x-length 12 and 10).

Repeat: To allow for larger scale changes in the split rules, we
often want to tile a specified element. For example:

1: floor; Repeat(”X”,2){ B }

The floor will be tiled into as many elements of typeB along the
x-axis of the scope as there is space. The number of repetitions is
computed asrepetitions= ⌈Scope.sx/2⌉ and we adjust the actual
size of the element accordingly.

Component split: Up until this point all shapes (scopes) have been
three-dimensional. The following command allows to split into
shapes of lesser dimensions:

1: a; Comp(type, param){ A | B | ... | Z }

Where type identifies the type ofthe component split with as-
sociated parametersparam (if any). For example we write
Comp(” f aces”){A} to create a shape with symbolA for each
face of the original three-dimensional shape. Similarly we use
Comp(”edges”){B} andComp(”vertices”){C} to split into edges
and vertices respectively. To access only selected components we
use commands such asComp(”edge” ,3){A} to create a shapeA
aligned with the third edge of the model orComp(”side f aces”){B}
to access the side faces of a cube or polygonal cylinder. To encode
shapes of lesser dimension we use scopes where one or multiple
axis have zero size. To go back to higher dimensions we can simply
usethe size commandS with a non-zero value in the correspond-
ing dimension (e.g. to extrude a face shape along its normal and
therefore transforming it into a volumetric shape).

3 Mass Modeling

The grammar explained in the previous section is powerful enough
to specify complex shapes. The important remaining question is
how to use them. We will first give an overview of how to generate
mass models and then explain how to create façade and roof details.
The proposed technique to solve the transition from mass modeling
to façade and roof modeling is the key insight presented in this pa-
per. We make use of two extensions that allow the specification of
shape rules, the outcome of which depends on the spatial context.

3.1 Assembling Solids

Building mass models are most naturally constructed as a union of
volumetric shapes [Le Corbusier 1985; Mitchell 1990]. The sim-
plest construction uses a box as basic primitive. We can then gen-
erate simple mass models using scaling, translation or splits, such
as the basic building blocksL, H, U andT described by Schmitt
[1993] (see figure 5).

Figure 5: A basic shape vocabulary for mass modeling.

The next level of difficulty is to use arbitrary rotations of shapes
and to include a cylinder in the shape vocabulary. A nice exam-
ple using rotationare the Petronas Towers in Malaysia. TheCGA
shapereconstruction of one of the two identical towers is depicted
in figure 6. The tower also shows the use of tapering prevalent in
the construction of many skyscrapers. Such a construction can no
longer be achieved by a split grammar alone.

Figure 6: CGA shapereconstruction of a Petronas Tower. The
mass model of the tower (left) and the footprint (middle) reveal the
elementary assembling of cubes and cylinders. Right: The same
façade rule has been applied onto the different types of solids.

Further, it becomes necessary to include basic roof shapes, such as
the examples depicted in figure 7 and more general shapes, such as
general L-shapes and extruded general quadrilaterals.

Figure 7: Selected roof types. From left to right: gambrel, cone,
gabled, hipped, cross-gable, mansard.

Mass models can now be created in the following two fashions: (1)
We are given a building lot as an axiom of the grammar. Then we
are able to generate mass models, using scaling, translation, rota-
tion, and split operations. Care has to be taken that the building
mass does not protrude the parcel boundaries. (2) When import-
ing data from a GIS database, or importing an existing architectural

model, we are more restricted and can only make minor modifi-
cations to the mass model (if any). Currently we try to classify
imported mass models as basic shapes already defined in our shape
vocabulary. If this is not possible, we use a general extruded foot-
print together with a general roof obtained by a straight skeleton
computation [Aichholzer et al. 1995; Eppstein and Erickson 1999]
as shape primitives.

Problem of complex surfaces:This form of modeling is very in-
tuitive and can create sufficiently complex building shapes. The
question is how to proceed from here. One approach to solve this
problem would be to compute the visible façade surfaces directly,
but this would lead to the following complications: (1) the visible
surfaces can be general polygons and it is not necessarily trivial
to compute them. (see figure 8). (2) It is not clear how to write
meaningful shape rules for general polygons. (3) There is no sim-
ple mechanism to assign non-terminal symbols for the façade gram-
mar, because the surfaces are the output of an algorithm, rather than
a production rule.

Figure 8: The union of simple volumetric shapes leads to complex
polygons on the building shell: the resulting polygons can be con-
cave, have many vertices, and multiple holes (marked red on the
left).

Modeling strategy: Our solution to the problem retains the sim-
plicity necessary for procedural modeling, while still working
on many configurations of mass models. First, we use three-
dimensional scopes to place three-dimensional shapes (volumes)
to form a mass model. Then we generate two-dimensional scopes
aligned with façade surfaces and roof surfaces by extracting the
faces of the three-dimensional shapes with a component split. The
resulting two-dimensional scopes will be correctly aligned and pa-
rameterized. Similarly we can extract edges by generating one-
dimensional scopes. Please note that this modeling strategy works
for arbitrarily aligned polygons such as roof surfaces as well as
façade surfaces that are typically aligned with the up axis in the
world coordinate system. The grammar can then proceed to re-
fine the resulting quads and triangles (and in very limited cases
general polygons). It is also important to note that after a shape
(scope) is reduced to two-dimensions it is often replaced with a
three-dimensional one by subsequent rule applications. Our solu-
tion to a consistent design are two mechanisms: (1) testing spa-
tial overlap (occlusion) and (2) testing nearby important lines and
planes in the shape configuration (snap lines). These two mecha-
nisms are explained in the following.

3.2 Occlusion

An occlusion query tests for intersections between shapes. The
simplest query can test if the current shape (the shape selected for
derivation) is occluded by any other shape in the configuration. The
result of this query can be either, no occlusion (”none”), partial oc-
clusion (”part”), or full occlusion (”f ull ”). For example, the rule
below tests if the façade parttile is occluded before it is replaced
by a door:

1: tile : Shape.occ(”all”) == ”none”; door

There are several variations to query only a subset of the shape con-
figuration: (1) We can make use of the fact that we store the deriva-
tion tree. The previous query would test for occlusion against all
shapes, including the inactive ones that already have been replaced
by a shape rule. To test only against active shapes we can use the
keyword ”active” in the query. (2) We can restrict the queries to a
subset of shapes with a specific label, e.g.Shape.occ(”balcony”)
tests only against shapes labeled balcony.(3) One of the most im-
portant subsets contains all shapes in the derivation tree except the
current shape’s predecessors. With this subset, we avoid the query-
ing of parent shapes, which, in the case of a split, always occlude
their successor shapes [Wonka et al. 2003].A typical example is
illustrated below (ε is the empty shape):

1: tile : Shape.occ(”noparent”) == ”none”; window
2: tile : Shape.occ(”noparent”) == ”part”; wall
3: tile : Shape.occ(”noparent”) == ”full”; ε

The type of intersection computation can also be modified, to in-
clude distance, e.g.Shape.occ(”noparent” , ”distance” ,4) tests if
the current shape enlarged by 4 is occluded. In theory, the precise
computation would require morphological shape operations, so that
we resort to simple approximations in practice. Another modifica-
tion is to test occlusion of sightlines, e.g.Shape.visible(”street”)
tests if the shortest sightlines to the street geometry are occluded.

3.3 Snapping

Occlusion makes it possible to avoid placing façade elements such
as windows and doors on the intersection of volumetric shapes con-
stituting the mass model. While this gives some improvement, we
can further improve the layout of the façade structure, if we alter ex-
isting shape rules to snap to a dominant face or line (snap shapes) in
the shape configuration. In the simplest form, all faces of the vol-
umetric shapes of the mass model are stored as global construction
planes. If we are selecting a planar (two-dimensional) scope on the
side of a façade as the active rule, the scope can be intersected by
the global construction planes defining snap lines. The snap lines
work for a repeat split and a subdivision split as follows: (1) For
the repeat rule the snap lines divide the scope into different parts
and the repeat rule is invoked for each part separately. (2) For a
subdivision rule the snap line just alters the closest split and leaves
everything else unmodified. See figure 9 for a two dimensional ex-
ample of a snap line changing the outcome of a repeat-split and a
subdivide-split. Figure 10 shows an example model created with
the help of snap lines. The notation for snap lines is illustrated be-
low. The keywordSnapinserts a snap shape(in case of rule 2 with
label ”entrancesnap”) and we modify the splitting axis (e.g. ”XS”
instead of ”X”) to snap to existing snap shapes.

1: floors; Repeat(”Y”,f loor height){ floor Snap(”XZ”)}
2: entrance; Snap(”Y”,”entrancesnap”) door
3: floor; Repeat(”XS”,tile width){ tile }

Figure 9: This figure illustrates the effect of snap lines (red). Left:
A scope is split with a repeat split not reacting to the snap line (top).
The snapped version of the repeat split first splits the scope with
the snap line and then invokes the repeat for each half separately,
thereby changing all shape sizes. Right: The subdivide split only
alters the splitting line closest to the snap line. Only the two shapes
adjacent to the snap line are changed.

Figure 10: Left: A building generated with snap lines. The thin
lines on the building show the scopes of the final shapes illustrating
the structure of the grammar.Note how the floor levels are automat-
ically aligned over all solids, e.g. a higher floor was forced below
the tapering (common skyscraper feature).Right: The snap lines
used during the construction.

3.4 Implementation

To store the shapes and snap lines for spatial queries, we use an
octree [Berg et al. 2000] as acceleration data structure. The main
reason is simplicity of implementation, especially due to frequent
runtime modifications of the shape configuration. We also ex-
perimented with a discretized data structure (modified octree, see
figure 11). Another acceleration strategy is to replace occlusion
queries of shapes with occlusion queries of scopes. For example,
Scope.occ can be used to test the current scope for occlusion.To
compute geometric intersections (e.g. for the determination of snap
lines), we use a splitting algorithm based on [Mäntyl̈a 1986].

Figure 11: Left: A volumetric model. Right: The approximate
occlusion data-structure intersected with the the occluded façade
surfaces is shown in red.

4 A Simple Building Model

This section details an introductory example of modeling with our
shape grammar. The example grammar will generate a simple
generic building including its roof from an arbitrary building foot-
print (see figure 12). This building footprint is the axiom of the
grammar. We aim to illustrate the following concepts:

Readability: The rules are human readable and can therefore be
reused and understood by other users. We use parameters that
are set in cursive font, e.g.building height and building angle
and we use shape symbols from a consistent architectural vocab-
ulary [Mitchell 1990].

Occlusion: The grammar can be applied to several footprints of a
city. Even this simple example works on concave footprints and
avoids placing windows and doors where the building intersects
neighboring buildings (see figure 13 left). Rule 2 breaks down the
mass model into its side faces. Rule 3 identifies the street facing
building side to place an entrance. Rule 7 uses the occlusion query
to avoid placing windows at the intersection of mass models.

Figure 12: The top left shows a building generated with the rules
described in section 4. The other three models were generated by
extending the grammar.

Figure 13: Left: The simple grammar is applied to three different
footprints. Please note how the occlusion query avoids placing win-
dows at the intersection of two neighboring buildings. Right: The
roof is modeled by bricks on the roof planes and the roof edges.

Roof construction:The placement of bricks on the roof construc-
tion is illustrated in figure 13 right. The grammar works as follows:
Rule 12 splits the roof with a component split and generates scopes
aligned with the edges and the faces. Then the edges are covered
with roundbrickand the faces withf latbrick. Please note how the
grammar generates overlapping bricks,i.e. the geometry is not just
a simple displacement map.

PRIORITY 1:
1: footprint; S(1r,building height,1r) facades

T(0,building height,0) Roof(”hipped”,roo f angle){ roof }

PRIORITY 2:
2: facades; Comp(”sidefaces”){ facade}
3: facade : Shape.visible(”street”)

; Subdiv(”X”,1r,door width*1.5){ tiles | entrance} : 0.5
; Subdiv(”X”,door width*1.5,1r){ entrance| tiles} : 0.5

4: facade; tiles
5: tiles; Repeat(”X”,windowspacing){ tile }

6: tile ; Subdiv(”X”,1r,windowwidth,1r){ wall |
Subdiv(”Y”,2r,windowheight,1r){ wall | window | wall } | wall }

7: window : Scope.occ(”noparent”) != ”none”; wall
8: window; S(1r,1r,windowdepth) I(”win.obj”)
9: entrance; Subdiv(”X”,1r,door width,1r){ wall |

Subdiv(”Y”,door height,1r){ door| wall } | wall }
10: door; S(1r,1r,door depth) I(”door.obj”)
11: wall; I(”wall.obj”)

PRIORITY 3:
12: roof; Comp(”sidefaces”){ covering}

Comp(”sideedges”){ roofedge} Comp(”topedges”){ roofedge}
13: covering;

Repeat(”XY”,f latbrick width,brick length){ flatbrick}
Subdiv(”X”, f latbrick width,1r){ ε |

Repeat(”X”,f latbrick width){ roofedge} }

14: roofedge;
Subdiv(”Y”,overlap,brick length-2*overlap,1r){ ε |

roundbrick| Repeat(”Y”,brick length-overlap){ roundbrick} }

15: flatbrick; S(1r,1r,f latbrick height) T(0,0,-f latbrick height)
Rx(-3) I(”flatbrick.obj”)

16: roundbrick; S(roundbrick w,Scope.sy+overlap,roundbrick h)
T(-roundbrick w/2,-overlap,-roundbrick h)
Rx(-3) I(”roundbrick.obj”)

5 A Model for Office Buildings

The following example shows firstly a small rule set to generate
various mass models using a stochastic grammar. The axiom of
this grammar is a building lot, a two-dimensional shape. The rules
work as follows: First, the lot is extruded bybuilding heightwith
a size command to yield a three-dimensional shape. This shape is
then split into two smaller shapes. One volumetric shape (f acades)
that is the largest solid in the mass model and one shape that will
later be broken down into two side wings. This split is performed
by Rule 2. The rule also generates a gap between the side wings,
thereby creating a U-shape. Rule 3 shows the use of stochastic rules
to generate a variety of mass configurations. Please note that we
use a combination of random numbers and stochastic rule selection
to create a variety of side wing shapes with different heights and
widths. For example, there is a fifty percent chance that the side
wing is as high as the largest solid. Rule 4 is the transition to façade
modeling. An example model using these four rules is depicted in
figure 14.

PRIORITY 1:
1: lot ; S(1r,building height,1r)

Subdiv(”Z”,Scope.sz*rand(0.3,0.5),1r){ facades| sidewings}
2: sidewings;

Subdiv(”X”,Scope.sx*rand(0.2,0.6),1r){ sidewing| ε }
Subdiv(”X”,1r,Scope.sx*rand(0.2,0.6)){ ε | sidewing}

3: sidewing
; S(1r,1r,Scope.sz*rand(0.4,1.0)) facades : 0.5
; S(1r,Scope.sy*rand(0.2,0.9),Scope.sz*rand(0.4,1.0))

facades : 0.3
; ε : 0.2

4: facades; Comp(”sidefaces”){ facade}

Figure 14: Stochastic variations of building mass models generated
with only four rules (starting with the building lot as axiom).

The idea of the second part of this rule set is to first derive the dom-
inant shape in the mass volume and force dominant planes of the
construction (floors) on the other shapes. The rules also demon-
strate the use of labeled and unlabeled snap lines. The first rule
generates the front façade and rule 7 will be used for the remain-
ing faces of the building. The second production subdivides the
ground floor into several parts, including a door and a labeled snap
line. This snap line is inserted as an inactive shape in the shape
configuration. Rule 8 splits into individual floors (f loor) and adds
snap planes parallel to the ground floor. Please note that this rule
snaps to existing snap planes as well as creating new ones. The
use of labeled snap lines is illustrated by rule 9 and 15. Rule 9
places a labeled snap line in the up direction, so that the fire es-
cape is aligned with the façade structure. Details, such as windows,
doors, entrance, and walls are build in similar way to the example
in section 4. An example model is depicted in figure 15.

PRIORITY 2:
5: facade : Shape.visible(”Street”)== 0 ;

Subdiv(”Y”,ground f loor height,1r,top f loor height)
{ groundfloor| floors| topfloors} fireescape

6: groundfloor; Subdiv(”X”,1r,entrancewidth,1r){ groundtiles|
entrance SnapLines(”Y”,”entrancesnap”)| groundtiles}

PRIORITY 3:
7: facade; floors
8: floors; Repeat(”YS”,f loor height){ floor Snap(”XZ”)}
9: floor; Repeat(”XS”,tile width){ tile Snap(”Y”,”tilesnap”)}
. . .
15: wall : Shape.visible(”Street”); I(”frontwall.obj”)

PRIORITY 4:
16: fireescape; Subdiv(”XS”,1r,2*tile width,7r,”tilesnap”)

{ epsilon| escapestairs| ε }

17: escapestairs; S(1r,1r,f ireescapedepth)
T(0,0,-f ireescapedepth) Subdiv(”YS”,ground f loor height,1r)
{ ε | Repeat(”YS”,f loor height){ I(”fireescape.obj”)} }

Figure 15: A procedurally generated building modeled with snap
lines. Note the alignment of important lines and planes in the con-
struction.

6 A Model for Single Family Homes

The shape grammar and shape queries can also be used to gen-
erate and place other components in an urban environment. The
following example shows the nice interplay, between one, two and
three-dimensional modeling (see figure 16). The grammar in this
example uses the following strategy: (1) split of the property edges
with a component split and place shrubs near the fence, (2) split
the property to model the front yard, back yard and the main build-
ing, (3) generate a sidewalk and place trees (generated with Green-
work’s Xfrog) in regular intervals next to the street, and (4) generate
a driveway connected to the garage door and a pathway connected
to the entrance door.

The nice aspect of our modeling system is that the initial stages
of a grammar can work with overlapping, but well formed shapes
and then only later resolve conflicts with occlusion queries. For
example we resolve intersections between sidewalk and driveway
and place trees and shrubs in sufficient distance from the house and
other vegetation.

Figure 16: Different buildings in a suburban environment.CGA
shapecan also be employed for the procedural generation of the
building environment e.g. walkways or vegetation.

7 Results

7.1 User Interface and Workflow

The C++ implementation ofCGA shapeis integrated in the
CityEngineframework [Parish and M̈uller 2001]. Figure 17 shows
a screenshot of theCityEngineuser interface.We can import most
forms of GIS data, including rasterized maps and Google Earth’s
KML format for building mass models. Similar to other modeling
applications we rely on many different views of the model guiding
an iterative design process. The most frequently used views are: (1)
An overview mode to show building footprints, streets, and parcel
boundaries. (2) A three-dimensional view of the partial derivation
of the grammar e.g. up until to the mass models. (3) Preview modes
of the final geometry of selected subsections. (4) Several tools to vi-
sualize the shape configurations, the scope of shapes, trim surfaces,
snap lines and the topology of shape derivation trees for visual de-
bugging. (5) A rule editor for the shape grammar.

To develop new rules, our implementation provides several interac-
tive methods to restrict the derivation of the shape grammar to parts
of the model (this includes one single building and parts of a build-
ing). Once the user is happy with the results he can generate a larger
and detailed model and write it to the disk. The actual computation
of a model with 50 thousand polygons (like in figure 1 left) takes
about one second. In addition, half a second is needed for writing
such a model to the hard disk. To setup the lightingand camera an-
imations we use Maya with simple building mass models. Render-
ing a larger city requires a scalable rendering solution to work with
billions of polygons. Therefore, we use Pixar’s RenderMan with
its memory-saving instancing support (with delayed read archives)
and reliable level-of-detail (LoD) functionality to create the render-
ings. We modeled the different detail levels manually e.g. by inter-
changing high-resolution terminals with low-resolution ones or by
adjusting rules which produce high polygon counts.

Figure 17: Screenshot of theCityEngine, theCGA shapemodeling
environment. In the left panel of the main window is a GIS-like
viewer to display the city layout and on the right an OpenGL pre-
view to show selected parts of the generated geometry. The window
in the front contains the rule editor.

7.2 Examples

First, we modeled Pompeii, an ancient Roman town destroyed in 79
AD, in collaboration with archeologists who gave us ground plans
and figures of selected building types. We used this information
to abstract 190 design rules to model the complete city including
the streets and placement of trees. The basic modeling concept was
introduced in section 4. The resulting city has about 1.4 billion
polygons in high LoD, 31 million polygons in middle LoD, and 170
thousand polygons in low LoD. Figure 18 shows views of different
elevations over the city and a view inside the street.The exterior
lighting is simulated with ambient occlusion.

As a usability test we invited a professional modeler to develop an
example model. On the first day we explained the user interface,
the workflow, and several example rule sets to demonstrate the rule
syntax and modeling strategies. Afterwards, with minor help sup-
port from our side and the rules of section 5 as starting point, he
independently created the small city model depicted in figure 19.
As a conclusion, modeling withCGA shapeproved to be easy and
efficient. Even the concept of snapping (which is suited for high-
rise buildings) was understood and successfully applied.

The third model is inspired by aerial images of Beverly Hills, but
the complete model is generated procedurally. We used about
150 rules, including rules for parcel subdivision, urban vegetation,
swimming pools, sidewalks and streets. The basic modeling con-
cept was introduced in section 6. The complete model consists of
about one thousand buildings for a total of about 700 million poly-
gonsin full LoD (without the trees, which are only transformed
instances).See figure 20 for renderings of the model.

Figure 19:This figure shows a modern city model which was cre-
ated from scratch in two days only.

Figure 20: Our wealthy suburbia model was inspired by Beverly
Hills. CGA shapewas also used to distribute the tree models.

8 Discussion

In this section we want to compare to previous work, identify con-
tributions and open problems that are of interest for future research.

Comparison to mesh modeling tools: A comparison to exist-
ing modeling tools can only be done informally. It is possible to
use scripting in commercial modeling software to accelerate the
modeling process. However, we believe that these scripts would
most likely only replicate parts of our shape grammar. We were
in discussion with three software companies who are interested in
our procedural city modeling tools because current costs of con-
tent creation are a major challenge in the industry. As an example
from the movie industry we can mention that the urban models for
Superman Returnstook 15 man years to complete. Still, our mod-

Figure 18: Various views of the procedural Pompeii model.Based on real building footprints, the city was generated with 190 manually
writtenCGA shaperules. Hence, the whole model is a rule-based composition of 36 terminalobjects (plus 4 tree types and the environment).

els with up to a billion polygons are significantly more detailed than
the current modeling practice in the entertainment industry. How-
ever, the shape grammar introduced in this paper does not aim to
replace existing 3d modeling software, but relies on a tight integra-
tion in a complete modeling environment. While the global struc-
ture, the positioning of individual shapes, level-of-detail control,
and the data handling of large models is a strength of our frame-
work, the generation of smaller complex geometric details is some-
times inefficient. We used Maya to generate geometry, such as roof
bricks, the capitals, and window grills. We belief thatCGA shape
is a significant step forward that reduces modeling times by orders
of magnitude.

Efficiency and robustness: We found that designing with our
grammar is robust and efficient in most casessince no complex
and error-prone geometric computations have to be executed (like
boolean operation algorithms, which are very difficult to implement
reliably). We can formulate meaningful rules for simpler shapes
that together create complex polygonal surfaces on the building
shell. We believe that we found a very good tradeoff between visual
quality and speed. A global optimization might be able to produce
better results, but it is much more difficult to model and modeling
times could be prohibitively high. In contrast, the derivation of the
shape grammar is reasonably fast so that massive one billion poly-
gon models can be generated in less than one day. A general dis-
advantage of a procedural approach is that it sometimes generates
configurations of shapes that are not plausible. This is especially
the case when starting from arbitrary building footprints given by a
GIS dataset. In this context, we believe that it would be a promis-
ing avenue of future research to employ shape grammars for shape
understanding.

Usability: The learning curve to useCGA shapeis similar to that
of other scripting languages. We make a conscious effort to write
the rules in human readable form, as demonstrated in the paper.

Since it is possible to reuse rules and share rules with other users,
even inexperienced users will be able to quickly model satisfactory
results by importing and modifying available rule sets.However,
carelessly written rules can be very contrived and will be only un-
derstood by the original author and may produce unwanted side
effects. We expect that modeling withCGA shapeis most naturally
understood by people with computer science background, but many
professional modelers are familiar with scripting and will be able to
use shape grammars.

Architecture and computer graphics: Rules in architectural liter-
ature are very powerful, but typically abstract and under specified,
so that they can only be applied by humans. The major contribution
of our shape grammar is to adapt architectural concepts and derive a
set of specific shape rules that can be implemented and are powerful
enough to generate detailed high quality models. While we believe
that the application ofCGA shapein computer graphics is very suc-
cessful, we acknowledge that the application to architectural design
is not yet explored and might require significant changes.

Comparison to L-systems: Our work is inspired by pioneering
work in plant modeling [Prusinkiewicz and Lindenmayer 1991;
Měch and Prusinkiewicz 1996] and the beautiful images that were
created. Similarities include: (1) the notation of the rules, (2) the
idea of the scope is an evolution of the L-system turtle, and (3) the
basic idea for the necessity of context sensitive rules. However, the
details and modeling challenges are fundamentally different. A ma-
jor distinction of our grammar is that we emphasize the concept of
shape, and rules replacing shapes with shapes, rather than building
on string replacement. We also use a large set of shape rules not ex-
isting in L-systems. Furthermore, the rules governing a biological
system do not directly relate to the modeling of buildings. We found
that a direct application of L-Systems to architecture overempha-
sizes the idea of growth, a concept that is often counterproductive
for the procedural modeling of buildings.

Comparison to Instant Architecture: We built on the idea of the
split rule [Wonka et al. 2003] as an important ingredient forCGA
shape. As split grammars maintain a strict hierarchy, modeling is
fairly simple, but also limited. However, after introducing rules for
combinations of shapes and more general volumetric shapes such
as roofs, the strict hierarchy of the split-grammar can no longer
be enforced. We can confirm, that the idea of split rules is a very
suitable primitive to generate façade details, but we did not find it
suitable for many forms of mass modeling. We made use of the con-
trol grammar to generate procedural variations together with sim-
ple stochastic rules. We believe that our model of context sensitive
shape rules, together with the interplay of one, two, and three di-
mensional modeling are an elegant and efficient solution to a chal-
lenging problem. Besides this major conceptual contribution, we
are also the first to address application related details, such as the
definition of the most important shape rules, the concise notation,
and modeling examples detailing various modeling strategies.

Real-time rendering: Although we are currently collaborating to
build a real-time rendering solution this requires additional post-
processing algorithms not yet developed. One main challenge for
this future work is to develop levels-of-detail techniques for mas-
sive city models. As we currently do not optimize for consistent
topology, existing algorithms would fail.

9 Conclusion

This paper introducesCGA shape, a novel shape grammar for the
procedural modeling of building shells to obtain large scale city
models. The paper is the first to address the aspect of volumetric
mass modeling of buildings including the design of roofs. These
two elements form the major contributions of this paper. Further-
more we introduced several extensions to the split grammar to ob-
tain a complete modeling system. We believe that our work is a
powerful adaption of Stiny’s seminal shape grammar idea for com-
puter graphics and we demonstrate the creation of massive city
models that have significantly more geometric detail than any ex-
isting urban model created in industry or academia.

Acknowledgments

The authors thank Robbie M̈uller for testing the ease of use, Tijl
Vereenooghe for archaeological consulting, and the anonymous re-
viewers for their constructive comments on improving this paper.
This project is supported in part by EC IST Network of Excellence
EPOCH, EC IST Project CyberWalk, and NGA grant HM1582-05-
1-2004.

References
A ICHHOLZER, O., AURENHAMMER, F., ALBERTS, D., AND GAERTNER,

B. 1995. A novel type of skeleton for polygons.Journal of Universal
Computer Science 12, 12, 752–761.

ALEXANDER, C., ISHIKAWA , S.,AND SILVERSTEIN, M. 1977.A Pattern
Language: Towns, Buildings, Construction. Oxford University Press,
New York.

BERG, M. D., KREVELD, M. V., OVERMARS, M., AND SCHWARZKOPF,
O. 2000.Computational Geometry. Springer-Verlag.

CHING, F. D. K. 1996.A Visual Dictionary of Architecture. Wiley.

DAVIS , M., SIGAL , R., WEYUKER, E. J., AND DAVIS , M. D. 1994.
Computability, Complexity, and Languages : Fundamentals of Theoreti-
cal Computer Science. Academic Press.

DOWNING, F., AND FLEMMING , U. 1981. The bungalows of buffalo.
Environment and Planning B 8, 269–293.

DUARTE, J. 2002.Malagueira Grammar – towards a tool for customizing
Alvaro Siza’s mass houses at Malagueira. PhD thesis, MIT School of
Architecture and Planning.

EHRIG, H., ENGELS, G., KREOWSKI, H.-J.,AND ROZENBERG, G. 1999.
Handbook of Graph Grammars and Computing by Graph Transforma-
tion: Applications, Languages and Tools. World Scientific Publishing
Company.

EPPSTEIN, D., AND ERICKSON, J. 1999. Raising roofs, crashing cycles,
and playing pool: applications of a data structure for finding pairwise
interactions. InProceedings of the 14th Annual Symposium on Compu-
tational Geometry, ACM Press, 58–67.

FLEMMING , U. 1987. More than the sum of its parts: the grammar of queen
anne houses.Environment and Planning B 14, 323–350.

HAVEMANN , S. 2005.Generative Mesh Modeling. PhD thesis, TU Braun-
schweig.

HILLIER , B. 1996. Space Is The Machine: A Configurational Theory Of
Architecture. Cambridge University Press.

KNUTH, D. 1968. Semantics of context-free languages.Mathematical
Systems Theory 2, 2, 127–145.

KONING, H., AND EIZENBERG, J. 1981. The language of the prairie:
Frank lloyd wrights prairie houses.Environment and Planning B 8, 295–
323.

LE CORBUSIER. 1985.Towards a New Architecture. Dover Publications.

LEGAKIS, J., DORSEY, J., AND GORTLER, S. J. 2001. Feature-based
cellular texturing for architectural models. InProceedings of ACM SIG-
GRAPH 2001, ACM Press, E. Fiume, Ed., 309–316.

M ÄNTYL Ä , M. 1986. Boolean operations of 2-manifolds through vertex
neighborhood classification.ACM Transactions on Graphics 5, 1, 1–29.

MARCH, L., AND STEADMAN , P. 1974. The Geometry of Environment.
MIT Press.

M ĚCH, R., AND PRUSINKIEWICZ, P. 1996. Visual models of plants inter-
acting with their environment. InProceedings of ACM SIGGRAPH 96,
ACM Press, H. Rushmeier, Ed., 397–410.

M ITCHELL , W. J. 1990.The Logic of Architecture: Design, Computation,
and Cognition. MIT Press.

PARISH, Y. I. H., AND M ÜLLER, P. 2001. Procedural modeling of cities.
In Proceedings of ACM SIGGRAPH 2001, ACM Press, E. Fiume, Ed.,
301–308.

PRUSINKIEWICZ, P., AND L INDENMAYER , A. 1991. The Algorithmic
Beauty of Plants. Springer Verlag.

PRUSINKIEWICZ, P., JAMES, M., AND M ĚCH, R. 1994. Synthetic topiary.
In Proceedings of ACM SIGGRAPH 94, ACM Press, A. Glassner, Ed.,
351–358.

PRUSINKIEWICZ, P., MÜNDERMANN, P., KARWOWSKI, R., AND LANE,
B. 2001. The use of positional information in the modeling of plants.
In Proceedings of ACM SIGGRAPH 2001, ACM Press, E. Fiume, Ed.,
289–300.

SCHMITT, G. 1993.Architectura et machina. Vieweg & Sohn.

SHUBNIKOV, A. V., AND KOPTSIK, V. A. 1974.Symmetry in Science and
Art. Plenum Press, New York.

SIPSER, M. 1996. Introduction to the Theory of Computation. Course
Technology, Boston.

STINY, G., AND M ITCHELL , W. J. 1978. The palladian grammar.Envi-
ronment and Planning B 5, 5–18.

STINY, G. 1975.Pictorial and Formal Aspects of Shape and Shape Gram-
mars. Birkhauser Verlag, Basel.

STINY, G. 1980. Introduction to shape and shape grammars.Environment
and Planning B 7, 343–361.

STINY, G. 1982. Spatial relations and grammars.Environment and Plan-
ning B 9, 313–314.

WEYL , H. 1952.Symmetry. Princeton University Press.

WONKA , P., WIMMER , M., SILLION , F., AND RIBARSKY, W. 2003. In-
stant architecture.ACM Transactions on Graphics 22, 3, 669–677.

