DECISION MAKING

sk a gamer about game AI, and the
to decide what to do. Carr
en for granted.

In reality, decision making is typically a small part of the effort needed to bu
Most games use very simple decision making systems: state machines and
based systems are rarer, but important.
In recent years a lot of interest has been shown in more sophisticated decision making tools,
as fuzzy logic and neural networks. However, developers haven’t been in a rush to embrace
technologies. It can be hard to get them working right.
ision making is the middle component of our AI model (Figure 5.1), but despite this
€r's name, we will also cover a lot of techniques used in tactical and strategic AL. All the
ues here are applicable to both intra-character and inter-character decision making.
s chapter will look at a wide ran ge of decisi
be implemented in minutes to compreh
ation but can support richer behaviors t
ne. At the end of the chapter we’ll loo

y think about decision making: the ability of a character
ying out that decision (movement, animation, and the like) is

ild great game
decision trees.

on making tools, from very simple mechanisms
ensive decision making tools that require more
o complete programming languages embedded
k at the output of decision making and how to

RVIEW oF DECISION MAKING

I€ are many different decision makin
y.

ter processes a set of information that it uses to generate an action that it wants to
nput to the decision making system is the knowledge that a character possesses,

¥ Elsevier Inc. Al] rights reserved. 293

g techniques, we can look at them all as acting

5.2 Decision Trees 295
294 Chapter 5 Decision Making

/// ‘ are less obvious in game applications but are significant in some decision making algorithms.

They might correspond to changing the character’s opinion of the player, changing its emotional
state, or changing its ultimate goal. Again, algorithms will typically have the internal actions as

part of their makeup, while external actions can be generated in a form that is identical for each
algorithm.

Execution management

The format and quantity of the knowledge depend on the requirements of the game. Knowl-
edge representation is intrinsically linked with most decision making algorithms. It is difficult
to be completely general with knowledge representation, although we will consider some widely
applicable mechanisms in Chapter 11.

Actions, on the other hand, can be treated more consistently. We'll return to the problem of
representing and executing actions at the end of this chapter.

Character Al
Decision making

World interface

.2 DEcIsSION TREES
Figure 5.1 The Al model ’

Decision trees are fast, easily implemented, and simple to understand. They are the simplest
ecision making technique that we’ll look at, although extensions to the basic algorithm can make

1em quite sophisticated. They are used extensively to control characters and for other in-game
cision making, such as animation control.

They have the advantage of being very modular and easy to create. We've seen them used for

ything from animation to complex strategic and tactical Al

Although it is rare in current games, decision trees can also be learned, and the learned tree is

ively easy to understand (compared to, for example, the weights of a neural network). We’ll
back to this topic later in Chapter 7.

Internal knowledge
‘ - Internal changes

. Action
request

Decision maker

External changes
External knowledge

HE PROBLEM

Figure 5.2 Decision making schematic set of knowledge, we need to generate a corresponding action from a set of possible

n request. The knowledge can be further broken down mapping between input and output may be quite complex. The same action will be used

i potonf i e File ‘ . :lffer'ent Sets Of'mpu.t, butany Sméll.I change in.One inpl_lt value might make the difference
D ot ne s coming meand 001 1 action being sensible and an action appearing stupid.

e Pon that a noise is coming from, a ed a method that can easily group lots of inputs together under one action, while
internal state or thought proce input values that are significant to control the output.
nds ago, and so on. . .
an drive any of the algorithms 1 th:Zd,
of internal knowledge can be used
game terms).
nents: they can request an
inga switch, firing aweai
gure 5.2). Changes tq

and the output is an actio
and internal knowledge. Ext.e
game environment around it: the |
switch has been thrown, the directi :
is information about the characters
goals, what it was doinga couple of s;:c(cl)
Typically, the same external knowhe %(ei Ic1 o
the algorithms themselves control what o
don’t constrain what that knowledge represents, g
Actions, correspondingly, can have two 1—clorntpk)l o0
change the external state of the charact‘er (sucal atsate -
aroom) or actions that only affect the internal s

sses: its heal

\LGORITHM

1s made up of connected decision points. The tree has a starting decision, its root.
on, starting from the root, one of a set of ongoing options is chosen.

296 Chapter 5 Decision Making

5.2 Decision Trees

297

| Is enemy visibie?
is enemy visible?

No Yes
No Yes
Is enemy <10 m away? Is enemy audible? Is enemy <10m vy
Is enemy audible? - i .
No Yes
y Is enemy
flank?
Is enemy . _ . '
- on flank? - Attack - ; . _
Creep No Yes
Attack Move
Move
Attack
Figure 5.4 The decision tree with a decision made
i ision tree k
Ficure 5.3 A decision :
g Data Type Decisions
(Boolean
ision trees are oft
’ ledge. Because decision ; 7
ice i d on the character’s know!
Each choice is made base

V t ue
h g g Sir
y T f T y ! a
as Slmple and faSt deClSlOIl IIleC}laIllSIIlS, C}la] acters us l.la“ cie dlIeCtl to the 10ba]- ue

y p y kIlOW- (»a set Of Values,
I p
latheI t}la]l }lave are Iese]ltatloll Of Wllat tlle eISOIlall

Matches one of a given set of values
only one of which might be

I ea thm i i d eC]. iOn nOde unﬁl th - H)
h gori h Continues along th.e tree, maklng ChOICeS at eaCh S - ’ - N . (| | V | w. | 'V
[) 0CESS IlaS no more deCiS'()llS to COnSider. At eaCh 1eaf Of the tree an aCth. 1 1S attaC]:led i .
V i that aCtiOl’l iS Carried Out immedlately. C alue)ell] 1€er 1nt
isi i i tan aCthn, ' 1le.
deClSlon algorlthm arrives a : ge[‘ or a[]

i isi ically with only two
Most decision treenodes make very simple decmons,f ‘cyp;rcl ! H}ITY
S . .. n '
sporcl)ses In Figure 5.3 the decisions relate to tlzle pfomh;z;; 1(:: bz; ey, sl
- . i d attheend ot mu . -
i t one action can be place ‘ e
ﬂlNI(l)U(f:etilj attack unless it can’t see the enemy or is flanked. The at
will cho

) Vector Vector has a length within a given range (this
‘ can be used to check the distance between
the character and an enemy, for example)
ddition to primitive types, in object-oriented game engines it is common to allow the
. tree to access methods of instances. This allows the decision tree to delegate more
Tocessing to optimized and compiled code, while still applying the simple decisions in
s table to the return value.

gll (] 4S |1)WS| 1€ same (le(15101 tree W.IH a (le(.S.()l |aV'|||g yeer I‘Ilade. I]:lep
F.. 5 isi
.

h \¢ i i whi ay then
lgorithm is highlighted showing the arrival at a smgle action, hich m ‘

the algorl , Yy

by the character.

Decisions

i i nd don’t cont y Be ' o
Decisions in a tree are simple. They ch@y checka soulllg)le value a ‘ ‘ | : ons of s e e
logic (i.e., they don’t join tests toget}'ler w1t(}11 gljljag type; e valzes il 7
i the implementation an . . e
kn Dfpggnedtini%f:rtnt kindI: of tests may be possible. A representative S¢ g ;
owledge,

lfA AND B, thel’l carry out ac
table, based on a game engine we’ve worked on:

tion 1, otherwise carry out

298 Chapter 5 Decision Making
5.2 Decision Trees 299

If A AND B then action 1, otherwise action 2

I A°OR B then action 1, otherwise action 2

Figure 5.5 Trees representing AND and OR

o use the decisions in series,
he second part of Figure 5.5
nly if neither test passes is a
therwise carry out action 27
ny logical combination of test
e algorithm in Section 5.80

To OR two decisions together, we als
m the AND example above. T
en action 1 is carried out. O
R B, then carry out action 1,0
le decision trees to build up a
ems. We'll see it again in the Ret

swapped over {10
ction: 2 rulL

test returns true, th
has the logic “if AO

This ability for simp
other decision making syst
systems.

RO RO G IR ORI
JUHULo 0o ooooo oo

€5.6 i isi
Wide decision tree with decision

that decisi
isions can have an
y number of opti
nun;b ers of branches. options. You can also have different decisions with
Hle having a .
: guard char i ili :
et ant statn, Oeflct:;er bm a m11‘1tary facility. The guard needs to mak .
ed? or “black” for fi ase. This alert status might be one of a set rrfla ¢ 2 decision
; > example. Usi ; . aset of states: »
have to bui mple. Using the simple bina isi : es: green,
ne VaIUeb(utﬁd t}lle tree in Figure 5.7 to matkle3 a decisir())’ decision making tree described
e alert -
e order the cheoks Sst;l'if}ll) may blekchecked three times. This won’t b h
e most likely st - ¢ as much of
e same ; y states come . a
allow (;N Or;(several times to make a decision first. Even so, the decision tree may
¥ our decision t)
ame decisio ree to have several branches at each decisi ;
. o 1 tree now looks like Figure 5.8 ecision point. With four
. o \ er, : o
decisions Waﬂé) fb . a(i ;)nly ever requires one decision, and is obviousl
: an .. > iou i
why you cant . this is becau tat‘iis, it 1s more common to see decision ts y more effcient
se the . rees usin, i
underlying code for multiple branches usuagllonl‘y bllﬂar)’
y simplifies

Decision Complexity
the number of decisions that need to be
£ decisions in the tree. Figure 5.6 shows
e actions. After the algorithm is ruth

Because decisions are built into a tree,
usually much smaller than the number o
with 15 different decisions and 16 possibl
four decisions are ever considered.

Decision trees are relatively simple to build a

implemented initially, and then as the Al is tested 1
to trap special cases T add new behaviors.

nd can be built in stages: Asi
n the game, additional decisio

Branching

st of the rest of the chapter,

In the examples so far, and in mo
on tree. There is no reason

options. Thisis called a binary decisi

300 Chapter5 Decisiont Making
5.2 Decision Trees 301

the tree node cl
ass. The base class ifi
It is not : specifies a method used to ..
defined in the base class (i.e., it is a pure virtual ﬁlncl,zzf(;rm the decision tree algorithm.
n):

Is yellow?

Is black? Is red?
No

No No

Green action

1 class DecisionTreeNode:
2 def isi
makeDecision() # Recursively walks through the t
ree

Black action

C
p contain llS
1 run lf h
I arry
epell S on € action information nee € y € gaI]le (See SeCthI‘l 5-11 la €r 1n ﬂle apteI on
C

the structure i
of actions). Their .
.. . . makeDec i :
this is used in a moment): ision function simply returns the action (well see h
) ow

Yellow action

class Action:
def makeDecision():
return this

Figure 5.7 Deep binary decision tree

Black

Which alert
Decisions have the following format:

state?

Red

Yellow
class Decision (DecisionTreeNode) :

trueNode
falseNode
testValue
gz: geEBranch() # carries out the test
makeDecision() # Recursively walks through the t
ree

Green

e with four branches

Figure 5.8 Flat decision tre

e the trueNode and falseNod
| otode e members are pointers to other i
o T}rl 5;);1:; ;(:ct:;u piece of dat.a in the character’s knowjlzzii;i iiflhi}cl}? trf’ﬁ"} o the
e Iflﬁion carries out the test and returns which braI:V 1h s
A o o of the dec151.01.1 node structure for different type Cf . fOH'OW.
! xample, a decision for floating point values mights lcc)) It:iitli (L}?’
0 e the

ments in C/C++, for example). Althoug

nary tests (if state
ntation speed is usually 0o

down to a series of bi
multiple branches, the impleme

sion tree is simpler with
different.

Second, decision trees are
addition, some learning algorith

y can be more easily ¢

typically binary because the
s require them 0

s that work with decision tree

You can do anything with a binary tree that you can do wi
two branches per decision. Most,

has become traditional to stick with oug”
h have used binary decisions. We think

decision tree systems we've worked wit
implementation preference. Do youwant the extra programming work and redus

for the sake of a marginal speed up?

FloatDecision (Decision):

52.3 PseEUDO-CODE

g of decision tree 10

s input a tree definition, consistin
d language, these I

A decision tree takes a
¢ actions. In an object-oriente

nodes might be decisions 0

302 Chapter 5 Decision Making

5.2 Decision Trees 303

T ‘ I y eC i '()Il lt makes. A deCiSion tre
isi be efer ed to b lts rOOt nOde: the ﬁrSt d S i -
A deCISlon tree can i) ' -

t }la\/e an aCtl()I] as 1ts IOOt I}lls can be useful fOI Pr0t0t7 Pnlg a Cllar aCteI

. « . 3 . . . e.
with no decisions migh action to always be returned from its decision tre
a

i i ision method. It can by
AL forcmg' : pirtmﬁgorithm is recursively performed by the makeDecision
The decision tree

trivially expressed as:

Each decision in the tree is presented to you as a true or false option,

decision, rather than the software. The output clearly shows how each de
turn until a final output action is available.

s0 you are making the
cision is considered in

52.5 KNOWLEDGE REPRESENTATION
class Decision: pec1319n trees work directly with primitive data
Ing point numbers, Booleans,
decision trees is that they requ
of the game.

Correspondingly,

types. Decisions can be based on integers, float-
or any other kind of game-specific data. One of the benefits of
ire no translation of knowledge from the format used by the rest

def makeDecision(): ; -

sult
Make the decision and recurse based on the re

branch = getBranch() _
return branch.makeDec1s1on()

decision trees are most commonly implemented so they access the state of
the game directly. I a decision tree needs to know how far the player is from an enemy, then it
will most likely access the player and enemy’s position directly.

This lack of translation can cause difficult-to-find bugs. If a decision in the tree is very
rarely used, then it may not be obvious if it is broker. During development, the structure of
the game state regularly changes, and this can break decisions that rely on a particular structure
or implementation. A decision might detect, for example, which direction a security camera is

pointing. If the underlying implementation changes from a simple angle to a full quaternion to

present the camera rotation, then the decision will break.

To avoid this situation, some developers choose to insulate all access to the state of

€ game. The techniques described in Chapter 10 on world interfacing provide this level of
tection.

y € fﬂle deClSl()I] tree.
k Decision lu] 1ction 18 Caﬂed lnltlau on t}le rOOt I\Od (0]
l 1€ makeve

Multiple Branches

LAt g

p orts IIlllltlple bI aI]CheS almOSt as SlIIlply It eIleral
P

We can 1IIlp1€IIl€I\t a deClSlOIl t}lat su

class MultiDecision (DecisionTreeNode):
daughterNodes
testValue

11ow
Carries out the test and returns the node to fo

def getBranch({):
return daughterNodes[testVa]ue]

IMPLEMENTATION NODES

:‘nction above relies on being able to tell whether a
0 call the test function on the decision and have
griented programming terms,

node is an action or a decision and being

it carry out the correct test logic (i.e., in
the test function must be polymorphic).

thare simple to implement using object-oriented languages with runtime-type information
can detect which class an instance belongs to at runtime).

saes written in C++ switch off RTTI (runtime-type information) for speed reasons.

using identification codes embedded into each

i fore
Recursively runs the algorithm, exactly as be

def makeDecision():
branch = getBranch() N
return branch.makeDemsmn()

p p O t][e teStVa ue arld b
W}lere daug te \l()des a m between ()SSlble Va]ues f

s am p g

. be lmpl men asa }13.5}1 table, or fOI a numeric teSt \/allle 1t nllg
tree IhlS can eme ted

daugllter HOdeS that can be Searc}led llSlI]g a blllal y SearC}l algOIlthIIl-

ly, many developers avoid using virtual functions (
). In this case, some manual mechanism is needed
d to call the appropriate test code.

lementation on the website demonstrates both these techniques. It uses neither RTTI
nctions, but relies on a numeric code embedded in each class,

Mmentation also stores nodes in a single block of memory. This avoids problems with

s being stored in different places, which causes memory cache problems and slower

the C++ implementation of poly-
to detect which kind of decision is

524 ON THE WEBSITE

l() see ‘he (]e(O t l)e t1 avaﬂabié
e C .S'() am tha S
isi 1 i n h 1s101n reep (Dg
1S1011 tfree 1n aCthD, ru :
i OInInand]lne pr()gram designed to let you see behlnd t}le SCeIleS Of é
“ 1sac

pI‘OC€SS.

304 Chapter> Decision Making

5.2 Decision Trees 305

To get to behavior H, the first tree needs 8 decisions, whereas the second tree only needs 3.
In fact, if all behaviors were equally likely, then the first tree would need an average of nearly 43
decisions, whereas the second tree would always only need 3.

At its worst, with a severely unbalanced tree, the decision tree algorithm goes from being
O(log, n) to O(n). Clearly, we'd like to make sure we stay as balanced as possible, with the same
number of leaves resulting from each decision.

Although abalanced tree is theoretically optimal, in practice the fastest tree structure is slightly
more complex.

In reality, the different results of a decision are not equally likely. Consider the example trees
in Figure 5.9 again. If we were likely to end up in behavior A the majority of the time, then the
first tree would be more efficient; it gets to A in one step. The second tree takes 3 decisions to
arrive at A.

Not all decisions are equal. A decision that is very time consuming to run (such as one that
searches for the distance to the nearest enemy) should only be taken if absolutely necessary. Having
this further down the tree, even at the expense of having an unbalanced tree, is a good idea.
Structuring the tree for maximum performance is a black art. Since decision trees are very fast
anyway, it is rarely important to squeeze out every ounce of speed. Use these general guidelines:
balance the tree, but make commonly used branches shorter than rarely used ones and put the
most expensive decisions late.

DECISION TREES

OF
PE RFORMAN CE .
5.2.7 imple. It takes no memory, and 1

Y n see from the pseudo—code that the algorithm 1s very s
ou ca

i £ nodes visited.
is h ith the number 0
P e ate e kes a constant amount 0

If we assume that each deciisii)nﬂtse)l o e oance
ion for more detauis),
see the next section 10T I . o ” {
(n is the number of decision nodes'n'l the tr ot time. The campe deciions we g
It is very common for the decisions to take R e some s e o

1 .

&
i ime proces '
le at the start of the section are all constant timme p e e o il
the table a . e however. A decision that checks if any enem;lff ot R ina b
take T castin : h the level geometry. 11 thi

{ree tllell tlle exeClltIO { € Of ihe d€C1SIOIl {ree p y th- eXeCLlUOIl fime
n f1m h Wln be swam ed b € [9)
>

one decision.

£ time and that the tree is balanc
£ the algorithm is O(log, n), whe

5.2.8 BALANCING THE TREE

e fastest when the tre
branch. Compare th
aviors in each branch

e decision trees 11 Fi

i i to run fast and ar
i {rees are intended '
s), while the first is ext

has about the same number of leaves on fei(;}}ll
The second is balanced (same r-lumber('i 07 behaver
unbalanced. Both have 8 behaviors an

far we have kept a strict branching pattern for our tree. We can extend the tree to allow multiple
nches to merge into a new decision. Figure 5.10 shows an example of this.

he algorithm we developed earlier will support this kind of tree without modification. It is
ly a matter of assigning the same decision to more than one trueNode or falseNode in the
can then be reached in more than one way. This is just the same as assigning a single action
e than one leaf.

Figure 5.9 Balanced and unbalanced trees

5.2 Decision Trees 307

306 Chapter 5 Decision Making

S

Stand still

Figure 5.11 Pathological tree

Figure 5.12 Random tree

e not to introduce possible loops in the tree. In Figure 5.11, the ¢
a falseNode earlier in the tree. The decision process can loop @

You need to take car
decision in the tree has

forever, never finding a leaf.
Strictly, the valid decision structure is called a directed acyclic graph (DAG

this algorithm, it still is always called a decision tree.

f h >
g > $
I € deci1s1o ree 1s ri aga and the same (leC S10 s not cons deled 1t means t}lat some

other decision :
went a different wa .
: —some '
need to get rid of the choice we mZde thing in the world must have changed. In this ca
. - se we

). In the con

hisist
he pseudo-code for a random binary decisio
n:

5.2.10 RANDOM DECISION TREES
jictable. Some el

nt the choice of behavior to be completely pred
dictability, interest, and variation.

struct RandomDecisi

ecision (Decision):
lastFrame = -1 (sion):
lastDecision = false

Often, we don’t wa
random behavior choice adds unpre
add a decision into the d

number, for example, and
1 trees are intended to T
decisions cause problems.

ecision tree that has a random element.

choose a branch based on its value.
un frequently, reacting to the immediat
Imagine running the tree in Figure 5.1

It is simple to
generate a random
Because decisio
the world, random

frame.
As long as the agent ;s under attack, th

random. This choice 13 made at every frame,

standing and moving. This is likely to appear 0
dom choicesin the decision tree, the decision making

def test():
check if
j our stored decision i
st
Tf#frame() > lastFrame + 1: o ol
]aM:;e é ?ew decision and store it
stDecision = randomBoolean()

e stand still and patrol behaviors will b

so the character will appear to vac

dd and unacceptable to the player:
process e

Eithe
r way we need to update the frame value

To introduceran
stable—if there is no relevant change in world state, there should be no change in
that thisisn’t the same as saying the agent should make the same decision everytimef lastFrame =
world state. Faced with the same state at very different times, it can make different frame()
at consecutive frames It should stay with one decision. _ 7 # We return th
s not under attack it can stand still | turn 1astDec$S§t0r8d value
: 10n

In the previous tree, every time the agent 1

dor’t care which it does, but once it has chosen, it should continue doing that.
This is achieved by allowing the random decision to keep track of what it di L N
0 go through ..
gh each unused decision and remove its previ 1
ous value, we store

the deCiSlOIl l.S fiIS i . ! ‘ V ‘ |
g 1 a store 151 i
| -
.

time the decision is considered, there is N0 randomness, and the previous choic as stored
ed on th i
- e previous fr i i
ame, we use it. If it was stored prior to that, th
, then we

5.3 State Machines 309

308 Chapter 5 Decision Making

Again, this decision structure can be used directly with the previous decision tree algorithm.

There can be any number of more sophisticated timing schemes. For example, make the stop
time random so there is extra variation, or alternate behaviors when they time out so the agent
doesn’t happen to stand still multiple times in a row. Use your imagination.

This code relies on two functions:

ch frame.
i increment by one each
he number of the current frame. This shoﬁ‘(il 1b " replaced o anction ue
e o tree i t called every frame, then frame sho
cision tree 181 le !
H e ch time the decision tree is called. . _—
a random Boolean value, either tru
s

On the Website

increments €a
@ randomBool ean() return

e algorithm provid

1 the decision tre The Random Decision Tree program available on the website is a modified version of the previous
sed with the Decision Tree program. It replaces some of the decisions in the first version with random decisions
and others with a timed-out version. As before, it provides copious amounts of output, so you

can see what is going on behind the scenes.

isi be u
This algorithm for a random decision can

above.

Timing Out ook strange. The decision Using Random Decision Trees
it may)

standing still forever, as long as we

the same thing forever,

i d
If the agent continues to 40 e S lowe the oont

Xam
example above, for examp

- We've included this section on random decision trees as a simple extension to the decision tree

algorithm. It isn’t a common technique. In fact, we've come across it just once.
T - nt ch . . : ’ o) .
Ollta & be set with time-out information, so the age Itis the kind of technique, however, that can breathe a lot more life into a simple algorithm for
: Ra;ndom decisions that are stored can be ery little implementation cost. One perennial problem with decision trees is their predictability;
behavior occasionally. looks like the following: ey have a reputation for giving AI that is overly simplistic and prone to exploitation. Intro-
€ ision NOW 10
- for the decision
The pseado-code

cing just a simple random element in this way goes a long way toward rescuing the technique.

— erefore, we think it deserves to be used more widely.
out (Decision):

struct RandomDecisionwithﬁme
1

TastFrame = -1
firstFrame = -1
1astDecision = false

STATE MACHINES

ter this number of frames

_ ¢ , characters in a game will act in one of a limited set of ways. They will carry on doing
t = 1000 # Time out a

mme thing until some event or influence makes them change. A Covenant warrior in Halo
ic Software, 2001], for example, will stand at its post until it notices the player, then it will
1to attack mode, taking cover and firing.

€an support this kind of behavior using decision trees, and we’ve gone some way toward
at using random decisions. In most cases, however, it is easier to use a technique designed
urpose: state machines.

Machines are the technique most often used for this kind of decision making and, along

pting (see Section 5.10), make up the vast majority of decision making systems used in
ames,

6 timeOu

def test(): '
8 # check if our stored deci
i t
we've timed ou
if frame() > 1astFrame + 1 gr .
frame() > firstFrame + timeOut:

sion is too old, or if

isi it
. # Make a new decision and store

lastDecision = randomBoolean 0

aachines take account of both the world around them (like decision trees) and their

cision akeup (their state).

Set when we made the de
firstFrame = frame()

ate the frame value

Either way we need to upd

. () hine each character occu

pies one state. Normally, actions or behaviors are associated
e. So,

as long as the character remains in that state, it will continue carrying out the
We return the stored value

return lastDecision

5.3 State Machines 311

310 Chapter 5 Decision Making
The Game FSM

The basic st]
ate machine stru i
have oo tens of difforenton acture is very general and admits any numb .
ys to implement a game FSM, and it is ra etr Oﬁf implementations. We
’ re to find any two d
evelopers

S1 g y h S C - Slld “Cul((()plll orwa da gea g() t 1 4S DElr
T
L exact the sa e techt e I]la(lllake S
g

On Guard [See small enemy]

LateI m thlS section, we ” 1()()k at ty >
’ a I‘al’lge Of dlffelellt llIlplementatlon S les fOI the I SI\/I but

we work through j
. gh just one main ;
implementation. algorithm. We chose it for its flexibility and th
and the cleanness of i
1ts

[uby Buiso

Run Away
53.1 THE PROBLEM

We would lik
e a general system
y that supports arbitrary state machines with any ki
ith any kind of transiti
sition

condition. The st ;
. ate machi i
\ite at a time. ne will conform to the structure given ab d
V m ove and will occu
py only one

Figure 5.13 A simple state machine

ns. Bach transition leads from one state to atl
the target state and each has a set of associated conditions. If the game determines
conditions of a transition are met, then the character changes state to the transition’s targ
When a transition’s conditions are met, it is said to triggem and when the transition is foll
ew state, it has fired.
Figure 5.13 shows a si
Notice that each state has

States are connected together by transitio
2 THE ALGORITHM

e will use a generi .
e keegs ’ :;i s:)e;t: }ilterface that.can be implemented to includ ;
h state, a series of tranSiti:);t c?f p 05_Slb1_e states and records the curi o Specl.ﬁc' code. The state
implemented with the ap rs N {nalntamgd_ Each transition is a ainent Stat? IF is in. Alongside
riggered or not. propriate conditions. It simply reporfs to i}iezltertlc 1ntelrnface that can
t each iteration (n ate machine whether
s to see if any Era(;rsrir;?cl)lr}: ;rach frame), the state machine’s update function i
ered is scheduled to fire. Th om the current state is triggered. Th nction is called. This
J;dy active state. If a traﬁs-t- ¢ method then compiles a list of fglct' e first transition that is
Wiseparation of the trigglelrcigghzlsl(ti) egn. trig%ered, then the transitlicz)isizoﬁlr):(iform from the
n actions. D ring of transiti :
n this Caseﬁﬁgi’; rterlerlllsllstiltc‘)mng from one state to arcl)(l)ltshilrk:gi t-he transitions to also have
ion can add the action it needs to thcl)lsl;[cr)gzs cafirging out some
rned by the state.

mple state machine with three states: On Guard, Fight, and Rt

its own set of transitions.
The state machine diagrams in this chapter are based on the Unified Modeling
format, @ standard notation used throughout software eng
led by th

(UML) state chart diagram

States are shown as curved corner boxes. Transitions are arrowed lines, labe

that triggers them. Conditions are contained in square brackets.
transition without

The solid circle in Figure 5.13 has only one
1 state that will be entered when the state machine is first rui

sition points to the initia

You wor't need an in-depth understanding of UML to understand this chaptet.

to find out more about UML, wed recommend Pilone and Pitman [2005].
In a decision tree, the same set of decisions is always used, and any action cant

through the tree. In a state machine, only transitions from the curt

y action can be reached.

an

a trigger condition

EUDO-CODE

€ .
aChlne hold th a 1catio 1 \% (G t cu 1 tate
. I
VEr f States, 1 h n lnd 1011 O thh on h
salisto W S (G € S

fu-nCth 0 (& transitions a |L1 C t t
ate n f Tt
gg ng and ﬁrlng S1t1 S nd a nction h
a eturns a set Of

Finite State Machines

e with this kind of structure is usually
arange of increasin

In game Al any state machin
(FSM). This and the followin
all of which are o
nfusion with non-games progra
type of simple state m
parsing text. Compilers use an FSM

d by the compiler.

g sections will cover
ften referred to as FSMs.

mmers, for whomm
achine. An FSM in computer
to tokenize {

implementations,

This causes €O
monly used fora particular
refers to an algorithm used for
symbols that can be interprete

ds a 17
list of states for the machine

312 Chapter 5 Decision Making

Holds the initial state
initialState

Holds the current state
currentState = initialState

11

Checks and applies transitions, returning a list of
actions. ;)

14 def update(): y

Assume no transition is triggered

tri ggeredTransi tion = None

18
Check through each transition and store the first

one that triggers.
for transition in curren
if transition.isTriggered():
triggeredTransition = transition

break

tState.getTransiti ons():

23

25

Check if we have a transition to fire

if triggeredTransition:
Find the target state
targetState = triggered

26
27

28

Transition .getTargetState 0

30
3 # Add the exit action of the old state, the

transition action and the entry for the new state.
actions = currentState.getExitAction()
triggeredTransition.getAction()
targetState.getEntryAction()

32

33
actions t=

actions *=

34

35

36
Complete the transition and return the action list

currentState = targetState
return actions

40
a # Otherwise just return the current state's actions

else: return currentState.getAction()

42

534 DATA STRUCTURES AND INTERFACES

The state machine relies on having states and transitions with a pa

rticular inte:

5.3 State Machines 313

The state interface has the following form:

1 class State:

2 def getAction()

3 def getEntryAction()
4 def getExitAction()
5

s def getTransitions()

Each of the ;
getXAction methods sh
see below, the) s should return a list of acti
s getEntryA . actions to .
the getExt tActon is OﬁlCtHﬁn is only called when the state is entered frC(E)lrry out A.S. we will
y called when the state is exited. The rest of th tim a Eansmon, and
: e time that the state is

Cthg:] g]I: n this state.

The transition interface has the following form:

class Transition:

def isTriggered()
def getTargetState()
def getAction()

Ihe S ggere et ()d rns true 11 the transitio an t g t lget tate n [I ()d
d m: h
retu S ir S nc ﬁre, he e a S

.] .] I] l] A :t.l- on m 3thod returns a I]St Of actions to Carr]r
t ‘Nhen th e tran S]'t]‘ on ﬁ]_es

nsition Implementation

one anlementat q . P y
10N ()f tlle state ClaSS ShOllld be re ulred 1t can s1m l h()ld tlle thIee llsts

1ons aIld the llSt ()1 transitions as dala llle]lll)els returni lI (o 1 (0] eSIND (] (S
> g m 1 he
g g

he sam
€ way, we can sto
e v can s ég thle target st.ate and a list of actions in the transition cl
L opathesto values. The 1'sTr1' ggered method is more difficul o zenen %nd
L its own set of conditions, and much of th i tt'o o
o 1}11 to implement any kind of tests it likes e power in this method i
achines are often defined i !
- . ned in a data fil i
e ata file and read into th
" a . L e am . . i
ta e by weime 1 ve a set of generic transitions. The state mach'g o then be set up
. g the a(linproprlate transitions for each state e can then besccup
ion on decisi ‘
pes. The same princis llzlz)n tlzees, we saw generic testing decisions that operated
o an be used with state machine transitions: e gencrie
e ata they are looking at are in a given ra e have generie
s, state machi ’ i ool
e comnpre alcl}:rlles don’t provide a simple way of combining th
queries. If we need to transition based on the corglditiese ‘E;fts
on that

314 Chapter 5 Decision Making

the enemy is far aw
together.

In keeping with our po
the addition of another inter
the following form:

o

did for decision trees:

and OR:

2

5.3 State Machines 315

ay AND health is low, then we need some way of combining triggers
5 def test():

lymorphic design for the state machine, we can accomplish this with return conditionA.test() and conditionB.test()

face: the condition interface. We can use a general transition class o

9 class NotCondition (Condition):
10 condition .
class Transition:

12 def test():

actions 13 return not condition.test()

def getAction(): return actions

class OrCondition {Condition):
conditionA .
conditionB

targetState
def getTargetState(): return targetState

condition

def isTriggered(): def test():

return conditionA.test() or conditionB.test()

return condition.test()

The isTriggered function now delegates the testing to its condition member.
Conditions have the following simple format: and so on, for any level of sophisticatio d
n we need.

class Condition:
def test{)

p >
t t}lese IIlethOd Ca”s }lave to be pOlyHlOI th Wthh can S]()W d()Wll [he Call and C()niuse t}le

ake a Set Of Sllb—ClaSSGS Of tll |
. . . -
> hl r
t

‘We can then m

everal developers
we have come acr
ns for transitio . 0ss use a homegrown scripti
: ns. T . ipting langua
tly more efficient. In Elrsa S':lﬂ a£0ws designers to create the state fnac}ineg:uao e)l{)press COI;—
. . ctice, however, the d . es but can be
ipting language i s the speed up over this a ‘s aui
nclu :) pproach is qu
& des some kind of compilation into machine codeq(ilze S'miu') e
.e., just-in-time

iling). Fo
ling). For all but the sim .
) plest code, interpreti ..
olymorphic functions. preting a script is at least as time consuming as

class FloatCondition (Condition):
minValue
maxValue

testValue # Pointer to the game data we're interested in

def test{):
return minvalue <= testValue <= maxValue

ON THE WEBSITE

We can combine conditions together using Boolean sub-classes, such as

ense of what is h ;
. appening during an it :
om the websit . g an iteration, run the State Machi
: e. It . e Machine pro :
is a command line program that allows you to nfa graa”m t}}at '
nually trigger

class AndCondition (Condition):
conditionA
conditionB

ff'waré dis v
plays the current stat
7 ate (states have letters from A to G), and you
¢0 gger. The program clearly shows what is happening at eai, astagleets ou e
y h . You see the

18oered; then whi

~) which method i

transiti s are being called, and finall s

1on and see the state’s regular action being returi tge transition fire. You can
ed.

5.3 State Machines

316 Chapter 5 Decision Making

5.3.6 PERFORMANCE
. . . 1 # Find th
The state machine algorithm only requires memory to hold a triggered transition and the curren 15 if mySt ate E(jr;id state
state. It is O(1) in memory, and O(m) in time, where m is the number of transitions pe iy = PATROL:
state. . ' ‘ . i 17 # Example transitions
The algorithm calls other functions 1n both the state and the transition classes, and in mo 8 iF canSeeP]
cases the execution time of these functions accounts for most of the time spent in the algorithm . i tired() ay egi) : myState = DEFEND
: myState =
) ‘ N SLEEP
2 elif myState == DEFEND:

Example transitions

537 IMPLEMENTATION NOTES
if not canSeePlayer(): myState = PATROL

achine.
d to aim fo
d interes ‘ .

elif myState == SLEEP:

ubset

s to implement a state m
«ible as possible. We've trie
nd of state machine and ad
planning to use a small s

there are any number of way
ed in this section is as fle
to experiment with any ki
too flexible. If you're only
unnecessarily inefficient.

As we mentioned earlier,

The state machine describ
implementation that allows you
features. In many cascs, it may be
flexibility, then it is very likely to be

Example transitions
if not tired(): myState

un

PATROL

def notifyNoiseHeard(volume):
[if myState == SLEEP and volume > 10:

53.8 HARD-CODED FSM
myState = DEFEND

nes were hard coded. Th
ode. It has become less co
logic, but it is still an imp

almost all state machi
ns were part of the game ¢
building the state machine

A few years back,
execution of actio
more control over

ortant approach. ~ N
otice that this is
. pseudo-code for a particul i
L . 2 particular state machine rather than a
o foriizﬁetfunc'nf)n there is a block of code for each state. In that bzgle Oﬁ o
L e rlansmon are checked in turn, and the state is updated if re (0d e
s L ample all call functions (tired and canSeePlayer), which e
numerated value, indicating W I dss 0 e e —
o, n i ’ .
sition should be followed. H na dition, we’ve added a state transition in a separate functi : .
ded FSMs tend to be asso¢ ction, notifyNoiseHeard. We are
ates the differenc i i
e between a polling (asking for information explicitly) and an event-based
-base

Pseudo-Code

In a hard-coded FSM, the state machine consists ofane
nction that checks if a tran

is currently occupied, and a fu
combined the two into a class definition (although hard-co

developers still working in C).
‘ s more details on this distinction.

c1ass y :
FSM : aCtion. [O d 1 i \
| [V (o] thlS, the FSM mlght ha ca method Containing Conditional blOCkS Of the

s for each state

Defines the name

4 enum State:
s PATROL
p DEFEND |
myState. ==
‘fyml:lg‘te PATROL: return PatrolAction
1 ate == DEFEND: return DefendAction

SLEEP

m —
yState == SLEEP: return SleepAction

Holds the current state
€ state machine si .

. simply carries out the actions directly, rather than returning detail
etails

myState
or - pi
another piece of code to execute.

def update():

318 Chapter 5 Decision Making

5.3 State Machines

Performance

y and is O(n + m), where 1 is the number of states, and n i

This approach requires no memor
the number of transitions per state.

Although this appears to perfor
in practice for all but huge state ma

m worse than the flexible implementation, it is usually faste
chines (i.e., thousands of states).

Wealknesses

Although hard-coded state machines are easy to write, they
State machines in games can often get fairly large, and this can appear as ugly and unclear cog

Most developers, however, find that the main drawback is the need for programiners {o
the AI behaviors for each character. This implies a need to recompile the game each tim

Se
areh [Seen trash] Head for

> trash

[way 3o0)]

Head for
compactor

behavior changes. While it may not be a problem for a hobby game writer, it can become ¢

in a large game project that takes many minutes or hours to rebuild.
More complex structures, such as hierarchical state machines (see below), are also diffic

coordinate using hard-coded FSMs. With a more flexible implementation, debugging out

easily be added to all state machines, making it easier to track down problems in the AL

539 HIERARCHICAL STATE MACHINES

owerful tool, but it can be difficult to express some be
“alarm behaviors.”
around a facility cleaning the floors. It has a stal
around for objects that have been dropped, pit
ash compactor. This can be simply implement

On its own, one state machine isap
One common source of difficulty is

Imagine a service robot that moves
allowing it to do this. It might search
when it finds it, and carry it off to the tr

normal state machine (see Figure 5.14).
Unfortunately, the robot can run low on power, whereupon it has to scurry off to

electrical point and get recharged. Regardless of what it is doing at the time,
when it is fully charged again it needs to pick up where it left off. The recharging P
allow the player to sneak by unnoticed, for example, or allow the player to disableall
the area and thereby disable the robot.
This is an alarm mechanism: something that interrupts normal behavior fo respo
thing important. Representing this in a state machine leads to a doubling in the num
With one level of alarm this isn’t a problem, but what would happen if we wa

{0 hide when fighting breaks out in the corridor. If its hiding instinct is mote imp!
refueling instinct, then it will have to interrupt refueling to go hide. After the bat
to pick up refueling where it left off, after which it will pick up whatever it was doi
For just 2 levels of alarm, we would have 16 states.
Rather than combining all the logic into a single state machine, we can separa
Bach alarm mechanism has its own state machine, along with the original be
arranged in a hierarchy, so the next state m
state machine is not responding to its alarm.

it needs

Get power
(search)

Get power
(head for

15 show:

] s one alarm mechani

‘ ' . - anism and corr
achine down is only considered wh ’ Té Gl i
, . ¢ solid circle again
tered, the circle with

Get power
(head for
compactor)

[Got item]

Head for
compactor

:5 An m e [e
alar i i
; mechanlsm ma Standard stat ma hin

e inside another e:g O.nis' exactly to the diagram above
indicate a hierarchi .
repre chical state machi
H*Ii)n:flnt.s t.he 5 tart state of the machine. When a comaChl.ne
1de it indicates which sub-state should be enteredpome

320 Chapter5 Decision Making

5.3 State Machines

321

[No trash found]

Head for
trash

Search [Seen trash]

[Recharged] (Get power

(Clean up N\

Sea
reh ' [Seen trash]

[No power]

[Recharged] (“Get power

[Got item]

[No power]

Head for
compactor

[Got item]

| —.

Head for
compactor

Figure 5.16 A hierarchical state machine for the robot

If the composite state has already been entered, then the previous sub-state is returned
B* node is called the “history state” for this reason. ‘

The details of why there’s an asterisk after the H, and some of the other vagaries of .
state chart diagram, are beyond the scope of this chapter. Refer back to Pilone and Pitmar
for more details.

Rather than having separate states to keep track of the non-alarm state, we introd
states. We still keep track of the state of the cleaning state machine, even if we are in th
of refueling. When the refueling is over, the cleaning state machine will pick up where:

In effect, we are in more than one state at once. ‘We might be in the “Refuel” st

alarm mechanism, while at the same time we are also in the “Pick Up Object” state in &

. . s 1 like ani .

machine. Because there is a strict hierarchy, there is never any confusion about which . Iikirilplen_lf':ntanon of a state machine system that

out: the highest state in the hierarchy is always in control. ransitions that pass between different layerz cfil’l tplforts }EerarchiCal state machines
e machine.)

To implement this, we could simply arrange the state mac
machine calls another if it needs to. So if the refueling state m !
calls the cleaning state machine and asks it for the action to take. When it is in the

it returns the refueling action directly. ‘ atchical
While this would lead to slightly ugly code, it would implement our scenario. Mostak i state machine, each state
| ore rely on recursive alg can be a complete state machine in it
' . its own right,

state machines, however, support transitions between levels of the hierarchy, an¢ S thiscinb orithms to process the whole hj .
€ pretty tri . e nierarchy. As wi . .
use it recurses u;}), ‘;r;cczikzi/ to follow. The simplest imp] ementatizn s Wlthdmost recursive
o cove ei
ormal discussion and exzxn lthe. h16;11 ?rchy at different points. We'd zic cl)lele is doubly
. ! o > play wi . amples in this section al : urage you to
around waiting for its battery to go flat. The new state machine i shown in Fig hOZv : tl'(h the Hierarchical State Machine pro r; ngs};de _the pseudo-code in the next
Notice that we’ve added one more transition: from the «gearch” state right out - ofltshau working, gram that is available on the website to
state. This transition is tricgered when there are no objects to collect. Because . ~ OL the system return,

a 88) the hierarchy, s the current state. The result is a list of states

. Ihe state
maChlne aSkS 1ts current state to return itS h
1€

directly out of this state,
fueled and the alarm s

so 1t r ust StaIt the State IIlaChlne again fIOIIl its lllltlal IIOde ealc}l

need more complex algorithms. ;
For example, let’s expand our robot so that it can do something useful if there
to collect. It makes sense that it will use the opportunity to go and recharge, rather

from highest
rarchy, If the

the inner state i
machine no longer
. 1 has an
ystem tran . & y state, When
sitions back to cleaning, the robot will not ha the robot has
ve a record of

322 Chapter 5 Decision Making

5.3 State Machines 323

If the level is zero, then the transition is a normal state

performed at the current level, using the same al
If the level is greater than zero,
to be done at this level. The exit a

machine transition and can be
gorithm used in the finite state machine,

then the current state needs to be exited and nothing else needs
ction is returned, along with an indication to whomever called

ition hasn’t been completed. We will return the exit action, the
transition outstanding, and the number of levels higher to

pass the transition. This level value is
decreased by one as it is returned. As we will see, the update function will be returning to the next
highest state machine in the hierarchy.

If the level is less than zero,

' State L q

State B

State M

then the current state needs to tran
the target state on the current leve] in the hierarchy, In addition,
state also needs to do the same, down to the level of the final destination state, To achieve this

We use a separate function, updateDown, that recursively performs this transition from the level of
the target state back up to the current level and returns any exit and entr

The transition is then complete and doesn’t need to be passed on up.
can be returned.

sition to the ancestor of
each of the children of that

State C

L

Figure 5.18 Current state in a hierarchy

So we’ve covered all possibilities if the current state has a transition that triggers. If it does
not have a transition that triggers, then its action depends on whether the current state is a state

‘machine itself, If not, and if the current state is a plain state, then we can return the actions
 associated with being in that state, just as before,

If the current state is a state machine, then we need to give it the o
tansitions. We can do this by calling its update function. The update

pportunity to trigger any
. o
t returns itself and adds to it the hie

function will handle any
rns itself; otherwise,

state is a terminal state, it retw

we saw above, a lower level transition that fires may have
. {s target state at a higher level, The update function will return a list of actions, but it may also
. : tate. . I s .
‘om its own current s . Al .. : €turn a transition that it s assing up the hierarchy and that hasn’t et been fired.
state ﬁo_l he current state is [State L, State_] - date. In the original statff, I P 5up y Y
In Figure 5.18 the - srarchical state machine is its up tute machi such a transition is received
The second part of the hierarctic d off in its initial state. Because the sta ‘

. o
we assumed that each state machine start

i » then the transition should
acted on at this level ransition i
if there wa
. ed to check if t ,
fi state to another, there was never any ne
o - ne
transitioned from o

» Just as if it were a regular transition for the
hierarchy transi cnt state. If the level is still greater than zero (it should never be less than zero, because we are
be in no state; they may have a cross- Il,[? ot it shoule sz 8 up the hierarchy at this point), then the state machine should keep passing it up. It does
State machines in a hleralt'lchY 'Ca?o check if the state machine has a state. » s before, by exiting the current st
date, then, 18
first stage of the up

initial state. '
Next, we check if t
levels in the hierarchy always

: - e to an()t
ne that triggers. e a transition ;
ifthe super‘Stgte o '(t)ion may be one of three types: 1t might be
A triggered transi

the current level 8] the i 5 i ht bea transition to a state hi her 11‘ P €
hierar Chy, 1t mig : . g

it m g]ll.t be a tr ansi tion to a state lower in the hleralchy. Clctarly, the. translthIl nee‘

| 1 just target state. We allow it to returna relatlve level, how many Step

more data than jus a :

the hierarchy the target state 1s.

.) jerarchy for the t | values bel
We could simply Sg:;icl?lzh(iv}::l:ouldn’t have to worry about the leve
this would be more

. .
wO e con y i y i ﬁlﬂy autOIIlat1C> €
d b iderabl more time Consumlng. A h bl‘ld, bu
lﬂ C S t

.- 1 values.
. e all appropriate leve 1),ale
. e offline and store a : same level),
search the hlfil alChc}l’ ?rr;;sition has a level of zero (state 1s at the
So the triggere

Zero State 1S 1 tate .]S 1()We|' irl
i h'ghel' ill the hieral'chy), ora 1ev€1 1eSS than Ze.rO (S ‘

C&’”elell d d. onw lC catego € a

acts di1 tl ependly I lll ll t the Vel lSI] to

ate and returning the following pieces of in
action, any actions provided by the current state’s update function,
ing, and the transition’s level, less one.

10 transition is returned from the currents
of actions, If we are at the top level of th
then we are also within a state,

ants to execute, Transition

formation: the
of sub-states will not b

the transition that is still
he cutrent state has a transition it w

take priority, and the transitions

tate’s update function, then we can simply return
e hierarchy, the list alone is fine, If we are lower
so we need to add the action for the state we’re in to the list

i xpl
arget state and not require an €xp

shows a hierarc

hical state machine that we will use as an example,
fy the actions re

turned for each example, we will say S-entry is the set of entry actions

-active and S-exit for active and exit actions. In transitions, we use the
-actions for the actions associated with transition 1.

324 Chapter 5 Decisiont Making

State A

State N

Figure 5.19 Hierarchical state machine example

' sin
These examples can appear confu

the algorithm, we urge you to f9llow thr

pseudo-code from the next sectlollj. "
Suppose we start ju§t in State L,, 3 <

because Is initial state is A. The upda

g if you skim through them. If youd
ough step by step with both the

no transition triggers. We 7/\7111 trglj:_
function will return L-active an

re having trou
jagram above

ition into Sta\
entry, becatl

5.3 State Machines 325

previously. This is a personal preference on our
and reenter State B, then you can modify your
appropriate time.

Now suppose from State [L, B] transition 3 triggers. The top-level state machine finds no
triggers, so it will call state machine L to see if it has any. L finds that State B has a triggered
transition. This transition has a level of one; its target is one level higher in the hierarchy.
This means that State B is being exited, and it means that we can’t honor the transition at
this level. We return B-exit, along with the uncompleted transition, and the level minus one
(i.e., zero, indicating that the next level up needs to handle the transition). So, control returns
to the top-level update function. It sees that L returned an outstanding transition, with zero
level, so it honors it, transitioning in the normal way to State N. It combines the actions that
L returned (namely, B-exit) with the normal transition actions to give a final set of actions:
B-exit, L-exit, 3-actions, N-entry. Note that, unlike in our third example, L is no longer keeping
track of the fact that it is in State B, because we transitioned out of that state. If we fire transi-

tion 6 to return to State 1, then State I’s initial state (A) would be entered, just like in the first
example.

part and isn’t fixed in stone. If you want to exit
algorithm to return these extra actions at the

Our final example covers transitions with level less than zero, Suppose we moved from State N
to State M via transition 7. Now we make transition 2 trigger. The top-level state machine looks
at its current state (M) and finds transition 2 triggered. It has a level of minus one, because it

level of minus one, the state machine

at the state machine (L) that contains the final target st

tion at its level. State machine L, in turn,
transition at its level, The top-level state ma
-exif, L-entry as the appropriate actions. Co
on. State machine L checks if it is currentl

ate (C), asking it to perform the tran-
asks the top-level state machine to perform the
chine changes from State M to State L, returning
ntrol returns to state machine I’s updateDown func-
y in any state (it isn’t, since we left State B in the

st example). It adds its action (C-entry) to
staying in L and just entering A,

ition 1 is the only o L

suppose transition . see if it has any. L

Ijxfig tralzliition& so it will call state ma-ChH:e I;;S(ion at the current level, so it 15 hant

1o Vi . -ansition 1isatra : turns A-extt

. d transition. Transi > date function re

(A) has a triggere itions to B, and L’s up . fve actic

here. A transl ; ds its own active at+-

Land not passed 121 nY;vstate machine accepts these actlorixs an.d ;d it 1-actions, B-en
B-entry. The tc?P_ Se':;ete L throughout, the final set of actions 1s A-€X1l,

we have stayed 1n

The current state is [L, Bl. .

i ¥ iti tr1 . A
s state, transition 4 8¢ . rp——
dFéom t}slé it is ; top-level transition it can be honor
and becau

el > .
>
State I\/I and tlle COI]eSpOndng aCtIODS are L‘exlt 4“aCt101]S I\/["elltry I
N that L 1S Stll keepl[)g a IeCOld Of belng m State B, but beCauSe t}le top
ote

isn’ ent.
in State M, this record isn't used at the mom

ine
one that triggers. The top-level state mach

those returned by the top-level machine, Control
: €N returns to the top-level state machine’s u
finds that its cu

pdate function: the descending transition has been
onored: it adds the transition’s actions to the result and returns M-exit, 2-actions, L-entry,

that transiti
The trans
he current
level sta

ggers. The top-level state machine sees

erarchical state machine implementation is made up of five classes and forms one of
gest algorithms in this book, The State and Transition classes are similar to those in

sition 2

ular finite state machine. The

ell (8} f]() tate (0} te N n the no “la] Way t]l]Oll h tran:
m S at M t Sta 1 h nor g
W g

is exactly the same as for the. p'rev1ousleer
transition 6 triggers. Because 1t1s a leve zd -
immediately. It transitions into State L an

Dsrec
we do

xample and the non-hierarchi
o transition,

ord of being in State B is important; wi ‘
n’t return the B-entry action, because w

cal state
1

the top-level state machi
i ions, b

eturns the actions N-exit, 6-actions,

i outl
¢ end up in State (L, B) agam. 'I:n .
didp’t return the B-exit acti ‘

HierarchicalStateMachine class runs state transitions, and
ionality of the state machine and a state, It is used for state
1 of the hierarchy. All classes but Transition inherit from
e algorithm by allowing functions to treat anything in the

NeState combines the funct
that aren’t at the top leve
class, which simplifies th
1 the same way.

5.3 State Machines

326 Chapter 5 Decision Making

The HSMBase has the following form: » if not
currentState:
class HSMBase: ? currentState = initialState
' 2 return cu .
The structure returned by update 2 rrentState.getEntryAction()
struct UpdateResult: .
actionz % # Try to find a transition in the current
transition o triggeredTransition = None state
Tevel 2 for transition in currentState.getTransitions():
» if transition.isTriggered(): S0
% triggeredTransiti i
on = transiti
i break sition

def getAction(): return n

If we've

i’ triggere£$$zgs?:$;nTake a result structure for it
result = UpdateResult()
result.actions = []
result.transition = triggeredTransition
result.level = triggeredTransition.getLeve]()

def update():
UpdateResult result
result.actions = getAction()
result.transition = None
result.level =0
return result

Otherwise rec
urse down fo
else: ra result

result = currentState.update()

def getStates() # unimplemented function

The HierarchicalStateMachine class has the following implementation:

Check if the re
s sult contains a t itq
if result.transition: ransition

i class HierarchicalStateMachine (HSMBase) :

Act based on its

. level
if result.level == 0

List of states at this 1evel of the hierarchy

states

6 # The initial state for when the machine has no

7 # current state. # Its on our Tevel: honor it

8 initialState targetState = result.transition.getTargetSt
result.actions += currentState.getExitictioSE;()

re i
re:ﬂ]t.actTons += resu]t.transition.getAction()
.actions += targetState.getEntryAction()

The current state of the machine.
1 currentState = initialState

Gets the current state stack # Set our current state

" def getStates(): CurrentState = targetState
if currentState:
else: return []

return currentState.getStates()
#
Add our normal action (we may be a state)

result.actions += getAction()

Clear th ;
‘the transition, so n
> obod :
result.transition = None y else does it

Recursively updates the machine.
19 def update():

If we're in no state, use the initial state
else 1if result.leve] > 0:

67

68

69

99

100

101

102

103

104

328 Chapter 5 Decision Making

Its destined for a higher level

Exit our current state
result.actions += currentState.getExitAction()

currentState = None

Decrease the number of levels to go
result.level -=1

else:

Tt needs to be passed down
targetState = resu1t.transition.getTargetState()

targetMachine = targetState.parent

result.actions += resu1t.transition.getAction()

result.actions += targetMachine.updateDown(
targetState, -result.level

)

Clear the transition, so nobody else does it
result.transition = None

1f we didn't get a transition
else:

Ve can simply do our normal action
result.action += getAction()

Return the accumulated result
return result

Recurses up the parent hierarchy, transitioning into
each state in turn for the given number of levels

def updateDown(state, Jevel):

4 1f we're not at top level, continue recursing
if level > 0:

Pass ourself as the transition state to our parent

actions = parent.updateDown(this, Tevel-1)

Otherwise we have no actions to add to
else: actions = []

If we have a current state, exit it

110

111

112

113

114

H5

116

if currentState:
actions += currentState.getExitAction()

Move to the new

state, and ret i
currentState = state i all the actions
actions += state.getEntryAction()
return actions

5.3 State Machines

The State class is substantially the same as before
b

329

|

but adds an implementation for getStates:

Similarly,
nsition:

class Transition;

As before
def isTriggered()
def getTargetState()

class State (HSMBase):

def getStates():

1f we're just a
state, then L
return [this] the stack is just us

As before...

def getAction()

def getEntryAction()
def getExitAction()

def getTransitions()

the Transitio i
n class is the same but adds a method to retrieve the level of th
e

#R i
eturns the difference in levels of the hierarchy from

the source t
0 the target of th .
def getlevel() & transition.

e

SubMa i
chineState (State, HierarchicalStateMachine):

te get action to the state

330 Chapter 5 Decision Making

LiBRARY

def getAction{): return State::getAction()

4 Route update to the state machine

def getStates():
if currentState:
return [this] + currentState.getStates(

b

else:
return [this]

Implementation Notes

We've used multiple inheritance to implement SubMachi neState. Forlanguages
that don’t support multiple inheritance, there are two options. The SybMachineSta
sulate Hierarchical StateMachine, or the Hierarchica]StateMachine can be convert
is a sub-class of State. The downside with the latter approach is that the top-level state m
will always return its active action from the update function,

the head of the list.

We've elected to use a polymorphic structure for the state
implement the same algorithm without any polymorphic method

enough already, however, well leave that as an exercise.

state machine involved an implementation using polymorphic metho
website). In-game profiling on both PC and PS2 showed that the method ¢
bottleneck in the algorithm. Ina system with hundreds or thousands of stat

cache efficiency issues come into play.

def update(): return HierarchicalStateMachine::update()

We get states by adding ourself to our active children

)

will run about as fast if all the transitions have a zero level.

Performance

The algorithm is O(n) in memory, where n is the number of layers in
temporary storage for actions when it recurses down and up the hierarchy.

Similarly, it is O(nt) in time, where f is the number of transitions per st
transition to fire, it potentially needs to search each transition at each leve

O(nt) process. The recursion, both for a transition leve
not affect the O(nt) for the whole algorithm.

| <0 and for a level

machine again. It is po
calls. Given that it is
Our experience deployinga hie
d calls (provide
all overhead:
es, it may

ated. If you don’t need cros

the hierat

ate. 10
L of th

=018

{or program

Some implementations of hierarchical state machines are significantly simpler ¢
making it a requirement that transitions can only occur between states at the samé
this requirement, all the recursion code can be elimin
transitions, then the simpler version will be easier to imple
however. Because the recursion isn’t used when the transition i

5.3 State Machines 331
On the Website

Following hierarchi
ical i i
o Do e ﬁrssttats\;l}acln?es, especially when they involve transitions across hierarchi
oottt cvon ol “.,e, e’ve tneld to be as apologetic as possible for the com 1exietlalcf ies,
algorithin nt ve made it as simple as we can. Nonetheless, it i o
Th H}’Oul arsenal and worth the effort to master. it aponertultechnique
e Hierarchical State Machin .
. e program that is availabl i
el al Stat of ilable on the webi
achine, triggering any transition at each step. It works in theStsealets Mo ;hrough
me way as the State

Machine program, givi
: , giving you plenty of feedbacl ransiti i
ram - picture, alongside the content of this chapter. ehon ransifons. Wehope fwillelp givea clearer

5.3.10 cC
; OMBINING DECISION TREES AND STATE MACHINES

The in'll?lementation of transitions bears mor i
of d]e)c;z;:ir; r?iféf:f: ;sl 1:3;)ﬁ cc.)incidence, bt?tlfv;hczrlllatall)l: Siltneiziszll;ltjliice (o the Implementation
. St\i;e ision trees ax matdﬁ;l;rg ;:;)irtioofl]?atchmg a series of conditions, and this has application
e can combi X
e thglt?::iz ;(}vlvec; ztlﬁglll osecilllles :Cyt ireplacing transitions from a state with a decision tree
A simple state machine might lookglike I?igflis ;).62%)1‘6) e transitions to new states |

Ille d]aanlld Sylllb P < <
01 1S a]S() art Of tlle UIVIL state Ch it dl lgl am follnclt ICPICSCIIUII a
4 g

. e M . . LR] L :] - d th d
. €1S 1
dGCIS]() 1 (] I the (0] (l 16 entiatiol l)etweell ecistons and transiti 0o1s, an € decisions

Raise alarm

Can see Player

Alert the P'ayel"? nearby?
_ [Yes]

(ot .

Defend

0 st
at i i 151
¢ machine with decision tree transitions

332 Chapter 5 Decision Making

5.3 State Machines

333

1 def isi
Raise alarm makeDecision(node):

Check if we need to make a decision

r in sight AND player is far away]
if ..
not node or node 1s_instance of TargetState:

[Playe

We've got the t
arget (or a null target); j
(Player in sight AND player is close by] 7 o o

9 else:

Make the deC S. recurse Y
on and
() urs based on the esult

IetUI akeDeC sion Od t'ue 40 e
.
(e d)

Figure 5.21 State machine without decision tree transitions

In this book we’ve labeled the decisions with the test that they perform, which is clear et)

our needs.

When in the “Alert” state, a sentry has only one possible transition: via the decision
quickly ascertains whether the sentry can see the player. If the sentry is not able to see the p
then the transition ends and no new state is reached. If the sentry is able to
the decision tree makes a choice based on the distance of the player. Dependin
this choice, two different states may be reached: “Raise Alarm” or “Defend.” The latter can
reached if a further test (distance to the player) passes.

To implement the same state machine without the decision nodes, the state mac
Figure 5.21 would be required. Note that now we have two very complex conditions
have to evaluate the same information (distance to the player and distance to the alarm
the condition involved a time-consuming algorithm (such as the line of sight test in our ex
then the decision tree implementation would be significantly faster. ‘

vVe can then. bulld an IIIlpleI]leIltatl()Il Of t}le ansit on intet taCe t] 1at u [)P()l ts e ae 0
| S t Se C1S1011

cla isi i
ss DecisionTreeTransition (Transition):

Ho

o 1ds the target state at the end of the decisi
ree, when a decision has been made o

targetState = None

Holds the roo isi
t decision in th
decisionTreeRoot " e

def i X

Pseudo-Code ifg:zACh on():
e rae:State: return targetState.getAction()

We can incorporate a decision tree into the state machine framework we've develope ¢ return None

The decision tree, as before, consists of DecisionTreeNodes. These may be decis
the same Decision class as before) or TargetStates (which replace the Action class
decision tree). TargetStates hold the state to transition to and can contain actions. A
branch of the decision tree should lead to no result, then we can have some null valu

of the tree.

def getTargetState():
if targetState
¢ return tar
else: return None getState.getTargetState()

def isTriggered():

class TargetState (DecisionTreeNode):
getAction()
getTargetState()

Get th
{targemtetr‘efun of the decision tree and store it
a{e = makeDecision(decisionTreeRoot)

Retur i
N true if the target state points to a

destinati i
ation, otherwise assume that we don't trigger

he decision making algorithm needs to change. Rather than testing for Actt
turn targetState != None

now tests for TargetSt ate instances:

334 Chapter> Decision Making

5.4 Behavior Trees 335

large number of them in your engine. Most of the time Actions will succeed (if there’s a chance
they might not, it is better to use Conditions to check for that before the character starts trying to
act). It is possible to write Actions that fail if they can’t complete, however.

If Conditions and Actions seem familiar from our previous discussion on decision trees
and state machines, they should. They occupy a similar role in each technique (and we’ll see
more techniques with the same features later in this chapter). The key difference in behavior
trees, however, is the use of a single common interface for all tasks. This means that arbitrary

Conditions, Actions, and groups can be combined together without any of them needing to know
what else is in the behavior tree.

54 BEHAVIOR TREES

’ - creatin

Behavior trees have become a popullal tor(;lei(;; 1‘cWhiCh

2004] was one of the first high-profile gahave o

detail and since then many more game45 e et
They are a synthesis of a number 0

[e e(ll] l lalllll—l and
H lalchlcal State MaChln S, SCh 1 g) g> W
TOIM y { terleave ” ese C()llcelns m a
. . .
thell ablllt 0 1N
o1 1 ()n~p10glamm€15 to Cleate. Desplte t}lell glOWlIlg
]fﬁCth to dO Weu m behavior trees, alld dley are

Halo 2 [Bungie Software

-acters. : :
BAL was described i

the use of behavior trees

it. ‘ .
:Illlat Jave been around in Al for a whil

Action Execution. Their strength Z,lom
ay that is easy 10 understandhaim i
ubiquity, however, there. are t .1ggs'
't always a good solution for decis

Both Conditions and Actions sit at the leaf nodes of the tree. Most of the branches are made
up of Composite nodes. As the name suggests, these keep track of a collection of child tasks
(Conditions, Actions, or other Composites), and their behavior is based on the behavior of their
children. Unlike Actions and Conditions, there are normally only a handful of Composite tasks

because with only a handful of different grouping behaviors we can build very sophisticated
behaviors.

are d

cal State Machines but, instead ofas

maklng.

“ehav or trees 1ave a ot 1 C()lnmon W]th EhelalChl
‘ \Y tree1s a 1[15](A taSk can be Somethll g S SlIIlple as 100
avior . 1g a

ad; be N
in building block of 2 . ing an animation.
the main g P ble in the game state, Or executing s, In turn, these com
up the value of a varia b-trees to represent more complex actions
ub-

; 1 ives be
. dinto s o T thic composability that give
Tasks are Co.mé) Ozzmposed into higher 1evelbehav101s.. Ttis tfhls C;)ndpare largely selficon
actions can again be ks have a common interface . woltl
i g - Because all tasks ; C ithout having to
tor trees tgleu piTwliLilt up into hierarchies (i.. behav1101 t1efsziw
e easiy . s ararchy is implemented.
t?eydcinils of how each sub-task in the hierarchy 1s Imp
the deta

For our simple behavior tree we'll consider two types of Composite tasks: Selector and
Sequence. Both of these run each of their child behaviors in turn. When a child behavior is
complete and returns its status code the Composite decides whether to continue through its
children or whether to stop there and then and return a value.

A Selector will return immediately with a success status code when one of its children runs
successfully. As long as its children are failing, it will keep on trying. If it runs out of children
_ completely, it will return a failure status code.

A Sequence will return immediately with a failure status code when one of its children fails,

As long as its children are succeeding, it will keep going. If it runs out of children, it will return in
Sticcess.

Types of Task

They are given SO.me QPU tim
Tasks in a behavior tree all have ths Sihe return with a status code indicatlrig ‘eﬁ‘z’;tsz Selectors are used to choose the first of a set of possible actions that is successful. A Selector
their thing, and when they are reaffz’ e atythis stage). Some developers use a aflg eed 1 ight represent a character wanting to reach safety. There may be multiple ways to do that (take
failure (a Boolean value would suthic omething o nexpected went wrong, 01 a over, leave a dangerous area, find backup). The Selector will first try to take cover; if that fails,
ing an error status, when s will leave the area. If that succeeds, it will stop—there’s no point also finding backup, as we've
Ived the character’s goal of reaching safety. If we exhaust all options without success, then the
ector itself has failed.
Selector task is depicted graphically in Figure 5.22. First the Selector tries a task representing
acking the player; if it succeeds, it is done. If the attack task fails, the Selector node will go on

Y a taunting animation instead. As a final fall back, if all else fails, the character can just stare
acingly.

me basic structure.

values, includ ‘ . em. e
status for integration with a scheduling S?{)Sittrarily complex code, the most ﬂ??ﬁ-mgsl es
: inds can contain ar v be composed. 1his
While tasks of all kin llest parts that can se fully be M
ken into the stoates” b idi havior trees really shine Wit
each task can be bro : amming idiom, behavi e
: -ful just as a prograr signers, techl
bt Whllll'e p1owei'fint)erface (GUI) to edit the trees. That way, desig
with a graphical use

16\]61 dCSIgIlels can p() te]ltla]ly athh()l C()lIlpleX [&I l)eh'dVlOl.
At thlS Stage our SlIIlP]e behaVIOl trees Wﬂl COIlSlSt Of thlee kHl

b
CCOIldltlonS teSt some P] Opel Of the ame. l hele ca e tes

1thln }; U.IlltS ()1 an ene y:. teSlS 101 lln.e ()i S1 ht teSlS on
) g)
1Y b "
w}lealﬂly 153 dO l have aln[ll().), alld SO on. E:aCh Of t}lese 1 IldS Of te
1 uSua“y Wlth some pal ZlIllCtellZatIOIl SO t}ley can b
<,

ds of tasks: Conditio

oy (is th €quences represent a series of tasks that need to be undertaken. Each of our reaching-safety
ts for proximity b s in the previous example may consist of a Sequence. To find cover we’ll need to choose a
the state of the ?m point, move to it, and, when we’re in range, play a roll animation to arrive behind it. If any
sts needs tO b; IEa Steps in the sequence fails, then the whole sequence has failed: if we can’t reach our desired
e easily reus¢ -;Nis' .int, then we haven’t reached safety. Only if all the tasks in the Sequence are successful can
. Condition is met and returns fe.lilurf: Othfe(;‘ 5 ;der the Sequence as a whole to be successful.

ccess status code if the OThere can be Actions for animation; . l'e‘5-23 shows a simple example of using a Sequence node. In this behavior tree the first
character (resting raises health, for examp isa COI'ldition that checks if there is a visible enemy. If the first child task fails, then the

task will also immediately fail. If the first child task succeeds then we know there is a

a separate tas

returns the su
Actions alter the state of the game.

ment, to change the internal state of the
’ L. .

samples, to engage the player %n d1a%ﬁg,
Just like Conditions, each Action will 1

i uch 45
and to engage specialized Al cod'eo(s -
eed to have its own implementatioh, =

336 Chapter 5 Decision Making

Move
(into room)
Figure 5.24 The simplest behavior tree
?
: ior tree
Figure 5.22 Example of a selector node in a behavior
igu .
—> —
Door Move Move Open Move
? i .
Enemy open? (into room) (to door) door (into room)
visible?

‘ w h co POSlte IlOdeS
5 3 E i

ichis to So,
ild task, which is to
d the Sequence task goes on to execute the next chi ,
visible enemy, an

5 101 tree 18 “lade
aSk. h S q T e tas

of a Selector, which has two different things it can try, each of which is a Sequence. In the first
it checks to see if the door is open, using a Condition task; then it moves into the room. In
econd case, it moves to the door, plays an animation, opens the door, and then moves into
m,
A Simple Example s thigk ablout how this behavior tree is run. Imagine the door is open. When it is given
behav e, the Selector tries its first child. That child is made up of the Seq
1d a simple but powerful behaV . - » . ; :
the tasks in the previous example to bmlﬁ a sinptryingﬁ o enter the 10 the open door. The Condition checks if the door is open, It is,
We can use ts an enemy character uence task moves on to its next child ing through the d
: . mple represen 1€ on to its next child—moving through the doo
behavior tree in this exa ' de ticceeds
: ing. . be built up and :
the player is standing _ hasize how the tree can o
; n stages, to emp , . behaviots
We'll build t.he t;ee];ehavi%)r ’tree is part of its attraction, a; Sm}plement resoute
ing the) ” velo .
proces of reﬁgnegd in response to play testing and additional ef a S'l}ilgle task, It
in and thgf tr et Figure 5.24, shows a behavior tree made up 0 o
st stage ’ . : ine provides. .
o ied ougt t’lsing whatever steering systein our €1g topthe room. This was
obeean this task we give it CPU time, and it moves 1> 1dn’t go down well it
o ru?erin rooms before Half-Life, of course, but WOE,}_ e developing your A
ALfOF enl exfmple does make a point, however. When yo +hing working. le shows an important feature of behavior trees: a Con
The simple . s et som
trees jugt a single naive behavior s - '}:fli}?e;(lia;rg can simply close the o
> . .
is too stupid: the
In our case, the enemy

ment in'a pro
incoming enemy.

uence task for moving
50 it returns success. So,

r. This, like most actions,
so the whole of the Sequence has been successful. Back at the top level, the

as received a success status code from the first child it tried, so it doesn’t both trying its
‘1t immediately returns in success.

appens when the door is closed? As before the Selector tries its first child. That Sequence
ndition. This time, however, the Condition task fails. The Sequence doesn’t bother

ne failure is enough, so it returns in failure, At the top level, the Selector isn’t fazed
t just moves onto its next ¢

hild. So, the character moves to the door, opens it, then

dition task in a Sequence acts
gramming language. If the Condition is not met, then the Sequence

dbeyond that point. If the Sequence is in turn placed within a Selector, then we

5.4 Behavior Trees 337

338 Chapter 5 Decision Making

5.4 Behavior Trees

get the effect of IF-ELSE-statements: the second child is only tried if the Condition wasn’t met for
the first child. In pseudo-code the behavior of this tree is:

if is_locked(door):
move_to(door)
open (door)
move_to(room)

else:

move_to(room)

The pseudo-code and diagram show that we're using the final move action in both cas
There’s nothing wrong with this. Later on in the section we'll look at how to reuse existing s
trees efficiently. For now it is worth saying that we could refactor our behavior tree to be mi
like the simpler pseudo-code:

Door
open? —>

Move

if is_1 ocked(door) (
to door)

move_to(door)
open({door)
move_to (room)

Open
door

igure 5.26 : i
A more complicated refactored tree

The result is shown in Figure 5.26. Notice that it is deeper than before; we've ha
another layer to the tree. While some people do like to think about behavior trees
of source code, it doesn’t necessarily give you any insight in how to create simple of
trees.

In our final example in this section we'll deal with the possibility that t
the door. In this case, it won’t be enough for the character to just assume tha
opened. Instead, it will need to try the door first. Figure 5.27 shows a behavior tree
with this situation. Notice that the Condition used to check i the door is locked doe
at the same point where we check if the door is closed. Most people can't tell if a do
just by looking at it, so we want the enemy to go up to the door, try it, and then chan,
if it is Jocked. In the example, we have the character shoulder charging the doot.

We wor’t walk through the execution of this behavior tree in detail. Feel free to s
it yourself and make sure you understand how it would work if the door is openy
and if it is locked.

At this stage we can start to se€ another common feature of behavior: trees. 0
made up of alternating layers of Sequences and Selectors. As long as the only Comj
have are Sequence and Selector, it will always be possible to write the tree i this . N

Door Move

(into room)

Move
(into room)

(to door)

1. The reason for this may not immediately be obvious. If you think about a tree in which a Selector h
as a child—its behavior will be exactly the same as if the child’s children were inserted in the patent
the grandchildren returns in success, then its parent immediately returns in success, and so does - . Door Open
same is true for Sequence tasks inside other Sequence tasks. This means there is no functional reasot locked? door
with the same kind of Composite task. There may, however, be non-functional reasons for using 4
as grouping related tasks together to more clearly understand what the overall tree is trying to achf

Door
open?

£ behaV 1 y (& y
10
ree fOl a mlnlmaﬂ acceptable nem

339

340 Chapter5 Decision Making

the other kinds of Composite tasks we'll see later in the section, Sequence and Selector are still the
most common, so this alternating structure is quite common.

We're probably just about at the point where our enemy’s room-entering behavior would
be acceptable in a current generation game. There’s plenty more we can do here. We could ad
additional checks to see if there are windows to smash through. We could add behaviors to allo
the character to use grenades to blow the door, we could have it pick up objects to barge the doo
and we could have it pretend to leave and lie in wait for the player to emerge.

Whatever we end up doing, the process of extending the behavior tree is exactly as we

shown it here, leaving the character Al playable at each intermediate stage.

Behavior Trees and Reactive Planning

Behavior trees implement a very simple form of planning, sometimes called reactive plann
Selectors allow the character to try things, and fall back to other behaviors if they fail. This is
very sophisticated form of planning: the only way characters can think ahead is if you mant
add the correct conditions to their behavior tree. Nevertheless, even this rudimentary pla
can give a good boost to the believability of your characters.

The behavior tree represents all possible Actions that your character can take, The rout
the top level to each leaf represents one course of action,? and the behavior tree algorithm se
among those courses of action in a left-to-right manner. In other words, it performs a de t
search.

There is nothing about behavior trees or depth-first reactive planning that is uni¢
course; we could do the same thing using other techniques, but typically they are much
The behavior of trying doors and barging through them if they are locked, for example
implemented using a finite state machine. But most people would find it quite unint
create. You'd have to encode the fall-back behavior explicitly in the rules for state tra
would be fairly easy to write a script for this particular effect, but we'll soon see behav
that are difficult to turn into scripts without writing lots of infrastructure code to suppo.
behavior trees naturally work.

5.4.1 IMPLEMENTING BEHAVIOR TREES

Behavior trees are made up of independent tasks, each with its own algorithm and imp
All of them conform to a basic interface which allows them to call one another with
how they are implemented. In this section, we'll look at a simple implementation

tasks we’ve introduced above. ~

5.4.2 PSEUDO-CODE

Behavior frees are easy to understand at the code level. We'll begin by looking a4
class for a task that all nodes in the tree can inherit from. The base class speclﬁé

2. Strictly this only applies to each leaf in a Selector and the last leaves in each Sequence.

5 # failure (False)
7 def run()

5.4 Behavior Trees 341

In thlS IIIlpleIIleIltatIOIl we WIH use the SlIIlpleSt appIOaCll alld use the BOOleall Values II ue aIld
Ialse. Ille anlelnell)tatIOIl Of that IllethOd 1S IlOIInaHy not deflned m t}le base ClaSS (l e, 1t 1
.Co Sa

i Eass Task:

0 dS a st o the C d en a 8] t
(_Y) S taSk

P , ,
Always terminates with either success (True) or

IIeIe 1S an eXaIIlple Of a Sl[Ilple task that asserts theIe 1S an enemy [lealby.

’Thlss EnemyNear (Task):
def run():
if distanceToEnemy < 10:
return True

Task failure, th i
, there is no
return False ey nearby

Anothel €])] (e} [d l) t I) ay a. t
Xam].e Of a Slmp e task cou € 10]. n animatio
n:

class PlayAnimation (Task):
animation_id
speed

def AtFack(animation_id, Toop=False, speed=1
th?s.animation = animation speecl-0)
this.speed = speed

def run():
if animationEngine. ready():

. . E . .I . .
an a 0 g e'p ay(an at on spe d
(3 pe)

Ta i
sk failure, the animation could not be played

i1
he parent node will worry about the co

| sl nsequences

342 Chapter 5 Decision Making

5.4 Behavior Trees 343

. ular animation, and it checks to see if the Non-Deterministic Composite Tasks
particular ani ’

This task is parameterized to play one

g ine is available before it does so. e . usy playing a differen
animation engine 18 a\lfalla. ‘ne might not be ready is if it was alr ealeI) Y.P Y(e could st
One reason the animation engimne mig | than this over the animation (wi

) ‘e contro 11 look at
. . . we’'d want more C . . mple). We
animation. In a vea g:j[lme'mation while the character was running, for examp)
d-movement anlt
play a hea

i - in this section.
hensive way to implement resource-checking later
more comprehens ay to| ource-
The Selector task can be implemented simply

Before we leave Selectors and Sequences for a while,
of them that can make your Al more interesting
each of their children in a strict order. The order is
tree, This is necessary in many cases: in our

itis worth looking at some simple variations
and varied. The implementations above run
defined in advance by the person defining the

simple example above we absolutely have to check
if the door is open before trying to move through it. Swapping that order would look very odd.

Similarly for Selectors, there’s no point trying to barge through the door if it is already open, we

need to try the easy and obvious solutions first.
class Selector (Task): .

In some cases, however, this can lead to predictable Als who always try the same things in
the same order. In many Sequences there are some Actions that don’t need to be in a particular
1 .) . . M . 1
i def run(): order. If our room-entering enemy decided to smoke the player out, they might need to get
for ¢ in children: matches and gasoline,
’ if c.run():
4

but it wouldn’t matter in which order as long as both matches and gasoline
return True

hey tried to start the fire, If the player saw this behavior several times,
ifferent characters acting this way didn’t always get the components in ¢

would be nice if the d
same order.,

it
he

return False

For Selectors, the situation can be even more obvi ous. Let’
, ways to gain entry. They can walk through the open door,
is 1 imilarly: ;
implemented simi
The Sequence node is

locked door, smoke the player out, or smash through the

s say that our enemy guard has five
open a closed door, barge through a
window. We would want the first two
, but if we put the remaining three in a regular Selector
ype of forced entry is coming first. If the forced entry actions
normally worked (e.g., the door couldn’t be reinforced, the fire couldn’t be extinguished, the

indow couldn’t be barricaded), then the player would never see anything but the first strategy
i the list—wasting the AT effort of the tree builder.

These kinds of constraints are called “partial-order” constraints in the Al literature. Some
arts may be strictly ordered, and others can be processe

d in any order. To support this in our
ehavior tree we use variations of Selectors and Sequences that can run their children in a random
er,

class Sequence (Task):
def run():
for ¢ in children:
if not c.run():
return False

return True

The simplest would be a Selector that repeatedly tries a single child:
Performance

. fju class RandomSelector (Task):
ithin it. A tree made up 0 child
ior tree depends on the tasks wit) - serfo ildren
of a behavior 112 Clz)nditions and Actions) that are Oill)rllﬁriber‘ - defrun():
d O(log n) in speed, where n 1s the while True;

The performance
and Sequence nodes and leaf tasks (
memory will be O(n) in memory an

child = random, choice(children)
the tree. if child.run(): return True
return False
Implementation Notes

we'v v nd failure
-epresent the success a .
n the psew ’ Boolean values to repr ;
h do-code we've used . : he suce
Ifo tta kss In practice, it is a good idea to use a more flexible 1eu.sur1n ypei han Boo
eIlrllHls 1. € g is ideal), because you may find yourse nee ng1 mOIﬁt
in C-based languages is ideal), find : f1 © 1d
value ; hal 'tqcan e a serious drag to work through tens 0 task class implement
alues, and i b h f

the return values.

8ives us randomness but has two problems: it may try the same child more than once,
and it will never give up, even if all its children repeatedly fail, For

plementation isn’t widely useful, but it can still be used, especially in

On with the parallel task we’ll meet later in this section,

344 Chapter 5 Decision Making

5.4 Behavior Trees

345

children in some random order. We can ‘
andom shuffling procedure, we can

A better approach would be to walk through all the
do this for either Selectors or Sequences. Using a suitable r

implement this as:

class NonDeterministicSelector (Task):

Enteri
ntering... Open door...

children

def run():
shuffled = random.shufﬂe(chﬂdrén)

for child in shuffled:
if child.run(): return true

return false

Barge door...

Douse door

Ignite door

class NonDeterministicSequence (Task):

Get matches Get gasoline

children

def run():
shuffled = r‘andom.shufﬂe(chﬂdr‘en)

for child in shuffled:
if not child.run(): return false

return true

elr
gure 5,28 Example behavior tree with partial ordering

An implementation of this is included on the website

dren. This keeps the ra
will terminate Wi

a shuffling step before running the chil

In each case, just add
children will be run and that the node

but guarantees that all the
children have been exhausted.

Many standard libraries do have
yours doesn’t it is fairly easy to implement Durstenfeld’s shuffle algorithm: V on;
ow.

0 with a wave in their symbol and are shaded gray.

def shuffle(original):
list = original.copy()
n = list.length
while n > 1:

k = random.integer_less_than(n) ourth that is significant: Decorat
: Decorators.

ime “déCOI'ator”

n--3
Jist[n}, Vist[k}] = 1ist[k], Vist[n]btPartia

return Tist
h‘ Vil
1 the original class or the decorator.

ﬁllly Olde [)()Slte aIld we ll {4 Oll‘de crmin 1C ()lIlp()SlteS. l() “la.ke
. SO we have Ied (:()m S
> a n 1 1nist C
ltlally Ordered I&I Strategy we put theIIl t()gether into a be}laVlOI tree. F]gule 5.28 Sh()WS the
I 1ous Exalllrls‘ an EIlfIIl) I&I I) ng to er ter ¢ room, NCII dE tElIIllIllS tic noc €s are

' though th
T _— - gy . ﬁ ﬁf‘tl;ea (S)inl}flsh(;ws the l'ow—level details for the strategy to smoke the pl
nOn_determiniSElcl tar]orm, belng mefde up of fixed-order Composite tasks ?hﬁly?r -
asks usually sit within a framework of fixed-order task ' b gllsl:’ery
s, both above

3.
Ve met three famili
m . .
ilies of tasks in a behavior tree: Conditions, Actions, and Co i
s mposites.

is taken j i
| g s fro}r:1 .obJect—onented software engineering. The decorator
e va another class, modifying its behavior. If the decorator has th
raps, then the rest of the software doesn’t need to know '?S': o
if it is

346 Chapter 5 Decision Making

i ild task
i that has one single chi
ior tr -ator is a type of task : ‘ k.
havior tree, a Decora : of S s sl
e Contexlz (;f a'bi in some w)ay You could think of it like a Comp051tean k with = 08
ifies i ior . ' e
o mOdll?leS 1;15 he r?gful of Composite tasks we'll meet, however, there are many
child. Unlike the ha typ
o isi hether to allow the
e DmeCOI atoéls‘ common category of Decorators makes a decl:llsmnuww e
: ver . « L » allo
h lc(l) Ee}il ,pll.etznrun OZ not (they are sometimes called ﬁlte1li).f gl 2 e);er oy don' bet
o then i is used as the resulto filter. |
- status code it returns 1s u : : o malteii
idt then' o St;?en they normally return in failure, so a Selector can ¢
child behavior to run,

Restrain),
Selector(Sequence(Audible,

Move))

5.4 Behavior Trees 347

Pause,
Hit)),

Creep),

| ~ * W n linlit the numb
1 . 13.1 Standal‘d ﬁltel's that are USEful’. FOI eXalnple, e Ca [=
Thel‘e are sever

times a tasl{ can be run:

class Limit (Decorator)
runLimit

runSoFar

will then terminate successfully,

def run(): .
if runSoFar >= runLimit:
return False

runSoFar++
return child.run()

causin
turn, will cause the root node (a) to ter

The basic behavior of this tree is similar to before. The
in the figure, will initially try its first child task.
If there is no visible enemy, then the Seq
node (a) at the root will try its second child.

The second child of the root node is another Selector node,
succeed if there is an audible enemy,

uence node

Selector node at the root, labeled (a)
This first child is a Sequence node, labeled (b).
(b) will immediately fail and the Selector

labeled (c). Its first child (d) will

in which case the character will creep. Sequence node (d)

g Selector node (c) to also terminate successfully, This, in
minate successfully.

So far, we haven’t reached the Decorator, so the behavior is exactly what we’ve seen before,
In the case where there is a visible enemy,

arriving at the decorator. The Decorator will

Sequence node (b) will continue to run its children,
execute Sequence node (e) until it fails, Node (e) can

?
'yi ‘ge throug
-acter ’t keep trying to barge .
‘e that a character doesn ;
:ch could be used to make sure
glgltcthe player has reinforced. . I until it fails: o)
‘We can use a Decorator to keep running a task un - :
\ class UntilFail (Decorator) :
2 def run():)
while True: _ .
3 result = child.run() — — 1 -
4
5 if not result: break
| (e)
78 return True | - _/ -
] ior tree L&
i d up a behaviot
i i -ator with other tasks to buil o
mbine this Decorator wi ‘ . ot
1 V\‘Ie C221r91 fl“ohe code to create this behavior tree will be a sequence O |
il e Consciouis? Hit Pause Hit
that will look something like:
= Sequence(Visible, _

) ex = setector(ies UntilFail(Sequence(Conscious,
2 Hit,
3

Example behavior tree

348 Chapter 5 Decision Making

5.4 Behavior Trees

349

- wi i hit the enem
1 when the character is no longer conscious, O the char‘actell W}ll contlr;g:i)ffu -
- ff“ﬂw eomc ess, after which the Selector node will tef1rn1nate su e
until it lose§ consc1gusrﬁ e;(ecute the task to tie up the unconscious .enemy.h) et D
o O e cornt llnaf }{lowed by the immediate successful termmatlon‘of the rooh.t de (8 ,{ .
termina'te e ce node () includes a fixed repetition of hit, paus}c;, .1 t rv,vm i
NOt}ice o :hioiz(igirslciousness after the first hit in the sequence, then the characte
enemy happens to

i impressi haracter with a brut
i i the impression of a ¢ .

i ny one last time. This may give : fach tr b
bit he Slutb d?tei ;?:;is}ély this level of fine-grained control over potentially impo

ersonality. It 1 ined |
P ther key reason for the appeal of behavior trees. L cadks, other Decorafdht
T ddition to filters that modify when and how often to ca ,

In addition to :

usefully modify the status code returned by a task:

Animation

Play
engine available?

animation

Figure 5.30 Guarding a resource using a Condition and Selector

class Inverter (Decor‘ator‘):
def run()
return not child.run()

There are other cases where resources are limited in purely game terrs. There’s nothing to stop
us playing two audio samples at the same time, but it would be odd if they were both supposed
to be exclamations from the same character. Similarly, if one character is using a wall-mounted
health station, no other character should be able to use it. The same goes for cover points in a

shooter, although we might be able to fit a maximum of two or three characters in some cover
points and only one in others.

eve glve]l ust a lew sux l)le l)EC() ators here l ere are ma y more we C()uld lmp
h Ie, h 1 ‘
a WW u ee some more l)EIOW. EaCIl Of the DeC()lat()]S abOVe llave HlllleIltedrfIOIn a base
“I: » T]]] . .] 1 . 1 .] .] 1 I E
nd € S 3

In each of these cases, we need to make sure that a resource s available before we run some
implementation this would be

action. We could do this in three ways:

class Decorator (Task): . .
Stores the child this task is decorating.
child

. By hard-coding the test in the behavior, as we did with PlayAnimation

. By creating a Condition task to perform the test and using a Sequence
By using a Decorator to guard the resource

DESplte ”le S]]Ill)l]C]ty itisa ()()d m le ne llat on deC S101 to keep thlS COde mn The ﬁrst ppro W
g p a ach e’v3 T]
.Wh y()u come to l)llﬂd a PIaCt]Cal l)EhaV]()l tree]DlPIEIHEIltathIl yOLll].need :Ild "Ould be to 1801 d a behav'
l)ase ClaSS €n 101 tree tha‘ l(b()(s

ething like Figure 5.30. Here, the Sequence first tries the Condition. If that fails, then the
i le Sequ. Is. TF € Hrs the.
i hild — task management code1 - quence fails. If it succeeds, then the animation action is called.. . -

B e o o Composte s s to have a common base s 1181 a completely acceptable approach, but it relies on the designer of the behavior tree

when ¢ . : ks—it is wise to hav ; ng the correct structure each
for Composite tasks

is useful, The same advice goes
both Selector and Sequence.

time. When there are lots of resources to check, this can be
laborious.

he third option, building a Decorator,

ecorator were gO

is somewhat less error prone and more elegant,

ng to create will use a mechanis
Ores are associated with parallel or multithreaded programming (and it is no coincidence
> R

I€ interested in them, as we

: Il see in the next section). They were originally invented by
Dijkstra, of the Dijkstra algorithm fame.

phores are a mechanism for ens
L PlayAnimation example,
at a time. We might hav.

m called a semaphore.
. (5 1
i : that isn’t as trivia
Before we leave Decorators there is one important Decorator type

aS” € exan le al)“Ve eve allea(lyseel W]ly (] 1ee(|' when e‘l emented ﬂle
p . W ’ Wi 1 we i1y lPI

. vV A i i ed I‘eSOler
Often partS Of a bEha iOr tree need to ha € access to some hm

‘ i : i not over SubSCl‘ibed,
a t]l K l t) i i ly lay one ani
18

semaphores can cope with resources that aren’t limited to one

e a pool of ten pathfinders, for example, meaning at most ten
o through the v l(;m be path'ﬁnding at a time. Semaphores work by keeping a tally of the numbe'r of
f the skeleton at any time. If the character’s hands are moving e cice €I¢€ are available and the number of current users, Before using the resource, a piece
e ske : . n : : s € e . . .
fﬁé)t’ia;’t be asked to wave. There are other cotc)lle rgsouliise;h;rt::u spoken for h::li(tthe StG)m:lpﬁlore (1if 1t can “acquire” it. When the code is done it should notify the
e , nce ; , can be “released.”
L athfinding instances available. _ : into th ‘ .
timited Hu}llnber Oflls).hould choose behaviors that avoid cluing the player 1 ;
can’t use them an

350

Chapter 5 Decision Making

p g y p <1 (0] p (0] 11€S10;
level() elat]]l system]]lllltheS f()rlocl ng.M stpr grammnl nguages have OOdllbIa l
Sell lap] ores, SO y()u re unllkely to need to ln’lplement one y()uISelf. Ve 11 assume tllat sen la])l ole
>
(Pl()Vlded fOI us and }1 (S t}le f()llOW nlg IIltelface.
ar av

5.4 Behavior Trees 351

s b T e i ly p i g
0 bE Pl()Pelly tlll ead Safe Semapho €s 1 ed some]nfl'astructure, usual epending on low
. N . , j 1

In this implementation we expect the semaphore to be used in moye than one guard Decorator
at more than one point in the tree (orin the trees f;

or several characters if jt represents some shared
resource like a cover point).

To make it easy to create and access se

maphores in several Decorators,
factory that can create them by name:

it is common to see a
e:
class Semaphor

e
Creates a semaphore for a resour];c e
with the given maximum number of u .
def Semaphore(maximum_users)

semaphore hashtable = {}

def getSemaphore (name, maximum users):

if not semaphore_hashtab]e.has(name):
semaphore_hashtab]e[name] =
Semaphore(maximum_users)

return semaphore_hashtab]e.get(name)

-~

Returns true if the acquisit1:on is
successful, and false otherwise.
def acquire()

Has no return value.
def release()

Itis easy then for designers and level creators to create ne
fyinga unique name for them. Anothera

constructor, and have it look up or crea
~ This Decorator gives us a powerful

way of making sure that a resource isn’t over-subscribed,
But, so far this situation isn’t very likely to arise. We've assumed that our t

be running at a time. This is a major
n. To lift it we’ll need to talk about ¢

W semaphore guards by simply speci-
pproach would be to pass in a name to the SemaphoreGuard
te the semaphore from that name,

Vv th a sem. ll() e 11 le € tation we can C eate ou DeC()rat()l as fOuOWS-
h p I P men 1 wi a I I
1 S a

eturn a result, so only one task gets to

hat would cripple our implementatio
Drogramming, and timing,

asks run until they
limitation, and one

oncurrency, parallel

class SemaphoreGuard (Decor‘ator):

Holds the semaphore that we're using to
2 # guard a resource. CONCURRENCY AND TIMING
s semaphore
. d(semanhore) : at in t}.u.s chapter we’ve managed to avoid the issue of running multiple behaviors at the same
, def SemaphoreGuard(semap hore - Decision trees are intended to run quickly—giving a result that can be acted upon, State
. this.semaphore = semap hines are long-running processes, but their state i explicit, so it is easy to run them for a short
\ each frame (processing any transitions that are needed),
10 def run(): ire() Behavior trees are different. We may have Actions in our behavior tree that take time to
N if semaphore.acquire 0 ing to a door, playing a door opening animation, and barging through the locked
) result = child. rurE) Ul take time, When our game comes back to the AT on subsequent frames, how will it know
. semaphore.release do? We certainly don’t want to start from the top of the tree again, as we might have left
. return result way through an elaborate sequence,
. else: short answer is that behavior trees as we have seen them so far are just about useless. They
. return False . lon’t work unless we can assume some sort of concurrency: the ability of multiple bits of

_ it cannot acquire the € ' _ ° lunning at the same time,

The Decorator returns its falhllre St?ggz Zo(ieffggelltlaction that doesn’t mvol‘{ ‘ bproach to implementillg this concurrency is to Imagine each behavior tree is running
allows a select task higher up the tree to . read. That way an Action can take seconds to carry out: the thread just sleeps while
resource. , d to have any knowledge of the actual resout “ . wakes agal'n to return True F)ack to w}}atevel' t'ask was above it in the tree,

Notice that the guard doesn’t nee eans with this one single class, an¢ - I‘lfﬁcult approach is to merge behavior trees with the kind of coo
It just needs the semapizlz-n?ll:i;gl of resource, whether it is an animation & mg algorithms we will lool
semaphores, we can gu

perative multitasking
< at in Chapter 9. In practice, it can be highly wasteful to

and even on multi-core machines we might need to use a

ireads at the same time,
station, or a pathfinding pool.

352 Chapter 5 Decision Making

cooperative multitasking approach, with one thread running on each core and any number o

lightweight or software threads running on each,
Although this is the most common practical im

The specifics depend greatly on the platform you are targeting,

contain considerably more code for managing the details of threa

plementation, we won't go into detail here
and even the simplest approache
d management than the behavio

tree algorithm. .
The website contains an implementation of behavior trees using coopet

ActionScript 3 for the Adobe Flash platform. Flash doesn’t support native threads, so there is

alternative but to write behavior trees in this way.
To avoid this complexity we'll act as if the problem didn’t exist; we

multithreaded implementation with as many threads as we need.

ative multitasking

PrROGRAM

11 act as if we haw

Waiting

that allowed a character to wait a moment be

In a previous example we met a Pause task :
nd useful task. We can implement it bys

Actions to strike the player. This is a very common a
putting the current thread to sleep for a while:

! class Wait (Task):
2 duration

4 def run():
5 sleep(duration)
6 return result

There are more complex things we can do with waiting, of course. We can use it to
value prematurely. We could create a version of our
in within a certain time frame or one that wait

a long-running task and return a
that prevents an Action being run aga ‘
amount of time before returning to give variation in our character’s behavior.

This is just the start of the tasks we could create using timing information. NQ
ideas is particularly challenging to implement, but we will not provide pseudo-code

are given in the source code on the website,

The Parallel Task

In our new concurrent world, we can make use of a third Composite task. 1tis
and along with Selector and Sequence it forms the backbone of almost all behav
The Parallel task acts in a similar way to the Sequence task. It has a set qf ¢
runs them until one of them fails. At that point, the Parallel task as a wl_lole fa%
tasks complete successfully, the Parallel task returns with success. In this way, it
Sequence task and its non-deterministic variations.

5.4 Behavior Trees 353

The difference is the way it runs those tasks. Rather than running them one at a time, it runs
them all simultaneously. We can think of it as creating a bunch of new threads, one per ch)ild d
setting the child tasks off together. , ’ o

When one of the child tasks ends in failure, Parallel will terminate all of the other child threads
that are still running. Just unilaterally terminating the threads could cause problems, leaving the
game inconsistent or failing to free resources (such as acquired semaphores). The ’termination
procedure is usually implemented as a request rather than a direct termination of the thread. In
order for this to work, all the tasks in the behavior tree also need to be able to receive a terminat.ion
request and clean up after themselves accordingly.

In systems we’ve developed, tasks have an additional method for this:

| class Task:
def run()
def terminate()

and the colde on the website uses the same pattern. In a fully concurrent system, this terminate
mf:thod .wﬂl normally set a flag, and the run method is responsible for periodically checking if
_this ﬂag is set and shutting down if it is. The code below simplifies this process, placing the actual
termination code in the terminate method.?

With a suitable thread handling API, our Parallel task might look like:

class Parallel (Task):
children

Holds all the children currently running.
runningChildren

Holds the final result for our run method.
result

def run():
result = undefined

Start all our children running
for child in children:

thread = new Thread()
thread.start(runChild, child)

Wait until we have a result to return

est approach in practi inati
- bepfl:oa'Ch l}rll practice because the termination code will rely on the current state of the run method and
ol 0 m the same thread. The terminate method, on the other hand, will be called from our Parallel

d do as little i N
. e as possible to change the state of its child tasks. Setting a Boolean flag is the bare minimum,

Chapter 5 Decision Making

5.4 Behavior Trees 355

We could also configure Parallel to have the policy of the Selector task so it returns success
when its first child succeeds and failure only when all have failed. We could also use hybrid policies,

where it returns success or failure after some specific number or proportion of its children have
succeeded or failed.

while result == undefined:

sleep()
return result

20

21

It is much easier to brainstorm possible task variations than it is to find a set of useful tasks
that designers and level designers intuitively understand and that can give rise to entertaining
behaviors. Having too many tasks or too heavily parameterized tasks is not good for productivity,
We've tried in this book to stick to the most common and most useful variations, but
come across others in studios, books, and conferences.

def runChild(child): .
runm‘ngChﬂdren.add(chﬂd)
returned = child.run{) '
runm’ngChi1dren.remove(chﬂd)

214

you will

if returned == False:
terminate()
result = False

Using Parallel

The Parallel task is most obviously used for sets of Actions that can occur at the same time, We
might, for example, use Parallel to have our character roll into cover at the same time as shouting
an insult and changing primary weapon. These three Actions don’t conflict (they wouldn’t use the
same semaphore, for example), and so we could carry them out simultaneously. This is a quite
low-level use of parallel—it sits low down in the tree controlling a small sub-tree.
At a higher level, we can use Parallel to control the behavior of a group of characters, such as a
fire team in a military shooter. While each member of the
individual Actions (shooting, taking cover, reloading, animating, and playing audio, for example),
hese group Actions are contained in Parallel blocks within a higher level Selector that chooses the
oup’s behavior. If one of the team members can’t possibly carry out their role in the strategy,
hen the Parallel will return in failure and the Selector will have to choose another option. This is
hown abstractly in Figure 5.31. The sub-trees for each character would be complex in their own
ht, 50 we haven’t shown them in detail here,
Both groups of uses discussed above use Parallel to combine Action tasks, It is also possible to
¢ Parallel to combine Condition tasks. This is particularly useful if you have certain Condition
ts that take time and resources to complete. By starting a group of Condition tests together,

else if runningChi]dren.]ength == (:
result = True

def terminate(): . .
. for child in runningChildren:

child.terminate()

group gets its own behavior tree for its

We're assuming the threa

. child.
ate one ney thread for each onal arguments that a

that is a function to ruln nd add\if:(rlmk that way. In langua
e - ages :
. ‘ng libraries in a number of anguages -eate another
that funC;IOn- f'ffrllittirrfsa Ccl:Ill’gt be passed to other functions, you'll need to create
ere et) .
?;I]lzacl: ss, probably) that implements th:1 CZI :;Ct llnszlr)fsa;lizeping waking only to see if
N en k » v a
. ‘o the threads the run metho) jent ways to wait on ¢
'Aétlelhcise agéfeli set, Many threading systems provlf}‘i m(c)lr'foerfrf?::l?aﬂ‘; VZake anothet
variable e , - by allowing one threa ,
: n variables or by a lue of the res!
c}}iangcf usmlgdcr(slzill?a({l}’ wake the parent thread when they change the va
threads cou ; .
our system documentation for more detaﬂs: I created
y The runChild method is called from 9u1 n‘eW};3 e sarti
he child taslcs run method to get it to do its thing. Belore SHHIS 0 TS e
e ¢ running children. If the Parallel task gets termuna h i Parallel task shoul
thfl:tht Onir;lgn thregads Finally runChild checks to se:la 1§ th; w li)elesh ould return Trt k
still-run ' NS ish and the Para 0
: last to finish a
i hether this child is the . . hanged,
O}rl " n(zfnzitfons holds, then the result variable will be left unchang
these € >

Parallel’s run method will keep sleeping.

In the run method, we cre
method takes a first argument

thread and is respon§ible
ng the child, it registe

Policies for Parallel

>ve assut

\]] Wi Soldier 2; Soldier 2; Soldier 2: Soldier 3: Soldier 3: Soldier 3:
in oment Fil‘St lt iS WOl‘th Sa}’lng that nere ¢ he an - Has ammo? In cover? Sniper attack... Has ammo? Exit route? Guard exit...
lelin am . 4 : 11 il ‘
We'llsec Parallel inuse w the Parallel task decides w ccess
J8! ‘ 7

fev] i se,isho , .
policy for Parallel. A policy, in t}alisszaon as one child fails, and we return $

y as the Sequence task, Alt

- poli turn failure ‘
In our policy we 1€ 50
succeecIl) As mentioned above, this is the same polic

most common policy, it isn't the only one.

356 Chapter 5 Decision Making

5.4 Behavior Trees 357

reducing the resources needed to

failures in any of them will immediately terminate the others,
complete the full package of tests.

We can do something similar with Sequences, of course, putting the quick Condition tests fir
to act as early outs before committing resources to more complex tests (this isa good approach f
complex geometry tests such as sight testing). Often, though, we might have a series of compl
head of time which is most likely to fail. In that case, placin

tests with no clear way to determine a
the Conditions in a Parallel task allows any of them to fail first and interrupt the others.

The Parallel Task for Condition Checking

her certain Conditions
Al character to manipu

se of the Parallel task is continually check whet

One final common
met while carrying out an Action. For example, we might want an ally

Ll

Use computers

Player in position?

for the player to progress. The character is happy to continu
We could use a Paralle

a computer bank to open a door
manipulation as long as the play guards the entrance from enemies.
to attempt an implementation as shown in Figures 5.32 and 5.33.

In both figures the Condition checks if the player is in the correct location. In Figu
we use Sequence, as before, to make sure the AT only carries out their Actions if the playe
position. The problem with this implementation is that the player can move immediately
the character begins work. In Figure 5.33, the Condition is constantly being checked. |

fails (because the player moves), then the character will stop what it is doing. We could

this tree in a Selector that has the character encouraging the player to return to his post.

To make sure the Condition is repeatedly checked we have used the Unti1Fail Deco

continually perform the checking, returning only if the Decorator fails. Based on our im

tation of Parallel above, there is still a problem in Figure 5.33 which we don’t have the
solve yet. We'll return to it shortly. As an exercise, can you follow the execution seque

tree and see what the problem is?

Using Parallel blocks to make sure that Conditions hold is an important use-case
ular the state

trees. With it we can get much of the power of a state machine, and in partic
ability to switch tasks when important events occur and new opportunities arise., Ra
events triggering transitions between states, we can use sub-trees as states and have th
in parallel with a set of conditions. In the case of a state machine, when the conditio

Player in position? Use computers

Figure 5.32 Using Sequence to enforce a Condition

Theto

L pD lelcepeat and‘ Select nodes keep the robot continually doj

> .oratqr w%ll never return, either in success or faihi’re .
; 18, switching between them as the criteria are met, .

s of Parallel tasks and Conditions

Fi .
1gure 5.33 Using Parallel to keep track of Conditions

fransition is triggered. With a behavior
o sition is rigee ha behavior tree the behavior runs ition i
e :}5111rrr11ep lliﬂffzcll)ter};avflo.r is s'hoYvn using a state machine inalii}g(l)lrll'g 5a S3flhe Condidon s met
behe.wiors: it can be in tid;—:); :ﬁf)ilimtor e e i
Notice that each “state” i ,
ach tree is the opposite
stay in the state,
ansitions.

in the chapter, Here
1 g : pter. Here it has tw
s representeda?) ong télel.e Is trash to tidy, or it can be in rechargin Olii)sd()f
of what vou'd y a sub-tree headed by a Parallel node. The Condi%' fi e:
youd expect for a state machine: they list the Conditions 10nd 0C11
neede

1 S p
W]l C]l 1 tlle 10glcal com lelllent ()f a“ the C()ndltlons fOl aH the State ma h
chine

g something. We’re assuming
So the robot keeps trying either

e g VIt become;s counter-intuitive to code these
ecaus we tend to think of the event causing a cha
) 3 bowmg the lack of a change of action s
1 M . N .
ehavior trees that show state-machine-like behavior
)

u]llntultlve tlees. VVC H return to ”l]S 1Ssue Wl €1n we [0oK
11

vlvll,ll‘”athe.r than the lack of the even
leitis technically possible to bu

ole in Fi ongside

: gure 5.33 sho i
rees, As it stands, ¢ Wtid a difficulty that often arises with using Parallel alongsid
i ands, hre) ee shown would never return as long as the playe d'illn’
Position. The character would perform its actions, then stand around w i : f t
aiting for

5.4 Behavior Trees 359
358 Chapter 5 Decision Making

class Interrupter (Decorator)
Is our child running?
isRunning

Holds the final result for our run method
result

def run():
result = undefined

Start all child
thread = new Thread ()
thread.start(runchﬂd, child)

Recharge...

Until fail Tidy trash...

Wait until we have a result to return
while result == undefined:

sleep()
return result

Trash visible?

runChild(child):
isRunning = True

result = child.run()
isRunning = False

Trash visible?

. hine erminate()
Figure 5.34 A behavior tree version of a state mac

if isRunning: child.terminate()

setResult (desiredResul t):

. > the play
he UntilFail Decorator to finish, which, of course, it won't do as long as the b result = desiredResult
the Unti

y he playe
where the character tells ‘
Action to the end of the Sequence e
e adivaencoflld add a task that returns False. Both of thebse wcl)glllrcll tChe e
;he (ilocl)rt)a(s)li but it would terminate in failure, and any nodes above
aralle , :
if it had failed after completion or not. o her divectly W

To solve this issue we need beha\ﬁors dt_o bb(i abg:l zoue:] et o v and s
ith an Action that disables ’
the Sequence end wit

ion can complete.) L i lets its
Thet, the w}lelfh?scfllsoirrllg two new tasks. The first is a Decorator. It simply .
‘We can do

y i ¥ t}le tree. But)
n rmaﬂ If the Child returns a I‘esult, it passes that lesult on uP
0o .

this task looks familiar, that’s because it shares the same logic as Parallel. It is the equivalent
allel for a single child, with the addition of a single method that can be called to set the

tom an external source, which is our second task. When it is called, it simply sets a result
Xternal Interrupter, then returns with success,

ass Performlnterrupti on (Task):

) e # The interrupt ‘11 be int ti
>) o s a predetermin K pter we e interrupting
L ‘minate itself, whereupon it returns a pre ' s
working, it can be asked to term ‘s 4 We could define this as: , Upter
need to use concurrency again to implement this.* We ;
The result we want to §
. insert,
jons”—the ability to jump back to arbitrary piece
“continuations”—

) i uages provide . it’s because they at
4 Some Plogff m?mgf}'zrrlj inEideP another. If they sound difficult to manage, it’s be
from one function

the t! d-bas d ma hinations i it illllcltioll
[€a ased machinatio: n i i job that co:
h i ions in this section are basu:ally trymg t()‘ do the }
2 1 ter cl v ! € IX ch simy ler.
language w ith COHtiﬂuﬂtiOnS) the Inte ‘rupter class voul db u P
g

desiredResu] t

360 Chapter 5 Decision Making

def run(): .
interrupter.setResult (desiredResul t)

return True

e between any two points in
interact horizontally.
r-using Al character to lookl

asks give us the ability to commurlnce:t
k the strict hierarchy and allow tasks (z
we can rebuild the tree for our compute

Together, these two t
tree. Effectively they brea

With these two tasks,
Figure 5.35.

1 w i i V.(HS(a] u y b
i h are a number Of Other ayS m v thh palrs Of beha 1
In Pl'actlce there %% CcO al)()l a‘e ‘)

ion. We could have a Deco
1l often have this same pattern: a Decorator and anACt];(lm
ill often ; isable
EEZ Z:n stop its child from being run, to beb enal;ltei(rin lela o s
hat limits the number o value of its child
could have ahDeiorlit(\)/f] etcould have a Decorator that holds onto the return
reset by another task.

i most unlimited options
to its parent when another task tells it to. There are al
only returns to I

flable tasks, o
i large numbers of avai

i ily bloat until they have very

behavior tree systems can easi

handful of which designer

s actually use. o
i i icatio
Eventually this simple kind of inter-behavior commun
ve
behavior trees are only pos

sible when tasks have the ability to have
another.

n will not be enough.
richer conversations w

Perform interruption

rUse computers

Player in position?

1 5 35 USI[[[al a“el a (] (] f t t CKO ()()tldltlons
g n Int rrup er to keep ra 1
[lgll €.

5.4 Behavior Trees 361

5.4.5 ADDING DATA TO BEHAVIOR TREES

To move beyond the very simplest inter-behavior communication we need to allow tasks in our
behavior tree to share data with one another. If you try to implement an Al using the behavior
tree implementations we’ve seen so far you’ll quickly encounter the problem of a lack of data.
In our example of an enemy trying to enter a room, there was no indication of which room the
character was trying to enter. We could just build big behavior trees with separate branches for
each area of our level, but this would obviously be wasteful,

In a real behavior tree implementation, tasks need to know what to work on. You can think

of a task as a sub-routine or function in a programming language. We might have a sub-tree that
represents smoking the player out of a room, for example. If this were a sub-routine it would take
an argument to control which room to smoke:

def smoke out(room):
matches = fetch matches()
gas = fetch_gasoline()
douse_door(room.door, gas)
ignite(room.door, matches)

In our behavior tree we need some similar mechanism to allow one sub-tree to be used in

the power of sub-routines is not just that they take parameters,

gain and again in multiple contexts (we could use the
tion to set fire to anything and use it from within 1

using behavior trees as sub-routines later, For now,

Although we want data to pass between behavior trees, we don’t want to break their elegant
d consistent API. We certainly don’t want to pass data into tasks as parameters to their run
¢thod. This would mean that each task needs to know what arguments its child tasks take and
W to find these data,

We could parameterize the tasks at the point where they are created, since at least some part of

Togram will always need to know what nodes are being created, but in most implementations

on't work, either. Behavior nodes get assembled into a tree typically when the level loads
we'll finesse this structure soon). We aren’t nor

mally building the tree dynamically as it
Even implementations that do allow some dynamic tree building still rely on most of the
118 specified before the behavior begins.

ost sensible approach is to decou
€ will do this by using an external

1l this data store a blackboard. Later in this chapter, in the section on blackboard architec-
l’kl;see dIepresentation of such a da

] ta structure and some broader implications for its use.
tis sunply{‘ important to know th

; at the blackboard can store any kind of data and that
gsks can query it for the data they need.

1S external blackboard, we can write task

we’ll concentrate on how they get their data.

s that are still independent of one another

362 Chapter 5 Decision Making

e d
Fi 5.36 A behavior tree communicating via blackboar
igure 5.

i jor tree might
the enerilly WI 1‘(65y (};ery the blackboard for a current enemy. The behavio ;
engage the eneny

Figure 5.36. The enemy detector could write:

d forits cu
1d ask the blackboar .

. ¢ and Shoot At tasks wou d be written
tothe blad(boali Th:OM(:r’ameterize their behavior. The tasks,s}%otlie can look fo! _ def run():
values anddu}jedt szetar;t then the task fails, and the behavior |

blackboard ha ’

else to do.

1

Ill a Sqllad’l)ased gallle i()l eXaIl)ple we ml]ll }lave a C()naboratl\/e IXI t}lat can aut(}ll
g
bl bl
ellgage [}le ellenly. W¢E Could WIlle one lask to Selec[an eIleIIly (baSEd on ploxnnlty ol
1) K g g
analySIS, fOl exalllp € alld a]lOtheI tasl or Sub tree to enga € tllat eIlEIny- I}le ta51< dl

5.4 Behavior Trees

return True
1 else:

return False

where the enemy detector might look like:

Engage enemy

Select enemy (read from blackboard)

(write to blackboard)

1 class SelectTarget (Task):
Enemy visible?

3 bTackboard

def run():
Always succeed

character = blackboard.get('character’)

candidates = enemies_visible to(character)
if candidates.length > 0:

target =

i round
High ground available? Move to high g

biggest threat({candidates, character)
blackboard.set('target', target)

return True
else:

return False

In both these cases we've assumed that the task can find which character it is controlling by
ooking that information up in the blackboard. In most games we’ll want some behavior trees to

)\ used by many characters, so each will require its own blackboard.
ot

blackboard. The task ot/

.on it has made onto the

wn the selection it

Some implementations associate blackboards with specific sub-trees rather than having just
e for the whole tree. This allows sub-trees to have their own private data-storage area. It is
'ed between nodes in that sub-tree, but not between sub-trees, This can be implemented using

rticular Decorator whose job is to create a fresh blackboard before it runs its child:
target: enemy-109

class BlackboardManager (Decorator):
blackboard = null

blackboard = new Blackboard()
result = child.run()

delete blackboard

return result

In pseudo-code this might look like:

class MoveTo (Task):

4 The blackboard we're using this approach gi‘fes us a hierarchy of blackboards. Men a task comes to look up some
vhoard ant fo start looking in the nearest blackboard, then in the blackboard above that, and
blac we find a result or reach the last blackboard in the chain:
def run(): ,) .
target = blackboard.get('target) lackboard:
if target:

") he blackboard to fall back to
character = b1ackboar‘d.get('character . e
steer‘ing.arrive(char‘acter, target) ‘

364 Chapter 5 Decision Making

data

def get(name):
if name in data:
return data[name]
else if parent:
return parent.get(name)
12 else return null

~

H i bl Ckboards faﬂ baCk in this wa aHO S blackboards to WOll(mn the same
aVlng al W wa'

. . H -
ng 1anguage do S In programming 1anguages thlS klnd Of StruCtLue W()u[d be catlel
plOgl amimni €S.

e issing from our implementation is a mechanism for beha\:ilodr Ot‘i]f:jst }tlo
T blackbo mc;SSThge casiest way to achieve this is to pass the blackb;;ar e
e e theri ethod. But didn’t we say that we didn’t want o ¢ al.nget o
B e rt[fl:d to a;foid was having different interfaces for dlffellenltbasa rc{ !
i bu"[t wlt(ljlt)xew‘:},:: parameters to pass. By making all tasks accept a blackbo
0
‘ovr(:luylia};z‘rlseter, we retain the. anon'ymity of our tasks.
The task API now looks like this:

class Task:
def run(blackbaord)
def terminate()

(I B e 4 .] .] i
ur aCkboa dManage task can then Sil‘nply 1ntr0duce ane blackb

andao) ; . W ()a[d to 1ts chi

tl 1€ b'ackboa]d fa[l baCk to t}le one 1t was glVe]l.

class BlackboardManager (Decorator):
def run(blackboard):
new bb = new Blackboard()
new_bb.parent = blackboard
resalt = child.run()
free new_bb
return result

i it In pl’Og
’ ildi i dynainic SCOPB Ch{li 1 -
It is orth IlOtiIlg that the scope chain we're bulldmg here is cal led a Y ’

dyﬂallllc scopes were the orlglnal way that scope chains were 1mplemeutedl,vbut 1t rapu
serous PIObIeInS aIld were very dliﬁcult to write maintain: . ‘
Tite t able code for fodern 1allguages have
static scope chains For behavior trees, however, dynarnlc scope ispta blg issue aIld 15 PIObabh
aware ofa 1y developers who have th()llght m such fOl’l’I‘lal terms about data Sharlng; however, 50

who has practical experience of both approaches.

write new tasks to use existing data in novel ways,
your implementation.

In the final part of this section we’ll look in more detail at ho

5.4 Behavior Trees 365

Another approach to implementing hierarchies of blackboards js to allow tasks to query
the task above them in the tree. This query moves up the tree recursively until it reaches
a BlackboardManager task that can provide the blackboard. This approach keeps the original
no-argument API for our task’s run method, but adds a lot of extra code complexity.

Some developers use completely different approaches. Some in-house technology we know
already have mechanisms in their scheduling system for passing around data along with bits of
code to run. These systems can be repurposed to provide the blackboard data for a behavior tree,
giving them automatic access to the data-debugging tools built into the game engine. It would be
a duplication of effort to implement either scheme above in this case,

Whichever scheme you implement, blackboard data allow you to have communication
between parts of your tree of any complexity. In the section on concurrency, above, we had
pairs of tasks where one task calls methods on another.

This simple approach to communication
is fine in the absence of a richer

data-exchange mechanism but should probably not be used if
you are going to give your behavior tree tasks access to a full blackboard.

In that case, it is better to have them communicate by writing and reading from the blackboard

rather than calling methods. Having all your tasks communicate in this way allows you to easily

making it quicker to grow the functionality of

46 REUSING TREES

w behavior trees get to be constructed
how we can reuse them for multiple characters, and how we can use sub-trees
ultiple times in different contexts. These are three separate but i

hey have related solutions, but we’ll consider each in turn.

1 the first place,

mportant elements to consider,

stantiating Trees

ces are, if yow've taken a course on object-oriented programming, you were taught the
omy between instances of things and classes of things. We might have a class of soda
nes, but the particular soda machine in the office lobby is an instance of that class. Classes
stract concepts; instances are the concrete reality. This works for many situations, but not
patticular, in game development, we regularly see situations where there are three, not two,
fabstraction. So far in this chapter we’ve been ignoring this distinction, but if we want to

stantiate and reuse behavior trees we have to face it now.
he first level we have the cl

asses we've been defining in pseudo-code. They represent
deas about how to achieve s

ome task. We might have a task for playing an animation, for
I a condition that checks whether a character is within range of an attack,
econd level we have instances of these classes arranged in a behavior tree. The examples
80 far consist of instances of each task class at a particular part of the tree. So, in the
€ example of Figure 5.29, we have two Hit tasks. These are two instances of the Hit

366 Chapter 5 Decision Making

class. Each instance has some parameterization: the P1 ayAnimation task
to play, the EnemyNear condition gets given a radius, and so on.
But now we're meeting the third level. A behavior tree is a way of defining a se

you'll need to do some work to malke this scamless. There are a few approaches:

1. Use a language that supports more than two layers of abstraction.

2. Use a cloning operation to instantiate trees for characters.

3. Create a new intermediate format for the middle layer of abstraction.

4. Use behavior tree tasks that don’t keep local state and use separate state objects.

JavaScript.®

PROGRAM
creates.

6. The story of prototype-based OO in JavaScript ist’t a pretty one. Progra

find it hard to adjust, and the web is littered with people making pronouncements about how Javas

model is “broken.” This has been so damaging to JavaScript’s reputation that the most recent verst

entation of tha

specification have retrofitted the class-based model. ActionScript 3, which isan implem
leans heavily this way, and Adobe’s libraries for Flash and Flex effectively lock you into Java-style class
wasting one of the most powerful and flexible aspects of the language. ‘

gets told what animation

t of behaviors

but those behaviors can belong to any number of characters in the game at the same or differen
times. The behavior tree needs to be instantiated for a particular character at a particular time.
This three layers of abstraction don’t map easily onto most regular class-based languages, an

The first approach is probably not practical. There is another way of doing object
entation (OO) that doesn’t use classes. It is called prototype-based object orientation, a
allows you to have any number of different layers of abstraction. Despite being strictly 1
powerful than class-based OO, it was discovered much later, and unfortunately has h
hard time breaking into developers’ mindsets. The only widespread language to suppo

The second approach is the easiest to understand and implement. The idea s that, at thes
layer of abstraction, we build a behavior tree from the individual task classes we've defi
then use that behavior tree as an “archetype”; we keep it in a safe place and never use it to
behaviors on. Any time we need an instance of that behavior tree we take a copy of the at
and use the copy. That way we are getting all of the configuration of the tree, but wereg
own copy. One method of achieving this is to have each task have a clone method that mak
of itself. We can then ask the top task in the tree for a clone of itself and have it recursi
us a copy. This presents a very simple API but can cause problems with fragmented
The code on the website uses this approach, as does the pseudo-code examples bels
chosen this for simplicity only, not to suggest it is the right way to do this. In som
“deep-copy” operations are provided by the built-in libraries that can do this for us
don’t have a deep copy, writing one can potentially give better memory coherence to

Approach three is useful when the specification for the behavior tree is held
format. This is common—the AT author uses some editing tool that outputs SOME
saying what nodes should be in the behavior tree and what properties they should h
this specification for a tree we don’t need to keep a whole tree around as an archety

mmers taught to think in
0

5.4 Behavior Trees 367

stor , .
: l;)%e the specification, and build an instance of it
I system are the original task classes

C yadd d
w €
e“e t[Ve] €d ane k” d ()flntelm

y each time it is needed, Here
and the only instances are the fing] be’

: diate layer of i
. a i '
which can be instantiated when need)c,:d prtraction n the form

Approach four is somewhat m
developers. The idea is that we wri
1Lse of that task for a specific chara
things that are the same f;

! or all character i
Cononis &% . ers at all times, but speci i
dloposie ode can hold t}.le list of children it is managi PE e (ehavior ree o
rom 10 be o ging, for example (as long as we don’t

d d . 1 o
1 . 1 ﬂ ; ry . ed Oor remo ed at l'untlnle). But, our Pal'aﬂel nOd a])
' a Vi € can't

the only classes in
havior trees. We've
of our custom data

ore complicated to implement but
te all our tasks so they never
cter. They can hold any data

i has been reported by some
old any state related to a specific
at the middle level of abstraction:

hOW OI1. OO
eVeI, Othel wise the be]laV]O] t1 ce C()uldllt 1unCt1 11 S h

structure, similar
, similar to our blackboard, and requires all charact
cter

]h]s aPPlOaCh tleats our SeC()nd layel ()f abstlactl()l] as tlle 1nsta;

lot of bookkeeping work.

-specific data to be stored there

nces and adds a new ki
‘ nd
- It is the most efficient NN

» but it also requi
Fhodcpin v | $O requires a
s three-layer problem isn’t unique to behavior tr
somie base classes of objects that o

of course. It arises i
. . any time we h
Allowing the configuration of ave

are then confi
gured, and the configurations are then instantiated

up, so it | i
;top(;ls bzliic-h sto that it is possible that whatever game engine you’
1n to cope with this situati
o . on, and the choice of
you go with whatever the engine provides, If yotia p'

it the problem, it j
» 1t 1s worth really taking ti i
ok for everyone else, too, PR Hime o consider

h a su
1 a suitable mechanism to instan

- tiate behavior
te‘rs €an use the same behavior: o e

w .
e can build a system where many

nemy Character (goon):
, ?Zd:] = ''enemy34,mode] ' !
Wex ure = ''enemy34-urban.tex''
"€dpon = pisto]-4

behayi
S 14V10r = goon-hehavior

5.4 Behavior Trees 369
368 Chapter 5 Decision Making

We can certainly store partial sub-trees in our behav
single root task, and because every task looks just the sa
storing sub-trees or whole trees, The added complicatio
the library and embedded in the full tree,

The simplest solution is to do this looku

goon behavior tree. Using the cloning :

ior tree library. Because every tree has a
that looks like:

me, our library doesn’t care whether it is
n for sub-trees is how to get them out of

ew goon, the game requests a fresh

reate a il : code
When we ¢ behavior trees, we might have

approach to instantiating

haviorTree(type):
def crE?‘Ziz‘;e - behavior tree library[type]
arc -

return archetype.clone()

P when you create a new instance of your behavior
tree. To do this you add a new “reference” task in your behavior tree that tells the game to go and
find a named sub-tree in the library. This task is never run—sit exists just to tell the instantiation
mechanism to insert another sub-tree at this point.

For example,

chavior tree library will b
This would normally b
ght be needed in t

3 . b
¢! In this example, we're assuming ht?; b
. ior tr t'we mig .
chavior trees tha :
aking sure that only the trees that mi

this class is trivial to implement using recursive cloning;

Clearly not onerous cod

filled with the archetypes for all thclz 1tr)n
done during the loading of the leye , ng sur
e aded and instantiated into archetypes.

class SubtreeReference (Task):

level are lo

What named subtree are we referring to.
reference_name

Reusing Sub-trees

than simply creating whole tre . def run():
. i Itiple con throw Error("
intend to use in multip ;

y in place, we can use it for more

With our behavior bbrar it to store named sub-trees that we

1so use :
characters. We can a et 537 b-tree thatisd
hown in Figure 5.37. _ h of them has a su
Take the example s ior trees. Notice that eac kinds of charac
. ate behavior trees. rent kin :
This shows two separ

This task isn't meant to pe run!)

def clone():

return createBehaviorTree(reference_name)

X t - and fix bugs or ad ype behavior tree contains these reference nodes, but as soon as
incredibly wasteful to have long later an . .) . . .

would be 1nC1€(1131b r};using them we’d also be able to Come.;l theggame instantly benefits fr places itself with a copy of the sub-tree, built by the library,

v o theiin%u yctionality and know that every character I ; nstantiated when the behavior tree is created, ready for a character’s

sophisticated fun

update.

of AT characters, it may be
ee until it is needed, saving memory in cases where parts
; tree are rarely used. This may be particularly the case where the beh
asalot of branches for special cases: how to use a particular rare wea

0 if the player mounts some particularly clever ambush attempt. These highly specific sub-trees

't need to be created for every character, wasting memory; instead, they can be created on
1and if the rare situation arises,

Y€ can implement this using a Decorator. The Decorator st
hild when it is first needed:

avior tree
pon, for example, or what to

arts without a child but creates

Build defences...
| |
Select enemy Engage enemy
Enemy visible? Select enemy

lass SubtreeLookupDecorator (Decorator):

subtree_name
Enemy visible?

def SubtreeLookupDecorator(subtree_name):
this.subtree name = subtree name
this.child = nyly

ss characters
. mon sub-trees acro
Figure 537 Com

5.5 Puzzy Logic 371
370 Chapter 5 Decision Making

Behavior trees on their own have been a bi
exploring their

g win for game Al, and developers will still be
potential for a few years. As long as they are pushing forward the state of the art,
we suspect that there will not be a strong consensus on how best to avoid these limitations, with
developers experimenting with their own approaches.

i i1d == null:
N Ch;\]ﬂd = createBehaviorTree(subtreeﬂname)
c =

return child.run()

ther to delete the child and free the memory after it ha

is fur \
Obviously we could extend this 1behav10r e as small as possible.

: : ive behavior tre 55 Fuzzy LoGgIC
been used, if we really want to keep 1’;}1‘; we have the tools to build a comprehensive be
1 > oW >
With the techniques we've i

R) sten th ‘I() (o trees (l ecC ll(compo €T t t 1at can l)e leusedb 10tS Of CharaCtCIS 1 ’

and S S [‘
w W] 1 N . : ‘
S 1laV (8)) trees, i addltlon to tens Of 1Ilterest1ng tas!
game. hele a ot more we ca d() Wldl be

we C()uld te a d l()tS Or1 tere tin bellav (8] d bul d. Beh
WIl n f n S g 101rS W€ COlﬂ 1

’ blems.
exciting technology; but they don’t solve all of our pro

So far the decisions we’ve made have been very cut and dried. Conditions and decisions have been
true or false, and we haven’t questioned the dividing line. Fuzzy logic is a set of mathematical
techniques designed to cope with gray areas.

Imagine we’re writing Al for a character moving through a dangerous environment. In a
finite state machine approach, we could choose two states: “Cautious” and “Confident.” When the
character is cautious, it sneaks slowly along, keeping an eye out for trouble. When the character is
confident, it walks normally. As the character moves through the level, it will switch between the
two states. This may appear odd. We might think of the character getting gradually braver, but
this isn’t shown until suddenly it stops creeping and walks along as if nothing had ever happe

Fuzzy logic allows us to blur the line between cautious and confident, giving us a
spectrum of confidence levels. With fuzzy logic we can still make decisions like ¢
cautious,” but both “slowly” and “cautious” can include a range of degrees.

EES
5.4.7 LIMITATIONS OoF BEHAVIOR TR

e to become something of the fl
o see them as a solution to al
little cautious. These fad§ do
portant as understanding

trees have come from nowher
e are some commentator§ wh
in game Al Itis worth bc.amg a
ehavior trees are bad at is as un

Over the last five years, behavior
of the month in game AI. T.hel
every problem you can nnagmg
and go. Understanding what
they excel. .
We've already seen a ke)é li
i -base
ine the kind of state-bas . Lin the
it b DS O o el o then behavior trees work fin
oy hey cant o o i ternal events—inte Fuzzy logic is relatively popular in the games industry and is used in several games. For that
e Wh.en ol haracter w0 ne e £ - example—or a ¢ ason, we have decided to include a section on it in
s much harder 10300 to hiding or to raise an alarm, for examp
nto

. ; at fuzzy logic has, for valid reasons
) ice that wetre 1l ‘ & > ’
-oute to suddenly go 1 : is looking low. Notice ; .
ahpatml 1d(; to switch strategies when its ammo 13 lo0 18 . t that it would be cuml _ nuniy,
than nee

. ior trees, Jus You can read e details in R and Norvig 2002
. 't be implemented in behavior —
ing those behaviors can’t be imp

Ways better to use probability to represent any kind of unc

tit has been proven (along time ago, as it turns out) that if you play any kind of betting game
11 any player who is not basing their decisions on pr

obability theory can expect to eventually
his money. The reason is that flaws in any other theory of uncertainty, besides probability
> €an potentially be exploited by an opponent,
att of the reason why fuzzy logic ever became popular
tic methods can be slow.
1ques, this is no longer
ook at various othe

ned.
whole
‘walk slowly when

y are reasonably clunky w};:
previous section. If your ¢
or failure of actions, how

mitation of behavior tree.s. The
d behavior that we met 1n the

.l A WaRrNING

this book. However, you should be aware
been largely discredited within the mainstream academic

but the executive summary is that it is

L tes, ertainity. The slightly longer version is
. n terms of state
to do so. it more difficult to think and design i

for trees M i ior. look at abehavio?
Tronbe bet'lavmresr iends to avoid these kinds of b(’:haVIOl. I; youe;) ok -
solely on l?ehaVIOY trled signer, they tend to avoid notlFeable c C:;mgwerful e
. art}l15t o 16";;1'15 i(; agshar,ne since those cues are simple and po ;
alarm behavior. >
of the AL ‘
‘We can build a hybrid system,

f a 1t le behav1
Ol course where characters have multip
3

se a state mac b ne to (le ermine W V a curr “y rllIlIli‘
i ior tr they re rren

i i thh beha 10Y tree ;] !

\ : : Hbl'al‘ieS that we Saw abOVe, thlS PI()Vldes tlle

ing behavior tree . S it
apprgadlljoff h’f\j:;‘;gelye it also adds considerable extra burden to
worlds. Unfor ,

dev l er t twi i te naChl’Ile‘S
€ ()p S ce y w nee O i uthorm . sta
Sin he now n d t Support (8] klnds Of a th g
3>

trees.
An alternative approach woul

was the perception that using prob-
With the advent of Bayes nets and other graphical modeling
such an issue. While we won’t explicitly cover Bayes nets in this book,
r related approaches such as Markov systems.

V. trec that b
i beha 10T T
d be to Cl‘eate taSkS mn the - ‘

‘minating the curren -
ing i events and termina ! o
macincs et i difficulty, however, as we¢ still need f

I 11S IMere y oves the auttlorlng
m

P t y C mpl X .
authOlS to alaIIleterlZe tllese lela Ve] (8] € taSl(S

ITRODUCTION TO Fuzzy Locic

Ukn will give a quick overview of the fuzzy logic needed to understand the techniques in
L. Buzzy logic itself is a huge subject, w

ith many subtle features, and we don’t have the

458 Chapter 5 Decision Making

5.9 Blackboard Architectures 459

i 5810 WHERE NExT
f it may not be sensible to keep a complete record of every value it has ever
changing every frame, 1

taken ied, and the expert system shell will retur ' Th)e rule—ba.sed S}'fstems in this section‘represent the': most. c01.npl.ex nqn-learning decision maker's
A1'1y piece of data in the database can (‘;}En bfhgliirrlfﬂ;t value came to be set. This informatiq :\7; (ﬁncj(;g:]ra l1en til;slzcliii.i ﬁ il;lslthe};[ZElmplementatlon with justification and rule set support is
the audit trail of how the data got fh‘;i;.gste?i; came from a rule, we can ask wk.lere.: the }I:la_ttchﬂ Support more}; d \?ance J AIgthan any s
can b?:rclll 1}511:: ltrlifg:;iec(liajt[;:: 61‘121111:- This process can Conth}llue ;Irlgl we are left with just e capable .of writing enough good 1'9165). Likewis'e, GOAP is ‘well alllead of the current state of the
?fr(rithal that were added bY.th.e game (or' wf}§t$532rggotlset;at t};e system makes. I'f thF exp art ?ﬁi 1:;}1;;132.115&?1%: Cohf aAI being explored in several big studios.
Inan expertllS'YSte:;atc}iSr;s afgiﬁzcis:s 1to shut down a production line, then the Justlﬁca
system is controlling

pter looks at the problem of making decisions from some different
angles, examining ways to combine different decisi
. . s for its decision. . “ne testing: itiso
system can give t}f lf av&:/?zlon’t need to justify decisions to the player, but during testing,
In a game context,

3 f .1 f’,' h b h o f h ccute action ‘e 1 lpt behaleIS d rect

fu h h t t R S ha are eque (

Ve[y use 0 have 4 echanism [8) us 1 e behavior or a C aracter. ule based Sy st Y
g

ed from any decision making algorithm,
) . this ch
i isi aking techniques in this ¢
y icated than the previous decision m i qu :
Can; ng Hicutckﬁl Hcllzgilce(gnalill(lic elloeilg—term causes of a strange-looking behavior can save
Finding out the 0
| i ion i dded ajusti
debugg’mgl; ilt an expert system shell specifically for 1nclu§1on ina garilsg;/:; e; o c{iffer
t::]r? \l’Zteuin the development cycle after a bout ?ft}flalr;[;I;lllllélilsgsi o w (i
del i le portion of the o _ '
i ; tic. A sample p .
debuggmgdP;(‘)A(l)elliI‘;veisljlrlagI)n%nfortunately, because the code was developed comme
was aroun - Unf .
1ot able to include this application on the website.

. It can
games (providing someone was

5.9 BLACKBOARD ARCHITECTURES

A blackboard system isn’t a decision making tool in its own right. It is a mechanism for coord-
nating the actions of several decision malkers,

The individual decision making systems can be implemented in any way: from a decision tree
[0 an expert system or even to learning tools such as the neural networks we
It is this flexibility that makes blackboard architectures appealing,

In the AT literature,

requiring lots of man-
agement code and complicated data structures. For this reason they have something of a bad rep-

's. At the same time, many developers implement Al systems
at use the same techniques without associating them with the term “blackboard architecture,”

Il meet in Chapter 7.

2-9-12.
Carnage XS. V104 200 .
JUSTIFICATION FOR <Action: Grenade (2.2,0.5,2.1)
2

4 <Action: grenade ?target>

5 FROM RULE: flush-nest 1
6 BINDINGS: target = (2.2,0.5,2.1)
7 CONDITIONS:

: Trdinate edeCIS]
p p 5 2.)> . b

> (2 23 s ‘ able to COO d

<V S . Vy Wi n <

10 EO EULE' cove Ed by eaV.Y eapo

suggestions as to what to do next, but the final decision can only
ade if they cooperate,
10BF8850> may have a decision making technique specializing in targeting enemy tanks, for example,
1 BINDINGS: ?weapon = <ptr do its stuff unti] o tank has been selected to fire at, A different kind of Al is used to select
N CONDITIONS: . <ot r00BF88505> farget, but that bit of AT can’t do the firing itself. Similarly, even when the target tank is
» <Ontology: machi n;e-gun Echi he-gun <ptr00BFE850>> position where firing is possible. The targeting Al needs to wait until
FROM FACT: <Ontology: m 12.10)> ' lanning Al can move to a suitable firing point,
u , t (312.23, 0.54, 12. : _) .
s <lLocation: <ptr008f8850: iro(()8F8850> at (2.2,0.5,2.1)> ’ . uld Simply put each bit of AT in a chain, The target selector AI chooses a target, the
FROM FACT: <Location: <p 1LAT moves into a firing position
16)
’ <Visible: enemy-units in group>
18

19 “ee

To make sure the final game wasn’t us.ing.lot,s o e
tion code was conditionally compiled so it didn’t en

an accurate shot, then the targeting AI may need

4 new solution. On the other hand, if the ballistics AI can work out a shot, then there

9 €ven consider the movement Al Obviously, whatever objects are in the way do not
ell’s trajectory,

Chapter 5 Decision Making

5.9 Blackboard Architectures 461

each Al can communicate freely without requiring all

i ey The algorithm works in iterations:
‘We would like a mechanism w

the communication channels to be set up explicitly.

1. Experts look at the board and indicate their interest.
2. The arbiter selects an expert to have control.

3. The expert does some work, possibly modifying the blackboard.
4. The expert voluntarily relinquishes control,

5.9.2 THE ALGORITHM

arts: a set of different decision maki

The basic structure of a blackboard system has three Pd, -~ 4 an arbiter, This s illustrated

tools (called experts in blackboard-speak), a blackboar:
i 5.54.

Flgu';fle blackboard is an area of memory that any exp1

Fach expert needs to read and write in roughly the same

- understand. ‘
he blackboard that not everyone can here’s anything on it that they ca

d board eraser for a while. Whe
on from the blackboard, and wr
will relinquish control and allo

The algorithm used by the arbiter can vary from implementation to implementation, The ‘
simple and common approach we will use asks the experts to indicate how useful they think they

can be in the form of a numeric insistence value, The arbiter can then simply pick the expert with
the highest insistence value. In the case of a tie, a random expert is selected. /
[

ert may use to read from and write’
anguage, although there will usuall

esont : :
meslsizgch expert looks at the blackboard and decides if t

If there is, they ask to be allow.ed ‘to have the .c}}alrlin Zr;i
get control they can do some thinking, remove 1}111 c; e
information, as they see fit. After a short time, the exp

s to have a go.
exp?lf}tle arbiter picks which expert gf':ts c'ontro teach &
of indicating that they have something 1nterest1ntgwantz/.to
gives it control. Often, none or only one exper

required.

Extracting an Action

Suggested actions can be written to the blackboard b

Y experts in the same way that they write
any other information. At the end of an iteration (or multiple iterations if the system is running

for longer), actions placed on the blackboard can be removed and carried out using the action
execution techniques at the end of this chapter.
Often, an action can be suggested on the blackboard before it has been properly thought
through. In our tank example, the targeting expert may post a “fire at tank 15” action on the
board. If the algorithm stopped at that point, the action would be carried out without the ballistic
and movement experts having had a chance to agree.
A simple solution s to store the potential action along with a set of agreement flags. An action
1 the blackboard is only carried out if all relevant experts have agreed to it. This does not have

€ every expert in the system, just those who would be capable of finding a reason not to carry
€ action out,

1 at each go. Experts need to have some me
The arbiter chooses one at a
take control, and the arbit

The Arbiter

Firearms
expert

Maneuver
expert

In our example the “fire at tank 15 action would have one agreement slot: that of the ballistics
ert. Only if the ballistics expert has given the go ahead would the action be carried out. The

tics expert may refuse to give the go ahead and instead either delete the action or add a
action “move into firing position for tank 15.” With the “fire at tank 15” action still on the
board, the ballistics expert can wait to agree to it until the firing position is reached.

The Blackboard

Trap
detection
expert

‘k‘bcardlteration function below takes as input a blackboard and a set of experts. [t
15t of actions on the blackboard that have been passed for execution. The function acts
ter, following the highest insistence algorithm given above,

Level tactics

Stealth expert

expert

Panel of experts

VackboardIteration(b]ackboard, experts):

through each expert for their insistence

Figure 5.54 Blackboard architecture

5.9 Blackboard Architectures 463
462 Chapter 5 Decision Making

bestExpert = None
5 highestInsistence = 0
i ts:
for expert in exper .
6 's insistence
Ask for the expert's 1 .
fnsistence = expert.getIns1stence(b]ackboard)

actions.

Experts can be implemented in any way required. For the purpose of bein

ng interface:

g managed by the
arbiter in our code,

they need to conform to the follow

1 class Expert:

2 def getInsistence(b]ackboard)
3 def run(blackboard)

Check against the highest value so far

if insistence > highestInﬁstence:
highestInsistence = insistence

bestExpert = expert

The getInsistence function returns a
it can do something with the blackboard
a look at the contents of the blackboard. Because this function is
blackboard should not be changed at all fro
an expert to return some instance,
by another expert. When the orig

The getInsistence function
time to decide if it can be useful,
~ working out the details when it ge
take a while to decide if there is a the expert simply looks on the blackboard
for a target, and if it sees one,

may turn out later that there is no way to
actually hit this target, but that processing is best done in the run function when the expert has
control,

ninsistence value (greater than zero
- In order to decide on this,

)if the expert thinks
it will usually need to have

called for each expert, the
m this function. It would be possible, for example, for
only to have the interesting stuff removed from the blackboard
inal expert is given control, it has nothing to do.
should also run as quickly as possible. Tf the
then it should always claim to be useful, Tt

ts control. In our tanks example,
way to fire, In this case,
it claims to be useful, It

5 # Make sure somebody insisted
1
16 if bestExpert:

Give control to the most insistent expert
bestExper‘t.run(b]ackboar‘d)

Return all passed actions from the blackboard
2 return blackboard.passedActions

the firing solution expert may

S
594 DATA STRUCTURES AND INTERFACE

The run function is called when the a
Processing it needs, read and write to th
etter for an expert to take as little time

oa dI ter atio fuIlC 0n Iel es O d tr ctures: a blacl(boald o
k t 1 n three ata stru r -
l e b ac b

tries and a list of experts. . . N
" rThe Blackboard has the following structure:

rbiter gives the expert control, It should carry out the
e blackboard as it sees fit, and return. In general, it is
as possible to run. If an expert requires lots of time,
middle of its calculations and returning a very high
the expert gets its time split into slices,
1 9 has more details on this kind of sc

stence on the next iteration. This way

allowing the
- of the game to be processed, Chapte

heduling and

1 class Blackboard:
2 entries
passedActions

i -to-execu
nts: a list of blackboard entries and a list of ready-to

It has two compone U

X .. ve and is disc
list of blackboard entries isn’t used in the arbitration -COdel?sl?[ocon tains actions t
ls‘ct ? in the section on blackboard language. The acuo?ivhose permission isre
ater . by every exper ~,

: en agreed upon by ; ~upon ac ’ . | . ' . for
execute (i.e., t.hey ha.ve bef thegblackboal'd: a to-do list where only agr;;zdck‘soa , blackboard will contain three-dimensional (3D) locations, combinations of maneuvers,
scen asa special SeCtllg(lm I(Zboard systems also add meta-data to thff . amatid ations. Used as a decision making architecture, it might contain information about the

More c;)mplex ?C of performance, or provides debugging 1r.1 Orwhich ¢, the Pposition of enemies or resources, and the internal state of a character,
exccution, keeps track 1d an audit trail for entries: ;
Iso add data to hold an

based systems, we can a

We haven’t paid any
the other techniq
tion,

attention to the structure of data on
ues in this chapter,
Blackboard architectures can be

the blackboard. More so than
the format of the blackboard will depend on the
used for steering characters, for example, in which

, however, that g0 some way toward a generic black-
hebtack Because the aim is to allow different bits of code to talk to each other seamlessly,
and when.bl kboard systems hold actions as just another entry Onlj(te i t , 2D on the blackboard needs at least three components: value, type identification, and
Other blackboard s 15 1 N e a separate. st 1t 1> . entification,
a special section. For simplicity, we've elected to us b dy to be ,'

e S ction l]e]al ac on 1s rea
oW € on w
eaCh expert t rite to h action S

464 Chapter 5 Decision Making

i i have to cope

he value of a piece of data is self-explanatory. The blackboard w111I typilcliltl};or?‘:;in heallt)h
i };r . V; ureange of different data types, however, including structulfes. tmig o ,

e ample.

wallt 2 val ressed as an integer and positions expr.essed 223D VeCtor)bzricel)e(ntifIi)ed. This can:be
e the data can be in a range of types, its content needs to . e for the data (

. BleC‘tauSZ code. It is designed to allow an expert to use the appr'opnateet)y%lackboard g
SCII/IéP ; t}}’}P i nor.mall}’ done by typecasting the value to the apprOPbrlate tIYP : th sub-clascoitl
4+ this 1s . . ic Datum base class wi - U

. shic: eneric
ieve this by being polymorphic: using a g S 1) in a langua
E?ulctlDictlllnTV\ietctlor%Dat umg and so on, or with runume-t}ge llllfqlmatlznci)irx;rlczn howe\?er .
oa 8 ¢ s identifier. It is mor ’
. - taining a type iden)

C++, or the sub-classes cont : RTTI s used.
Sl;dllicai:l create a set of type codes to identify the data, whether o rllj(:ltt it doesn’t help the exp
) pTh ! e identifier tells an expert what format the data‘are in, by Lo cooded Thein s

d i tyg what to do with it. Some kind of semantic identlﬁcatlon 118 ; SO;S steIl"IS e
u; eé;:rntells each expert what the value means. In production bla; N Oaarmeyusing 1ot of
inf)lllﬂy implemented as a string (representing the name ;)f the.data;bI?e :lgs oftén e

i ome kind of magic nu ;
arisons can slow down execution, so s e
Com: blackboard item may therefore look like the following:

1 struct BlackboardDatum:
2 id

3 type
value

The whole blackboard consists of a list of such 1nstance§.. ihe same way as bl
In this approach complex dat; structures are (r)ipree;ilil;ren elnnt 50 on) ol
ter (its health, ammo, weapon,

Fhe e fto ; aoflhtahr: (I;Iacl((board or as a whole set of iI.ldependent value.s. -

e ?’d make the system more general by adopting an app1.'0ach sunl»as e

the :ll\llfec—(lzl:;sed system. Adopting a hierarchical data representaftlciln alli)vv;ltsh 1(1) i
data types and allows experts to understand parts o .t em e

e o i late the type. In languages such as Java, where code can_bﬂ. .

e rtnha?mp(l)luld be less important. In C++, it can provide a lot of ﬂeX.lf t}izy‘./\féan

ffaltzprezustlstzlve information on a weapon, for example, without caring 1

00 (n(c)i i)n a character’s hand, or currently l?eing constructed. -

grm\lNhil many blackboard architectures in non-game {\I follow e
. reseZt their content, we have not seen it used in galr{lesijl lkboard

dat(?ctiZtZilpwith rule-based systems and flat lists of labeled data with blac

i}sli two approaches overlap, as we’ll see below).

59.5 PERFORMANCE

i i here nisthe
The blackboard arbiter uses no memory and runs in O(n) témg,a g o -
Often, each expert needs to scan through the blac.kboard to r; el
in. If t)he list of entries is stored as a simple list, this takes O(m :

5.9 Blackboard Architectures 465

number of entries in the blackboard. This ¢
entries are stored in some kind of hash. The
the data, so an expert can quickly tell if som

The majority of the time spent in the b
run function of the expert who gains contro
searching through a large linear blackboar.
important factor in the overall efficiency o

hash must support lookup based on the semantics of
ething interesting is present,

Xperts is used (or they are

d), the performance of each run function is the most

f the algorithm.

5.9.6 OTHER THINGS ARE BLACKBOARD SYSTEMS

When we described the blackboard system,
data, a set of experts (implemented in an

an arbiter to control which expert gets ¢
however,

we said it had three parts:

a blackboard containin
y way) that read and write

to the blackboard, and

Rule-Based Systems

each rule is
and there is an arbiter that controls

A side effect of this is that if you intend to use both a black

stem in your game, you may need to implement only the blackboard System. You can then create
perts” that are simply rules: the blackboard System will be able to manage them,

d language will have to be able to support the kind of rule-based matching you

you are planning to implement the data format needed in the
then it will be available for use in more flexible blackboard

board system and a rule-based

and you are using the Rete match-
- Because the blackboard architecture
t from optimizations specific to rule

) correspondence will break down
Set of the rule-based system, it cannot benefi

late Machines

Usly, finite State machines are also 2 subset of the blackboa

Of a rule-based system and, therefore,

rd architecture (actually they
by the single state, Experts are replac

of a blackboard architecture). The blackboard
ed by transitions, determining whether to act

466 Chapter 5 Decision Making

behavior you are looking for.

5. 10 SCRIPTING

PDAs, and mobile phones).

to program their behaviors in a

is simple enough

economics is less clear cut.

open which doors,
character Al

run Al in your g
to either get started of decide
comparing existing languages,
from scratch.

based on external factors, and rewriting th
state machines in this chapter we have not m
triggered transition would fire. This is simply the fir
Other arbitration strategies are possible
randomized algorithms, or any kind of ord
machine is designed to be simple; if a state machine
for, it is unlikely that arbitration wi
State machines, rule-based systems, and b

ing representational power and sophisticatio
restrictive, while blackboard architectures ca
general rule, as we saw in the introduction,

A significant proportion of the decision makin
far in this chapter. In the early and mid-1990s, m
to make decisions. This is fast and works well fo
is also likely to be designing the behaviors for g
platforms with modest development needs (ie,

As production became more comp
designs) from the engine. Level designers wer

characters. Many developers moved to use the oth
ing language but moved to a scriptin

treated as data files,
ts can create the behaviors.
for players t
t financh
pical of
uded. O
ad the

separate from the main game code. Scripts can be
level designers or technical artis

An unexpected side effect of scripting languag
own character behavior and to extend the game.
games (it can extend their full-price shelf life b
much so that most triple-A titles have some kin
Most of the compani
game engine had some form of scripting languag

While we are unconvinced about the use of s
several important applications: in scripting the t
for example), for programming the user interface,

full programm

This section provides a brief primer for supp
ame. It is intentionally shallow and designed to give

e sole item on the blackboar
entioned an arbiter. We simp

in any state mac
ering. They aren’t normally

11 be the problem.
lackboard arc
n. State'machines are fast, ea:
n often appear far too genera
is to use the simplest techniq

eyon
d of scripting system 1
es we worked with who h

st-applicable arbitrati

doesn’t support the be

g in games uses NONE of the tec
ost Al was hard-coded using
r small development teams when the prog
ame characters. It is still the d.
last-generation handheld co

lex, there arose a need to separate the

¢ empowered to design the
hapter. Others

er techniques in this ¢

e support is the ability

Modding is an importan
d the eight weeks ty

e support.

riggers and behavior 0

it is’t worth the effort. Several excell

and a handful o

{ texts cover impleme

hine. We can use

ncl

d when they do. In the:
ly assumed that the first
on algorithm.

dynamic prioritie
used because the sta
havior you are lookin

hitectures form a hierarchy of incr
sy to implement,
1 to be practical.
ue that supports

and if the script

cripts to run top-notch charact
f game I

and for 1a

orting a scripting language PO
you efi¢
nt we

nting

(=4

5.10.1

hniques descr
custom writ

ontent (th

1There are a few facilities that a
anguage often boils down to tr

Speed

Scripting languages for game

5.10 Scripting 467

LANGUAGE FACILITIES

ame wi 'equi
g ill always require of its scri

ade-offs between these concerns pting language. The choice of

s need to run as

scripts f . . . i ,
pts for character behaviors and events in thqulddy as possible. If you intend to use a lot of
alot o

need to render the scene,

.)
s part of the main gane loop. This means th

he physi .
Most langua runt physics engine
. . ges can be an}’time aloor: s
details). This takes the pressure off theigggz& funning over multiple frames (see Ch
s apter 9 for

m P
€ ga € le‘/el, then the scripts WIH need to €Xecute

at slow-runni i
running scripts will eat into the time

or prepare audio. you

me exte t P tire y
O 11 ,but It can tS()lVe t] 1€ 1()1)161’11 entr l
.

Compilation and Interpretation

f:grmed before the game ship
ithe most common game scr
¥ to detach the compiler an

C:eltracter, for example
>
A lct the game know wh

ompilation step can be
S

.- d not distribute i
mpiled before the game goes to maset;

ded wi
with the game. This removes the ability

ptin
g Ianguage needs to have acces

needs to be able to interro

Scriptin
g languages are br i
oadly inter

mal}y PR Z preted, byte-compiled, or fully compiled, alth

nt o - : | a
5 erpreted languages are taken in as tex —
- ertl:, and carries out the action it specifi
, -compi
.y pﬂf:d languages are converted fr
. e s typically much more com an the 1
) nl;at optimized for execution

- 1)

- fy‘te compiled languages ne

aster. The more expensive ¢

t. I}le inter Pletel 100[S out wnat
kS at eaC}l h]le, WOlkS t h

an i
. pact than the text f:)ri;ijialeormat) called byte code. This
it can be run much faster. - Because the byte code is in a

ed a Compllatlon Step t ey take ¢) t lted ut t. en
> h 1(1 ngel to get Sta b h
]

pelfOIIned as the le Vel 1()ads but 18 Llsuauy
g g
g .)
lptnl Iall uages are aH b& te COIDPﬂed SOIne hl:e Lua) OffeI the

t with t
i él:lzlﬁnal game. In this way all the scripts
o and o toy Vsh-i C(meﬂed versions need to%e
rite their own scri
pt, however.

code, which e. Thi
can defeat th : - Ihis normally h ;
¢ dev e point of havi y has to be linked i \
eloper, however, with a very neat fw1 g e main
‘u

e code fy)
;, om scripts at runti
; . nti .
Proach is huge, We'd advisen;e. In general, however, the scope for massi
ou to save assive problems wi
ith

Ilg a Sepalate scriptin a uage. (4 d()](HOW
pl gl n
I tlnl: hnl;lng S) StSIn that can :OHIF 115 and hnl;

your hai
ir and go for something more tried and

s to S1 Illiicallt fu. ctio y u ame, A SCllPt that
g ncti 1S 11 your g

. ate th
atit wants to do as a l'esui e game to find out what it can

468 Chapter 5 Decision Making

The set of function
implemented or chosen. I

expose new functions or cla

Re-Entrancy

it left off.

character, for example,

distributed.

incorrect information)
sections as uninterruptible.

5.10.2 EMBEDDING

Embedding is related
a dedicated program

should be able to tell t

s it needs to access is rarely known when the scripting language is
t is important to have a language that ca
Equally, it is important for the programmers to be able

use classes in your main game code.
sses easily when the script authors request it.

Some languages (Lua being the best example)
rest of the program. This makes it very easy to manipu
having a whole set of complicated translations.

It is often useful for scripts to be re-entrant. Theyc
runs out they can be put on hold. When a script next

It is often helpful to let the script yield control w
algorithm can give it more time, if it has it availab
might have five different stages (examine situation, check health
movement, plan route, and execute movement). Th
between each section, Then each will get run ever

Not all scripts should be interrupted and resume

game event may need to run from its start at ever :
. More sophisticated re-entrancy should allow the script write

These subtleties are not present in most off-the-s
you decide to write your own.

to extensibility. An embedded language is designed to be in

another program, When you run a scrip
to interpret the source code file. In a game, the scripting sys
controlled from within the main program. The game decides
he scripting language to process them.

5.10.3 CHOOSING A LANGUAGE

A huge range of scripting languages is available, and many of them are ré

are suitable for inclusion in a game.

created by developers specifically fo
interest in off-the-shelf languages.

Some commercial game engine

id Software, for example). Other th

t their needs. In the last few years ther:

s include scripting language sup

5.10 Scripting 469

in gam igi
games were not originally designed for this

n easily call functions or
Y disadvantages that need to b

purpose. The .
e evaluated before you make a cho}ilci1 ave associated advantages and

put a very thin layer between the script and t Advant ages

late game data from within scripts, witho
Off-the-shelf languages tend to be m

If you choose a fairly mature language, li

of development time, debugging effofii) like those described below,

nity\/(\)f?zn yciu have deployed an off-the-
evelopers is likely to be i
conti
?;f; Many open source languages pr(;l
€ reported, and code sam
‘] ples can
In making sure your scripting system is

een done b
shelf language, the development doesn’}‘; ;)ttC}Jl;rlf cople.
. A commu-

uing work on the lan i

1 guage, im ing i

g 1o proving it and i

pe s ;nli(;iiulglls w}.lere problems can be discusrsilc]iml:mg
ed. This ongoing support can be inval)uall;z(lgz

an run for a while, and when their time b
gets some time to rum, it can pick up w

hen it reaches a natural lull. Thena schec M robust
le, or else it moves on. A script contro edit thal'ly games, especially on the PC, are WS ':tnd as bug free as possible
. 5 T : . .
eir behavior, Customers building new OLj ent with the intention of allowing consu
ects, mers to

levels,

or whole mod
S can
n allo prolong a game’s

est users to learn the language easil
eiz that can be downloaded from thz
customers can get advice without

Shelf llfe. USIH a s P anguage t.hat 18 commo
g Crl tlngl
g g c
USII]g tutOI lalS, Sa]Ilple C()de, an m 1 P
d com a]ld 1 ne inter Tet

web. Most lan
: guages have n
;aIIIng the publisher’s help ll:;‘;ngroups or web forums wh

ese can all be put in one script tha
y five frames, and the burden of ¢

d. A script that monitors a rapidl
y frame (otherwise, it may be wi

helf languages, but can be a mas Vhen
' €N you creat o
B € your own scripting language, you can .
games are sensitive to memory and make sure it does exactly what yo
u want it

ed into th speed limitati
¢ language. As we've seen with re-e peed limitations, you can putonly the features yo
you can also add fea 4
tures that are speci
pecific

gaiie applications a
nd that wouldn’t normally be included in a general
purpose language,

By the same

~ token, when thi

<an usuall ings go wrong with th

: ally find the bug and create a workar()undefizxtguage» your staff knows how it is built

Whenever you i
ne\gll you include third-party code into your
e advantages outweigh the lack of f{exibi%

ntrancy,

ting language from your workstation, Yo
arn .
& youare losing some control over it. In

ity, b j
¥, but for some projects control is 4 must

which scripts ne

Jeased U

Traditionally, most scripting languages

€ss to see and change the :

" ‘I,lg y(l)lu the freedom to pull out angy extrasoulce

€ en tdf)se that allow you to use the langu
y modifications to the language itself. Th

1ent code. S attract studios by givi
al Produ'q Ome open-source licences
S, require that yo ’

. ur
91 your project. you release a

neous
age in
1§ may

port (U
most ext

an these complete solutions,

470 Chapter 5 Decision Making

Whether or not a scripting language is open source, there are legal implications of using th
yina product you intend to distribut

language in your project. Before using any outside technolog
(whether commercial or not), you should always consult a good intellectual property lawyer. This
book cannot properly advise you on the legal implications of using a third-party language. Th
following comments are intended as an indication of the kinds of things that might cause concern

There are many others.
With nobody selling you the software, nobody is responsible if the software goes wrong, T

could be a minor annoyance if a difficult-to-find bug arises during development. It could b
major legal problem, however, if your software causes your ¢
With most open-source software, you are responsible for.the behavior of the product.
When you licence technology from a company, the company normally acts as an insulat
layer between you and being sued for breach of copyright or breach of patent. A researche
example, who develops and patents a new technique has rights to its commercialization. 1
same technique is implemented in a piece of software, without the researcher’s permission, he
have cause to take legal action. When you buy software from a company, it takes responsi
for the software’s content. So, if the researcher comes after you, the company that sold y
software is usually liable for the breach (it depends on the contract you sign).
‘When you use open-source software, nobody is licencing the software to you, and becat
didn’t write it, you don’t know if part of it was stolen or copied. Unless you are very carel
will not know if it breaks any patents or other intellectual property rights. The upshot
you could be liable for the breach.
You need to make sure you understand the legal implication :
always the cheapest or best choice, even though the up-front costs are very low. Consuﬁ:

before you make the commitment.

s of using “free” software

5104 A LANGUAGE SELECTION

ngle pre-built scripting

Everyone has a favorite language, and trying to back a si
find endless “my lang

impossible. Read any programming language newsgroup to
than yours” flame wars.

Even so, it is a goo
their strengths and weaknesses are. Bear
rewrite existing languages to get around their obvious failings.

games developers using scripting languages do this. The langua
in their out-of-the-box forms.

We'll look at three languagesint
and Python.

d idea to understand which languages are the usual suspe
in mind that it is usually possible to hack,
Many (probably mo
ges described belo

he order we would personally recommend th

Lua

up as‘an embedi

Lua is a simple procedural language built from the ground
most embedde

design of the language was motivated by extensibility. Unlike

when two values are added toge
or when the garbage collector s

com

Withmon data. types, such as floats, ints

: an associated sub-type (the “ta ’
serdata, but by using tag method

hzt at p.eak is fast, Combine
%‘ this means that real-w
- The syntax for Lua is reco

5.10 Scripting 471

limited to adding new functio
also be tweaked. "
Lua has a small number of co
less core s part of the attraction
anything but maths and logic. T})1
.Lua does not support re-entr
which encapsulates the state of th

or data types i -
ypes in C or C++, The way the Lua language works can

re libraries that provi
provide basic functionali
however, In nctionality. Its relati
. In games you are unlik atively feature-
. ely to n et
:nstn;jﬂ core 1s easy to learn and vel?IY ﬂexflifl libraries to process
nctions. The whole i €.
: € interpreter (stri ¢
m 1 . e inter reter 3 . . S rlctly the ‘St » .
Colitlple state objects can provide somf re en)tls aCt+ objectand is completely re entfte totl;)?cn
munication between -entrancy support -entrant, Usin
them port, at the cost of mem 8
) ory and lack of

Lua has th i
e notion of ”
events” and “tags.” Events occur

ther, when a function is
run, for example, Routi

T
he event and tag mechanism is used

isn’t strictl i X to provide rudi .
tly object oriented, but you can a p e rudimentary object-oriented support (L
a

it can also be
, used to ex
Mdnagement, pose COmplex c

d]ust 1ts be}laVlOl to get as C]OS€ as you hke to it) but
types to Lua or fOl telsely lmplelllelltlllg IIleI)Il()Iy

lnl()t][el Lua 1ealule])el()ved b T programmers 18 t}le uSeldata d

t and strings. In addition,
g”). By default, Lua doesr’t
s, any desired behavior can b

. ata type. Lua supports
It supports a generic “userdata”
know how to do anything with
e added. Userdata is commonly

ointers can cause problems, but
Lua s at the fast end of the scale Tt hOrk with game objects.
d with the abil | Jasavery simple execut]
it) ple executi

orld pert y t'o .call Cor C++ functions with on model

| performance is impressiv outlots of interface

ok For art gnizable :
Tartists and level designers
cen employees, ’

Fora scripting language,

10[(: alld I ascal PlO rammers. It 1S not the eastest lallguage
g
but 1ts Ielatlve lack Of SyIltaX 1€atUIeS means it 1S aChlevable

st i

tanég:?g using Lua several years ago,

- 1 fqr game scripting, To find
Stamming in Lua [erusalimschy,

and it i it i

nd ;n ;sr;:az tobsee why it is rapidly becoming the de
» the best source of information |
. Kl at

2006], which is also available free onlinelon s the fa

€ and Variations

1S @ scripti
A;CSupttmg lan.guage derived from LI
ystems prior to the 1990s (and

SP,
manau;.old language that was used to build most of
y since, but without the same dominance)

472 Chapter 5 Decision Making

5.10 Scripting 473

l lle ﬁISt (ll]]lg to notice ab()utf;chen 1€ 1S 1ts Sy“tax. | 01 [)1()g1aI]11lleIS ll()t Llsed to LISP, Schelll

i derstand. I i and all other cod
can be di(fﬁaﬂt 2?01;2 function calls (and almost everything is a fgn:ltlotrl tcizlrll)helps out an ciiie
o }TFS e ans that they can become very nested. Good code in e;l aeach i o,f bracketi s
podke. T }18 Te closing brackets is a must for serious development. For
that can check en

fl t ele]] ient dejlnes W}lat t] 1€ bl()Ck d()eS it]llay l)e an ar ltll]“etlc flln tion:
3 n
rs C

Python has a huge range of libraries available for it and has
users have a reputation for helpfulness,
source of troubleshooting and advice.

Python’s major disadvantages are speed and size. Although significant advances in execution
speed have been made over the last few years, it can still be

(by string) for many of its fundamental operations (
programming). This adds lots of overhead.

While good programming practice can alleviate much of the speed problem, Python also has
a reputation for being large, Because it has much more functionality than Lua, it is larger when
linked into the game executable,

Python 2.X and further P

a very large base of users. Python
and the comp.lang.python newsgroup is an excellent

slow. Python relies on hash table lookup
function calls, variable access, object-oriented

or a flow control statement:

ython 2.3 releases added a lot of functionality to the language.
Each additional release fulfilled more of Python’s promise as a software engineering tool, but
by the same token made it less attractive as an embedded language for games. Earlier versions

of Python were much better in this regard, and developers working with Python often prefer
previous releases.

(if (> a 1.0) (set! a 1.0))

derstand but runs counter to our 'natlllral lag
N . ;aﬁsn};efr(;ra;}: tlclcc))rslzpllll;[:crl ‘:g gfllike languages can find it hard to think in Sche
on-pro
: Whﬂ&. d Python, there are literally hundreds of versions of them;; Snloé t(j)wm
T Lua'an yJi(tablt)e for use as an embedded language. Each variant g
g LI'SP Vananjts csll'lfﬁcult to make generalizations about speed or memory usa 1.1 P
o I'm'lkehlt : and tinyscheme come to mind), they can be very, verly smme of:‘t
PR fmz of C code for the complete system, although it lac <15 ?he -
. lis's ;S:trlllrzeiogf ;nf?ﬂl scheme implementation) and superlzlly e::.gﬂt; it(\)AII]ez ;n el
ment: - scripti nguage, and co lcal
mentatif;n§ CintEZr? Soﬁlt}f::rai;lrguzgzl(?)Cc:iglt:slle:gtfe gLIS%’ syntax was originally demgné
more efficien .
parses) ally shines, however, is its flexibility. There is.no dliﬁ::tslgh
e SChem§ - dydata which makes it easy to pass around scripts V\XI E
e, begvtf:ncheisz them)later. It is no coincidence that most notable Al prog
'ihelfln’_ and t this book were originally written in LISP. . e
e have d Scheme a lot, enough to be able to see past its awkwa i
e lopas j&l undergraduate). Professionally, we have never use'lt ;1 -
e elthon in ¢ know at least one studio that has), but we have b}lln i
et wan other language (six to date and one more on t 1:: meYa-nd
e g Orcle wz would strongly recommend you first learn S¢ eh E
Ygsgl(;v:)rfl sliirrf)lltzaign;plementations. It will probably open your eyes as to
c

be to create.

Python often appears strange to C or C++ programmers,

because it uses indentation to group
Statements, just like the pseudo-code in this book,

This same feature makes it easier to learn for non-programmers who don’t have brackets to
forget and who don’t go through the normal learning phase of not indenting their code.

Python is renowned for being a very readable language. Even relatively novice programmers
can quickly see what a script does. More recent additions to the Python syntax have damaged this
reputation greatly, but it still seems to be somewhat above its competitors.

Of the scripting languages we have worked with, Python has been the easiest for level designers

nd artists to learn. On a previous project we needed to use this feature but were frustrated by the
peed and size issues. Our solution was to roll our own language (see the section below) but use
ython syntax.

ére is a whole host of other
ed in games (

possible languages. In our experience each is either completely
cult choice ove

to the best of our knowledge) or has significant weaknesses that make it a

r its competitors. To our knowledge, none of the languages in this section has
ommercial use as an in-game scripting tool. As usual, however,

a team with a specific bias
Passion for one particular language can work around these 1

imitations and get a usable

Python ery well-used embeddable language. It was designed to be an integration language, linking

Y 1 Systems written in different languages. Tcl stands for Tool Control Language.

ot uppor for mived of Tel’s processing is based on strings, which can make execution ver slow.
. asy-to-learn, object-oriente . - . g k "

PYtEOéld; aISlUZ’PZrt- B e o o g mlxedl’l ari?;;ghag sup ' hajor drawback is its bizarre syntax, which takes some getting used to, and unlike
:}Iln ZbﬂithtO e ease ko o o c;’t(called Genet - doesn’t hold the promise of extra functionality in the end. Inconsistencies in the

N ion 2.2 onwar

i language from version 2. ;

functions as part of the core

ge with excellent

474 Chapter 5 Decision Making

: ious flaws for the casua
ent passing by value or by name) are more serio
syntax (such as argument p

learner.

Java

i i it is a compiled langua
amming domains. Because 1t 1 p g

g 1 Y] b} be a
oweve use as a sc lptl]lg]a]l uage 1S restr cted.
W 5 118 S S d B t}le same tOl(eIl llowe ver it can ‘

i i i de before execution); it ¢
ili ‘ned into native machine co ion).
i iling (the byte code gets turne ' . e execution) ¢
o HE CC(:-I:l-pfor sgpized The execution environment is very large, however, a
approac . .
memory footprint.
i i ion i t
It is the integration issues !
Java and C++ code) was designed for extending Java,

be difficult to manage.

jous, : Native Interface (thatl
at ar t serious, however. The Java ve In
e Tor exend rather than embedding it. It can there

JavaScript

It really has nothing to do wi

JavaScript is a scripting language designed for web pages.
ther than its C++-like syntax. o .
’ there isn’t one standard JavaScript implementation, oy
most likely rolling their own language bage@ on the JavaScrip e s who B
- Th ior advantage of JavaScript is that it is known by many e
h E n:llihough its syntax loses lots of the elegance of Java, it is reasonably
the web.

so developers who claim to use Ja

Ruby

i d in Pyth
by is a very modern language with the same elegance of demg;l tf?ei?ures .
oo 1't for object-oriented idioms is more ingra.med. It has SO;HT nhen b
i:)lplfl(;;ipulate its own code very efficiently. This lcan be ilelptlér Ov:n i
i ipts. It is not highly re-entran
modify the behavior of other scrip . igh
eas tfgcreate sophisticated re-entrancy from within RuEy. o
y}t is very easy to integrate with C code (notas easy asLua, D e e .
by is only beginning to take off, however, and hasn’t r.each.e the e
Bu‘(}z’is1 chap)i(er It hasn’t been used (modified or otherwise) El any %:pidly o
m . i nge ‘
is i lthough that may chang
s its lack of documentation, a ..
:vfjrlfgszsgel: we have resolved to follow closely for the next few years

5.10.5 ROLLING YOUR OWN

i iob at hand. While
Most game scripting languages are custom written for the job a

jalint
X trol can be beneficial In U
complex procedure for a single game, the added contro L efctively oo

i ine wi
developing a whole series of games using the same engine
effort and cost over multiple titles.

Starting out as text in a text file,
compiling, and interpretation.

easily manipulated. The stages may n
sets of stages can form separate phase
for example, for interpretation later.

5.10 Scripting 475

Regardless of the look and capabilities of the final language,
process on their way to being executed: all scripting languages
of elements, Because these elements are so ubiquitous,
make it easy to build them.

There is no way we can give a complete guide to building your own scripting language in this
book. There are many other books on language construction (although, surprisingly, there aren’t
any good books we know of on creating a scripting, rather than a fully compiled, language). This

section looks at the elements of scripting language construction from a very high level, as an aid
to understanding rather than implementation,

scripts will pass through the same
must provide the same basic set
tools have been developed and refined to

The Stages of Language Processing

a script typically passes through four stages: tokenization, parsing,
The four stages form a pipeline, each modifying its input to convert it into a format more
ot happen one after another, All steps can be interlinked, or
s. The script may be tokenized, parsed, and compiled offline,

'Tokenizing

okenizing identifies elements in the text.
f ASCII characters!

toup they form.
A string of the form:

A text file is just a sequence of characters (in the sense
). The tokenizer works out which bytes belong together and what kind of

]

be split into six tokens:

Pace> whitespace
quality operator
Ce> whitespace
floating point number

dof statement identifier

o

at the tokenizer do

esn’t work out how these fit together into meaningful chunks; that
f the parser,

Ut to the tokenizer is a sequence of characters. The output is a sequence of tokens.

5.10 Scripting 477

476 Chapter 5 Decision Making

up (>
]()Ok VaI]al)le names dyllallllcally Whell they run in the IIlteIpIeteI IytllOH d()es l]lls 101

Parsing
example).

The meaning of a program is very hierarchical: a variable name may be found inside an assignmen
statement, found inside an IF-statement, which is inside a function body, inside a class definition
for example, The parser takes the sequence of tokens, identifie
and identifies the overall hierarchical structure of the program

Sy ntax €rror nt C p P y
OIS 1 lle ()de ShO wu duIl]l arsin because tlle na. 1 I 1
g g ke 1t lmpOSS b € 10 e

The arser d()e n't wo l out 110 % tlle PIO ram Sllould be run t}lat 18 tlle Ob Of the Cco lle
p S S TK g 3y) h mp
T,

inside a namespace declaration,
the role each plays in the program,

The line of code: .
Compiling

The compiler turns the i
. parse tree into byte code that
typically sequential binary data. ’ teanberun

NO]l“OPtlIlllZ g P yp y p y
mng com llers t lcau out ut b te C()de as a I iela] tra lS]all() 1 ()1 1€ pa
t p rse tlee.

if (a < b) return;
y the interpreter, Byte code is

converted into the token sequence:

| keyword(if), whitespace, open-brackets, name(a), operator (<),
name(b), close-brackets, whitespace, keyword (return),
end-of-statement

a=3;
if (a < 0) return 1;
else return 0;

2

arser into a structure such as that shown in Figure 5.55.

is converted by the p
or sometimes a syntax tree ot

This hierarchical structure is known as the parse tree,
syntax tree (AST for short). Parse trees in a full language may be more complex, adding add
layers for different types of symbol or for grouping statements together. Typically, th
will output additional data along with the tree, most notably a symbol table that identi
variable or function names have been used in the code. This is not essential. Some

could get compiled into:

load 3
set-value-of a
get-value-of a
compare-with-zero
if-greater-jump-to LABEL
load 1
return
LABEL:
Toad 0
return

timizi .
Ptimizing compilers try to understand the program and make use of prior knowledge t
0

. € generated C()de 1astel. A“ ()Ptlllllle g com |]e “ay 10t1ce il at a must l)e (5 Wlle]l the
t] . o . .

. P
[tEIIlent abo\/e 1S EIICOullteIed. It can tlleIefOIe gelle[ate

;(‘)ad 3
t-value-of a
ad 0

ng an efficient iler i
L compiler is well beyond the scope of this book. Simple compilers are

d, but don’ i
- on’t underestimate the effort and experience needed to build a good

L€ are many hundred
s of home-b i .
it very many times. el o e -

Figure 5.55 A parse tree

478 Chapter 5 Decision Making

5.10 Scripting 479

i lly called “compiling
i ili ften done offline and are usua
izi arsing, and compiling are o : e it
Tollfemzlllnti)epprocesg; includes all three stages. The generated bgt.ct: coflfes A
ey Oug t runtime. The parser and compiler can be large, and it m
interpreted at ru . '
overhead of these modules in the final game.

Tools: A Quick Look at Lex and Yacc

Lex and Yacc are the two principal tools used in building tokenizers and parsers,
h

as many different implementations and is provided with most UNIX distri

are available for other platforms, too). The Linux variants we have most often
Bison,

respectively. Each
butions (versions
used are Flex and

Interpreting

To create a tokenizer with Lex
What constitutes a number, fo

0.4f to 1.2e~9). It produces C code th

> you tell it what makes up
iler for a language such as C or €

ipeline runs the byte code. In a compiler

The final stage of the pipeline runs

: - - u I
i i tly run by the processor.
i i ‘uctions that can be direc '
X will be machine instruc : .
e ﬁr'lal f 1OduCte you often need to provide services (such as re-entrancy an
scripting language, . ! .
that are not easily achieved with machlnellanglﬁgﬁz.” his s effctively an emultor for 2 4
isr a “virtual machine.
The final byte code is run on
- existed in hardware, . e bote codil
thatYhas <Iil eYzl et)}(le instructions that the machine can execute, and these are Vi
ou decide
tions. In the previous example,

grammar is given in a set of rules
from tokens, for example:

load <value>

2 set-value-of <variable>

3 get-value-of <variable>

4 compare-with-zero .

5 if-greater-jump-to <location>
return

assignment: NAME '=! expression;

the resulting software is as good as or better than
unless you are experienced with writing parsers, Unlike Lex, the final
ptimized if speed is absolutely critical, Fortunately, for game scripting

me is not being Played, so the slight inefficiency is

e ot COdes;i instructions don’t have to be limited to those that rmg'htt;)tzl 5

Your byi(ehco lsoin:xample, there may be a byte code fo? “turn‘the dat.zaltr; -
hardwd\{m:t)ez’l’t' t‘}’; kind of instruction that makes your compiler easier to cr
coordin : |
hardware Wouli everlﬁfg:.consist of a big switch statement in C each byt.e Scof; ehf

e that gers v ted when the byte code is reached in the interpreter. .on :
y COde'that oo execude that performs the addition operation. Our conver}slloresults
oy bltt}?f gfl:: onOC++ to perform the required conversion and copy the res
two or thre

appropriate place.

kenizing or parsing software,
however, Depending on the way the
on to have Yacc build an AST for the
do this, each with their own particular

Uage will behave, this will vary wi

iler to work on, however,
put format,

dely. It is very comm
and there are various tools to

te optimizing compilers this
it is worth heading directly for a

Just-in-Time Compiling

iti ible to write a virt
Because of the highly sequential nature of byte code, it is p.os'31blzz1 Itl e
ec fast at running it. Even though it is still interpreted, it is many
very : .
the source language a line at a time. . il howiveilh |
It is possible to remove the interpretation stc‘:p en }tf,he g
ilation step. Some byte code can be com‘plleq mtof e
;Or‘rclisvare When this is done in the virtual machm.e,]‘ust be orz e
(]?T) corr;piling This is not common in game scripting languag
such as Java and Microsoft’s .NET byte code.

€ the effort to build a scri
COSLof the other
Ppealing at firs

pting language into your game,
techniques in this book wil] not need to
t, but you should stil] have a general P

chances are it will run most of
be coded into your game. This
urpose language for the heavy

480 Chapter 5 Decision Making

5.11 Action Execution 481

. . i me extra Al i
It i cessful approach taken by many commercial studios. Typ1c.altly, :127 e needs
t1s a suc . rocessor inten .
; for example) for very p :
i mally a pathfinding engine, ; : because they ar
Prowde(-i (IlOlI;l in}i’onpit misses the point of established Al techniques. They 'eX'IStconVenient })Erven
our inoi s in .

1 Butt ézlutionrs) to behavior problems, not because programming n EHS' Lsed in the chafaik
o to a scripting language, you have to think about the algorithm debug a5 writing f m
i a . i u i
lfryi(l))ltlsg(\)/\]r(i)ting acli) hoc code in scripts can rapidly become as illfﬁcui ;fureedetg)ugging tocls)
SC . . o ften have much less -

in fact, since scripting language.ls oren ' cripting langua;
“ (morfcsl:velopers we know have fallen into this trap, assuming thilit gvz o iI; oi are%l .
Sev‘[e}rl: don’t need to think about the way characters are 1plplemented .al Orith;’ls ol
mea{lstl ylanguage we’d advise you to think about the architecture and alg
a scripting)

Animations may be more spectacular. We might Tequest an in-engine cutscene,
camera along some predefined track and coordinating the movement of many chara
Actions may also require the character to make some move
Although itisn’t always clear where an animation leaves off an

about larger scale movement here. A decision maker that tells a character to run for cover, to collect
anearby power-up, or to chase after an enemy is producing a movement action,

algorithms we saw the kind of

sending the
cters,

ment through the game level,
d movement begins, we are thinkin g

physics, or an animation controller,

to execute,
) ol t one of the other techniques in this chap Alth.ough these'moven‘)ent algqrithms are typically considered part of Al w.e’re treating them
those scripts. It may be that the script can implemen : uld be more practical alongsid; here as if they are Just a single action that can be executed. In a game, they will be executed by
~Oit may be that a separate dedicated C++ implementation wo ¢ calling the appropriate algorithms and Passing the results onto the physics or animation layer, In
o i ‘ipting language. other words, they will usually be implemented in terms of the next type of action.
instead of the scripting languag i e
In AIrequests for complex characters, a high-level decision maker may be tasked with deciding
which lower level decision maker to use, The A controlling one team in a real-time strategy game,
CUTION for example, may decide that it is time to build. A different AT may actually decide which building
5 o 1 1 ACTION EXE i gets to be constructed. In squad-based games, severa] tiers of AT are possible, with the output
Throughout this chapter we’ve talked about actions as if it were clear Whe.l(ti tgi)};;f;l(eziea‘; _from one level guiding the next level (we will cover specific tactical and strategic Al techniques in
roughou . tions, and we’ve avoide .
. . ‘ule- d systems generates actions,
from decision trees to rule-based sy:
format they might take,

i i isti t. The result of each
: ’ h actions as a distinct concept.
developers don’t work wit ; -
11\'/f1ant>; Chniune) is simply a snippet of code that calls. some functu.)ri[, tw:ilform i
ma Ul ga different bit of the game (AI, physics, rendering, whateym) o p s
> a(s)(rsl the other hand, it can be beneficial to handle a character’s actions

e he action that is output from a decision making tool may combine any or all of these flavors, In
iy ici the game more ,; Most actions have at least two of these components to them
i f a character explicit, makes)) P
of code. It makes the capabilities 0 easily), and can aid hugely in debugging the A ing a weapon involves both a state change (replenishing ammo in the gun from the
add and remove new types of acthiri; . dis};i;l ct algorithm to manage and run them rall total belonging to the character) and an animat
for s distinet concept for actt'lon&' wgeneral and how they can be scheduled and exec
This section looks at actions in

{ I ¢a Cques (tO
a gene tion manager. he (l]sC]]sS]On ab()]]t ho“] d]fferent t es of actions at) 01V I Al
g t
g neral actio . yp
1elevant even to prO)eCtS that dOIl t use a centr al execution managel.

- State changes may be immediate,
honored straight away, but most actions will take some time to complete,
ION

5.11.1 TyPEs oF AcT

pe with actions that take time; we can’t simply
n instant,

1y developers engineer their AT so that the decision maker keeps scheduling the same
Very frame (or every time it is called) until the action is completed, This hag the advantage
action can be interrupted at any time (see the next section), but it means that the
Making syster i being constantly processed and may have to be more complex than

We can divide the kind of actions c‘l(haIt result tfrom Al decisions into four flav
i imati nd Al requests. _ ;

aCtl(;Itl:;: Slllr:lil;?:cs;i?s: erl;etr}ll: :implest l?ind of action, simply chan}gl;:;g :(glff

state, It is often not directly visible to. the player. A chaIracte(l) SI?Z I; o tghese‘

weapon, for example, or use one of its health packls. n mrries e |

associated animations or visual feedt?ack when the p a'yef[}fea e

they simply involve a change in a varl'able .somewh.ele H} dbgal e
Animations are the most primitive kind of visual eed ” i.n e

when a character casts a spell or a quick shuffle of the hﬁn .:Coﬂ i

combat is simply a matter of animation, whether it be the r

raised shield, or a lengthy combo sword attack.

for €xample, 3 stat

- € machine with a sleepin
twill need to cary

8 and on-guard state. When the character
Y outa“wake-up”action,

probably involving an animation a

nd maybe
es to take a nap,

it will need a “go-to-sleep”

lly wake up or 80 to sleep every frame, then the state machine will

shown in Figure 5.56,

482 Chapter 5 Decision Making

5.11 Action Execution 483

It is a common implementation strategy to split these actions u
different decision making processes. We might use one simple decisi

levels and schedule the use of a health pack when things look dange
decision maker to choose which enemy to

p so they are generated by
on maker to monitor health

rous. We might use another
pursue. This could then hand-o

[Rested] N
=" —(Wakerup)

fftoa pathfinding
routine to work out a pursuit route, In turn, this might use some other AT to work out how to
[Go-to-sleep [W.aket-.ul; follow the route and yet another piece of code to schedule the correct animations,
e animatio A B
animaltlf)r} complete] In this scenario,
complete

each decision making system is outputting one action

of a very particular
nager needs to accumulate all these actions and deter

mine which ones can

form. The action ma
be layered.

An alternative is to have decision
for example, we may need to coordi
making system might decide to launc
making a full-strength flanking assa
difficult to coordinate separate deci
In these cases the action return
several atomic actions,

— (" On guard
Go-to-sleep - On guar
[Tired]

makers that output compound actions, In a strategy game,
nate several actions in order to be successful. The decision
ha small attack at a strong point in the enemy defense, while
ult. Both actions need to be carried out together. It would be
sion making routines to get this effect.

ed from a decision making system will need to be made up of
all of which are to be executed at the same time.

This is an obvious requirement, but one close to our hearts, One AT system we know of
ignored the need for compound actions until late in the development schedule, Eventually, the
decision making tool (including its loading and saving formats, the connections into the rest of

the game code, and the bindings to the scripting language and other tools) needed rewriting, a
major headache we could have avoided,

Figure 5.56 State machine with transition states

ransiti allowin:
This isn’t a problem when we only have two states to transition betwee;(, butn -
sn ta it !
iti 1?altweenpﬁve states would involve 40 additional transition states. It so
sitions be
. i i ill simplybe r
Comlrfcjfe can support actions with some duration, then the wake—élp actl(')ndvt)l}l tsWhI; Z .
i ill likewi carrie 1te
iti -to-sleep action will likewise be : 1l
ting the sleep state. The go : . ; e
Oln exltatg In this lzase, the state machine doesn’t need cont}nual p'locessil;gation L g
?teiepwakin.g up, we can wait until the character has played its waking an
it is ,
onto the next thing,.

Interrupting Actions

ctions take time, they may start off being sen?ible things to .do, bflfl‘i é?vaay’
]%tecailcllsfoerll before the action is complete. If a character is sent wanciierngnoe e
?tl\lnlf)ill appgar silly if it carries on toward the power—ug ?ﬁrj:; jv 2?qua of enemy ‘
ambush: it’s time to stop going after the power-up an 1.u : Cﬁon .
If a decision making system decides t.hat an 1¥np01tan I\/Iaost .
able to trump other actions currently be.mg carr%ed .out. 1 CgircumstanceS:
to even break the consistency of animation. %116 in nformih e
tion is played, if the character needs to do a rapid V(ilte;l.ace,between e
for another (possibly with a couple of frames of blending

e placed in a room. When the player enters the

rushes to a computer bank, starts the self-destruct
and escapes,

m, the script starts running. The character
uence, and then runs for the door

this way allows developers to give the impression of better Al than
acter needed to make its own decisions, A character
Spitefully, recklessly, or secretly, all without any Al effort,

s kind of scripted behavior is le

can be scripted

§§ common in current games because the player often has
: o ential to disrupt the action. In ouy example, if the player immediately runs for the door
jump). ' nager should allow actions with higher importance to inte nds there, the scientist may not be able to esca
Our action ma
of others.

pe, but the script won’t allow the scientist to

he blockage. For this reason, these kinds of scripted actions are often limited to

Cutscenes in recent games,
Compound Actions

as been used for many years in a different guise without removing the

i i ime. Th
It is rare for a character in a game to be domg“only one thmg—atee;t‘i?;” =
is typically layered. They might be playing a ‘make.-obsclcleneltigl 5
around the level, while pursuing an enemy, while using a health p

	20130906143518543
	20130906144047564
	20130906144601462
	20130906144953824
	20130906145433819

