PATHFINDIN

ame characters usually need to move around their level. Sometimes this movement is set
in stone by the developers, such as a patrol route that a guard can follow blindly or a small
fenced region in which a dog can randomly wander around. Fixed routes are simple to implement,
can easily be fooled if an object is pushed in the way. Free wandering characters can appear
iless and can easily get stuck.

More complex characters don’t know in advance where they’ll need to move. A unit in a real-
strategy game may be ordered to any point on the map by the player at any time, a patroling
d in a stealth game may need to move to its nearest alarm point to call for reinforcements,
platform game may require opponents to chase the player across a chasm using available
rms.

t each of these characters the Al must be able to calculate a suitable route through the game
get from where it is now to its goal. We’d like the route to be sensible and as short or rapid
ble (it doesn’t look smart if your character walks from the kitchen to the lounge via the

is pathfinding, sometimes called path planning, and it is everywhere in game Al

t model of game Al (Figure 4.1), pathfinding sits on the border between decision making
ment. Often, it is used simply to work out where to move to reach a goal; the goal is
another bit of Al and the pathfinder simply works out how to get there. To accomplish
¢ embedded in a movement control system so that it is only called when it is needed
ite. This is discussed in Chapter 3 on movement algorithms.

ﬁnding can also be placed in the driving seat, making decisions about where to move
W (0 get there, We'll look at a variation of pathfinding, open goal pathfinding, that
0 work out both the path and the destination.

Majority of games use pathfinding solutions based on an algorithm called A*,
fficient and easy to implement, A* can’t work directly with the game level data. It

y Elsevier Inc. All rights reserved.
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World interface

Figure 4.1 The Al model
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level Slcia we'll look in some detail at the knowledge 1'epresentatlonflslsu;sthe e
1evel gior’netry into pathfinding data. Finally, we'll look at a handful o
eve :
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A graph consists of two different types of element: nodes are often drawn as points or circles
1 a graph diagram, while connections link nodes together with lines. Figure 4.2 shows a graph
ucture,
_Formally, the graph consists of a set of nodes and a set of connections, where a connection is
1ply an unordered pair of nodes (the nodes on either end of the connection).
For pathfinding, each node usually represents a region of the game level, such as a room,
tion of corridor, a platform, or a small region of outdoor space. Connections show which
ions are connected. If a room adjoins a corridor, then the node representing the room will
connection to the node representing the corridor, In this way the whole game level is split
egions, which are connected together. Later in the chapter, we'll see a way of representing
me level as a graph that doesn’t follow this model, but in most cases this is the approach
4°1 THE PATHFINDING GRAPH ketfrom one ion i - : e
+ many variations) can work direclyon the geomety Ok ring o 1 ou gt moc, hen 1 b sl v e el
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ftu;nier(li tEZ ;iIEPI;?ﬁcation we throw away information, and that might be signific
nd, o
P?’Of simplification can mean that the final path is7 :10 gZf)icted non-negative weigh
Pathfinding algorithms use a type of graph Ce.iue : }111 ia simpler graph struct
We'll work up to a description of the full pathfinding graph via Stmp ‘

h through the graph consists of zero or more connections. If the start and end node are
hen there are no connections in the

path. If the nodes are connected, then only one
1118 needed;and so on.

: aph is made up of nodes and connections, just like the general graph. In addition
411 GRAPHS odes for each connection,

‘ he weight, and i
lagr ically, Tt has noth ‘ i
Agraphisa mathematical structure often represented diagr ammatically.

we add a numerical value. In mathematical graph theory
. ‘ ill called
» iagr as a pie charf \
the more common use of the word “graph” to mean any diagram, suchasap ; : k

game applications it is more commonly called the cost (although
a “weighted graph” rather than a “costed graph”)
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Figure 4.4 Total path cost

Figure 4.3 A weighted graph
5.3

tion is labeled with an associat
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Drawing the graph (Figure 4.3), we see that each connec

value.
The costs in a pathfinding graph often represent time or
a platform is a long distance from a node representing the next
connection will be large. Similarly, moving between two 1o0ms that ar
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we are heading from node A to node C, via node B, and if the costs are 4 fromAtoB and

to C, then the total cost of the route is 9.

Weighted graph overlaid onto level geometry
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side is instant. So shouldn’t all connections have a zero cost?
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ways, and the cost is the same in both directions. Directed graphs instead assume that connections
are in one direction only. If you can get from node A to node B, and vice versa, then there will be
two connections in the graph: one for A to B and one for B to A.

This is useful in many situations. First, it is not always the case that the ability to move from A
to B implies that B is reachable from A. If node A represents an elevated walkway and node B
represents the floor of the warehouse underneath it, then a character can e
but will not be able to jump back up again.

Second, having two connections in different directions means that there can be two different
costs. Let’s take the walkway example again but add a ladder. Thinking about costs in terms of time,
it takes almost no time at all to fall off the walkway, but it may take several seconds to climb b
up the ladder. Because costs are associated with each connection, this can be

the connection from A (the walkway) to B (the floor) has a small cost
to' A has a larger cost.

Mathematically, a directed graph is identical to a non-directed graph, except that the pair of
nodes that makes up a connection is now ordered. Whereas a connection (node A, node B, cost)
in a non-directed graph is identical to (node B, node A, cost) (
directed graph they are different connections.

i i er, and they have direg
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e’ve ne

foresee a situation when we might.

asily drop from A to B

ack
simply represented:
, and the connection from B

so long as the costs are equal), in a
413 DIRECTED WEIGHTED GRAPHS

i i epr level, and we have

For many situations a weighted graph is sufficient to represent T gamee 1‘eThe -
tor ;eme};ltations that use this format. We can go one stage furthell, ?Y:C\;e(i s ;
lI;;}())1'ithms support the use of a more complex form of graph, the d1
a

ich is often useful to developers. . doodeB (@i
Whlcsl(l) fsar we've assumed that if it is possible to move between node A ;::IA odeB

idor, for example), then it is possible to move from node B to no .

corridor, a

4 TERMINOLOGY

tminology for graphs varies. In mathematical texts you often see vertices rather than nodes and
ges rather than connections (and, as we've already seen, weights rather than costs). Many Al

velopers who actively research pathfinding use this terminology from exposure to the math-
hatical literature, It can be confusing in a game development co
mmonly mean something altogether different.

There is no agreed terminology for pathfinding graphs in games articles and seminars, We

een locations and even “dots” for nodes, and we have seen arcs, paths, links, and “lines” for
tections.

ntext because vertices motre

e will use the nodes and connections terminology throughout this chapter because it is
on, relatively meaningful (unlike dots and lines), and unambiguous (arcs and vertices both
eaning in game graphics).

ddition, while we have talked about directed non-negative weighted graphs, almost all

ng literature just calls them graphs aud assumes that you know what kind of graph is
€1l do the same.

PRESENTATION

ePresent our graph in such a wa
1 It

see, the algorithms need to find o
such connection,

y that pathfinding algorithms such as A* and Dijkstra

ut the outgoing connections from any given node.
they need to have access to its cost and destination.

Figure 4.6 A directed weighted graph
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Because of these issues, we have seen Dijkstra used only once in production pathfinding, not
as the main pathfinding algorithm but to analyze general properties of a level in the very complex
pathfinding system of a military simulation.

Nonetheless, it is an important algorithm for tactical analysis (covered in Chapter 6, Tactical
and Strategic Al) and has uses in a handful of other areas of game Al We will examine it here
because it is a simpler version of the main pathfinding algorithm A*.

the following interface:

We can represent the graph to our algorithms using

class Graph:
# Returns an array of ¢
# Connection) outgoing f
def getConnections(fromNode)

onnections (of class
rom the given node

42.1 THE PROBLEM

class Connection: .
# Returns the non-negati

# connection
def getCost()

-
ve cost of the

Given a graph (a directed non-negative weighted graph) and two nodes (called start and goal) in

that graph, we would like to generate a path such that the total path cost of that path is minimal

among all possible paths from start to goal.

There may be any number of paths with the same minimal cost. Figure 4.7 has 10 possible

paths, all with the same minimal cost. When there is more than one optimal path, we only expect

one to be returned, and we don’t care which one it is.

Recall that the path we expect to be returned consists of a set of connections, not nodes. Two

nodes may be linked by more than one connection, and each connection may have a different cost

(it may be possible to either fall off a walkway or climb down a ladder, for example). We therefore

eed to know which connections to use; a list of nodes will not suffice.

Many games don’t make this distinction. There is, at most, one connection between any pair

The graph class simply returns an array of conne d nodes. After all, if there are two connections between a pair of nodes, the pathfinder should
he end node and cost can be retrieved. ach node and Iways take the one with the lower cost. In some applications, however, the costs change over the

From e o e i d store the connections for e
. . tion of this class would store ' | ke e onevihthe e o . , . | | |
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more €0
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# Returns the node that this connection came

# from
def getFromNode()

# Returns the node that this connection leads to

def getToNode()

onnection objects for any node that is ¢
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cost-so-far: 2.8
connection: IV

47272 THE ALGORITHM
cost-so-far: 1.3

connection: |

Informally, Dijkstra works by spreading out from the start node along its connections. As it spread
out to more distant nodes, it keeps a record of the direction it came from (imagine it drawing current
{ly, it will reach the goal . node
i . start Conne_Ct'(’n | Connection IV
cost: 1.3 cost: 1.5

way back to the start). Eventua
art point to generate the complete route. Because
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connection; none

chalk arrows on the floor to indicate the
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the way Dijlstra regulates the spreading process,

Connection
cost: 1.6 ' Connection v cost-so-far: 3.2
cost: 1.9 connection: V

back along the shortest route to the start.
Let’s break this down in more detail. - ;
erations. At each iteration it considers one node of the graph and folloy >
grapn 4% o Connection 1| @ cost-so-far: 1.6
cost: 3.3 connection: il

Dijlkstra works in it
its outgoing connections.
it chooses a node to consid
node the “current node.”

At the first iteration it considers
er using an algorithm we'll discuss shortly.
cost-so-far: 3.3

connection: lli

Figure 4.9  Dijkstra with a couple of nodes

Processing the Current Node

urrent node. For

utgoing connection from thec
(we'll call thi

During an iteration, Dijkstra considers each o
connection it finds the end node and stores the total cost of the path so far

“cost-so-far”), along with the connection it arrived there from.
In the first iteration, where the start node is the current node, the total cost-so-far fo
connection’s end node is simply the cost of the connection. Figure 4.8 shows the situation
the first iteration. Each node connected to the start node has a cost-so-far equal to the costc
connection that led there, as well as a record of which connection that was. he Node Lists
For iterations after the first, the cost-so-far for the end node of each connection ist
of the connection cost and the cost-so-far of the current node (i.e., the node from wh
connection originated). Figure 4.9 shows another iteration of the same
stored in node E is the sum of cost-so-far from node B and the connecti

from B to E.
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Figure 4.8  Dijkstraat the first node
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Consider Fi i
gure 4.10 again. If D is the goal
 Consider Tigur ) goal node, then we’ll first find it whe ’ i
pode B So il we sn gpﬁlere, we'll get the route A-B-D, which is not the shorter;twe o, To make
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Retrieving the Path

The Vf\llnilil stage is to retrieve the path,
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cost-so-far: 2.8
connection: IV

cost-so-far: 1.3
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Connection IV
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Connection |
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cost-so-far: 0

Connection I
cost: 1.6

cost-so-far: 3.2
connection: V

Connection V
cost: 1.9

' cost-so-far: 1.
Connection VI connectiorn'1ll6

cost: 1.3

Connection Il}
cost: 3.3

Connection: VII
cost: 1.4

cost-so-far: 4.6
connection: VIl

cost-so-far: 2.9 903/
node

connection: VI

Connections working back from goal: Vil, V|
Final path: I, V, VII

Followi
llowing the connections to get a plan
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423 PsEUDO-CODE
section),
path from

def pathfindDijkstra(graph,

# This structur
4 information we

a start node, and an
thesﬁwtnodetotheendnod&

start, end):

-
e is used to keep track of the
need for each node

struct NodeRecord:

node

connection

costSofar
4 Initialize the record for the start node
startRecord = new NodeRecord()

startRecord.node = start
startRecord.connection = None
startRecord.costSoFar =0

# Initialize the open and closed 1ists
open = PathfindingList()

open t= startRecord

closed = PathfindingList()

# Iterate through processing each node
while 1ength(0pen) > 0:

e smallest element in the open 1ist

# Find th
open.sma]]estE]ement()

current =

# 1f it is the goal node, then terminate
if current.node =7 goal: break
s outgoing connections

# Otherwise get it
getConnections(current)

connections = graph.

# Loop through each connection in turn
for connection in connections:

4 Get the cost estimate for the end node
endNode = connection.getToNode()

The Dijkstra pathfinder takes as input a graph (conforming to the in
end node. It returns an array of connecti

z endNodeCost = current.costSoFar +
e e ’ connection.getCost()
on objectsthatrepresenta‘ 0 # Skip if the node i
. e is closed
42
if closed.contains(endNode): continue

# .. or if it
. it is open and 1
we've
# route found a worse

else if open.contains(endNode):

# Here we find the record in the open list
# corresponding to the endNode.
endNodeRecord = open.find(endNode)

if endNodeRecord.cos
. t <= endNod :
continue ot

# Otherwise we know we've got an unvisited
# node, so make a record for it
else:
endNodeRecord = new NodeRecord()
endNodeRecord.node = endNode

# We're here if we need to update the nod
# Update the cost and connection o
endNodeRecord.cost = endNodeCost
endNodeRecord.connection = connection

# And add it to the open list
if not open.contains(endNode):
open += endNodeRecord

# He! ini
- theviuﬁmshed looking at the connections for
. rrent.node, so add it to the closed list
; emove it from the open list

pen -= current

osed += current

‘re i
here if we've either found the goal, or

we '}Ve no
more nodes to
se . .
rrent .node 1= goal: arch, find which.

Ve run o
ut of nodes with .
a out findi
1¥, so there's no solution ing the

4.2 Dijkstra
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Pathfinding List

one . . . . ..
return N The open and closed lists in the Dijkstra algorithm (and in A*) are critical data structures that

directly affect the performance of the algorithm. Almost all optimization effort in pathfinding

84 else: goes into their implementation. In particular, there are four operations on the list that are critical:
) i1e the 1ist of connections in the path

86 # Compile 1. Adding an entry to the list (the += operator);

87 path = i 2. Removing an entry from the list (the -= operator);

| oot . o 3. Finding the smallest element (the smallestElement method);

89
# connections

while current.node 1= start:

tion

ath += current.connec .
2urrent = current.connect1on.getFromNode()

4, Finding an entry in the list corresponding to a particular node (the contains and find methods
both do this).

90

91

92

Finding a suitable balance between these four operations is key to building a fast implemen-
tation. Unfortunately, the balance is not always identical from game to game.

Because the pathfinding list is most commonly used with A* for pathfinding, a number of its
ptimizations are specific to that algorithm. We will wait to examine it in more detail until we
have looked at A*.

93

. and veturn it

# Reverse the path,

95
return reverse(path)

er Functions o
o y much like a regular list. It

onal methods:

tructure that acts Vel

ist i jalized data s ry
e es nd ts the following additi

thfinding 1
e ; d structures and suppor

a set of NodeRecor

> have covered the interface presented by the graph in the first section of this chapter.

The getConnections method is called low down in the loop and is typically a critical perfor-
nce element to get right. The most common implementation has a lookup table indexed by
ode (where nodes are numbered as consecutive integers). The entry in the lookup table is an
of connection objects. Thus, the getConnections method needs to do minimal processing
s efficient.

me methods of translating a game level into a pathfinding graph do not allow for this
- lookup approach and can therefore lead to much slower pathfinding. Such situations are

ructure in the list with th

d st
The smallestEl ement () method returns the NodeRecor
B

costSoFar value. . -
Th contains(node) method returns true only if the lis
e 1 .
) whose node member is equal to the given paran;etter o thelist el
Tuc
i d returns the NodeRecord
The find(node) metho

ins a NodeRecord stt

L .
is equal to the given p arameter. dconit ed in more detail in Section 4.4 on world representation later in the chapter.

d a function, reverse (array), that returns a reverse ‘ getToNode and getCost methods of the Connection class are even more performance
In addition, we have use 1 an overwhelming majority of implementations, however, no processing is performed
array. 1kethods, and they simply return a stored value in each case. The Connection class might

ook like the following:

INTERFACES : &

UCTURES AND
424 DATA STR - V
orithm: the simple list used to ace Connection:

uctures used in the alg
g list used to hold the o
(and their costs).

There are three data str e graph

final path, the pathfindin:
connections from a node

pen and dlosed lists,

. . ; ‘ ¢ return cost
Simple List re

; sed at the end of the ; (): return fromNode
isonly u . , :

.i1ist in G+, for e : return toNode

ist i nee critical, since it
imple list is not very performance crit .
e Sdmpt can be implemented as a basic linked list (a std

rocess. | .
Ir)esizable array (such as std: :vector in C++).
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ection class is rarely a performance bottleneck.

For this reason the Conn
Of course, these values need to be calculated somewhere. This is usually done when the gam
level is converted into a graph and is an offline process independent of the pathfinder. Sta:; /Goal Start Goal
0 09 o]
42.5 PERFORMANCE OF DIJKSTRA %og%g%o °o%>zoo°oi’g> :f%@?@@g@go ogog%oooooo
O%%C? ©7%%00 ol 5 %0
The practical performance of Dijkstra in both merfiory and speed depends mostly on the petfi 3 3 oo(%oooo Co® OOO Ogooo
mance of the operations in the pathfinding list data structure. 08 OOoo ° % Kej 0LoS°
Ignoring the performance of the data structure for a moment, we can see the theotet ogooooo 1 ooo% OooOo
performance of the overall algorithm. The algorithm considers each node in the graph th °© ©oQ 2
closer than the end node. We call this number n. For each of these nodes, it processes the i
loop once for each outgoing connection. We call the average number of outgoing connectio Start Goal
per node . S0 the algorithm itsell is O(nn) in execution speed. The total memory use deps A o 00 o yd
on both the size of the open list and the size of the closed list. When the algorithm termit S0 & o9 O@oo
there will be # clements in the closed list and no more than nm elements in the open lis Key ®§é% é%@e@@%@@ @@@iﬁ oooo
fact, there will typically be fewer than 1 elements in the open list). S0 the worst case memo © Open nodes @9:@6@ @%OOOOO
is O(nm). 2 Closed nodes ®ee® OOO ogooo @@eez@ T
To include the data structure times, we note that both the list addition and the find op Unvisited nodes g 0X8s° %e 0" 9988
tructure, above) are called nm times, whil ,/:/B connections are ooc%@O Oooo 5 0® OOOO 000
idden for simplicity e) ooO ?@3@@ Ke

the pathfinding list data s
stElement operations are ¢
perations is greater than O(m
nO(1),thenthe actual executi
key operations, data structur
y requirements.

at the list implementations

(see the section on
extraction and smalle
for the addition or find 0
operations are greater tha
In order to speed up the
have worse than O(nm) memor
When we look in more depth
their impact on performance characteristics.
If you look up Dijkstra in a computer science textboolg, it may tell you thatitis o)
e occurs when the g

the result above. The worst conceivable performanc
for games, however, there’ll be a direct path t

alled 1 times. If the order of the executio

), or if the extraction an

on performance will be worse than ) .
‘ . Dijkstra in ste

ps

¢ implementations are oft

‘he ﬁna]. P 1 g
L Of Flgule
‘ . i when { te ates ‘ 1€
‘ WS e state of the hStS h n 1 1 i i
art 4 2 Sll() t l ll 1€ a Ollﬂlm

SEIOWS th-ewbest Pat}l that haS been Calculated. I‘]()tice that most Of the level llaS Sti“ .l)ee 1
- d) even ell away fl()m the Path that iS gellelated
;:e llunlbel Of nOde i . 3
‘ ; S that were C()llSldeled, l)ut never Inade palt ()f the ﬁnal route .S Ca“ed
f the algOIIthIll. [Il genelal, y()ll want to C()llsidel as fe de P 1 e
' . W Nno S as OSSIble, b cause eaCh
tlrn.es Dijkstl i W 11V y unt o ll“ ‘ S

a Wlﬂ genelate a sear h i
‘ : C pattel 1n lth a 1'€1¢ ti el Snlall amo i
eptlon IatheI tllall the 11.116, hOVVe VEL, Ill the ast majOlity Of cases Dijkst ff .ﬁ

V ) Tra sullers Irom

in the next section, we will

this is exactly
densely connect
anyway, SO We cail

ed that m = n.In this case
avoid Dijlstra altogether.

flthms ‘(Vith b. i 1 -10~
lg S, hl(e Dl]kstl'a, are inefﬁcient fOl' pOint to POint pathﬁnd' d
lng and are

. This brin
. gs us to the star of : )
sion of Dijkstra. of pathfinding algorithms: A*. It can be thought of as a

42.6 WEAKNESSES
e entire graph indiscrimina!
d the shortest path f0 €
ful for point~to~point p
¢ nodes currently o1
n Figure 4.12.
the open list: L
' S4INES 1S synon :
already beenl. , as lots of s}éopeﬁglo(l)lstwu.h t}}e A* algorithm. A* is simple to implement,
s has used some Variﬁ’tilérllllzaftlzil. Every pathfinding system we’ve come a’c;i)s\.]selir);
o as its key algorithm .
, and it has applications
well

jjlestra is that it searches th

The principle problem with D
seful if we're trying to fin

shortest possible route. This is

node (the problem that Dijkstra was designed for), but waste
We can visualize the way the algorithm works by showing th

closed lists at various stages through a typical run. This is shown
In each case the boundary of the search is made up of nodes on

the nodes closer to the start (Le., with lower distance values) have

placed on the closed list.
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ill see how A* can be used to plan complex series of

beyond pathfinding too. In Chapter 5, we W
actions for characters. Nod
Unlike the Dijkstra algorithm, A* is designed for point-to-point pathfinding and is not used hgur?sﬁc('sia; node) Node B Node D
to solve the shortest path problem in graph theory. It can neatly be extended to more complex cost-so-far: 0 heuristic: 3.2 heuristic: 2.8
cases, as we'll see later, but it always returns a single path from source to goal. connection: none gg:(r;z(c);ifg;:. Lg cost-so-far: 2.8
estimated-total-cost: ; : co jon:
P ed-total-cost: 4.2 estimated-total-cost: 4.5 estri]rr:\eitlgn. o
closed ated-total-cost: 5.6
4.3.1 THE PROBLEM R open
15 -(®
Node E

heuristic: 1.6

The problem is identical to that solved by our Dijkstra pathfinding algorithm.
Given a graph (a directed non-negative weighted graph) and two nodes in that graph (st
the total path cost of that path is mini Node C cost-so-far: 3.0
heuristic: 3.7 connection: BE
estimated-total-cost: 4.6

cost-so-far: 1.1
connection: AC
estimated-total-cost: 4.8
open

and goal), we would like to generate 2 path such that
s from start to goal. Any mini

among all possible path:
consist of a list of connections from the start node to the goal node.

mal cost path will do, and the path sho
open

4372 THE ALGORITHM

Informally, the algorithm works in much the same way as Dijkstra does. Rather than a N
we choose the node that s hé):r?sﬁc, 14 Node G (goal node)
1. heuristic:
unvisited unt;;;?tt;% >0

considering the open node with the lowest cost-so-far value,
likely to lead to the shortest overall path. The notion of “most !
If the heuristic is accurate, then the algorithm will be efficient.
can perform even worse than Dijkstra.

In more detail, A* works in iterations. At each iteration it considers one node of the gra
follows its outgoing connections. The node (again called the «current node”) is chosen U
selection algorithm similar to Dijkstra’s, but with the significant difference of the heuristi

we'll return to later.

ikely” is controlled by a heu
If the heuristic is terrible, t

1gure 4.13  A* estimated-total-costs

e Node Lists

efore, the algorithm ! eeps a list of o v
; keeps a list v ut not processed and
e pen nodes that have b isi p
t f e been visited b
nodes that have been processed. Nodes are moved onto the open list atS t te)’ra € SOS und a
d nodes that h d h h re f d at

f CO i
- Ctlons. NOdeS are mo ed nto the ClOSed liSt as the a d
i ir W

like previ
ously, the N
R iteration. Thi s ar ode from the open list with the smallest estimated-total-cost i
the connection it arrived there from, j ol most always different from the node with the small al-costis selected
In addition, it also stores one more value: the estimate of the total cost for a pat e timata dOws the algorithm to examine nodes that are mor: Sr.n ?S-t cost-so-far,
(we'll call this value the estimated o diste -total-cost, then it must have a relatively short ¢ p‘(1 Omlfsmg firs. If a node
ance to ost-so-tar an ;
go to reach the goal. If the estimates are accurate, then t}?e Zrﬂatlvﬁly
> odes that

gh this node and onto the goal
the cost-so-far and how far it is from the node o the goal
- are i .
‘ considered first, narrowing the search into the most profitabl
e area.

g connection from the current node

on, A* considers each outgoin
tal cost of the path so far (the “cost-$

During an iterati
connection it finds the end node and stores the to
iust as before.

start node throu
This estimate is the sum of two values:
This estimate is generated by 2 separate piece of code and isn’t part of the algorithm
These estimates are called the “heuristic value” of the node, and it cannot be e
the costs in the graph are non-negative, it doesn’t make sense to have a negative ¢ g Cost-S
b o-Far for Open and Closed Nodes

s heuristic value is a key concern in implementing the A* algorit

€ may arri
; 1ve at an open
or closed node duri ;
uring an iteration i
, and we will have t i
o revise

generation of thi
The nod: 1
v ues,

return to it later in some depth.
Figure 4.13 shows the calculated values for some nodes in a graph.
with their heuristic values, and the two calculated values (cost-so-far and estimat s
=80~-Iar .
value as normal, and if the new value is lower than the existi
sting

are shown for the nodes that the al orithm has considered. .
g ode, then we will need to update it. Notice th d
: ce that we do this compari ;
parison strictly on




the value for the dubious node

again to propagate the new value.
In the case of revising node on the open list, this isn’t necessary,

tions from a node on the open list haven’t been processed yet.

Fortunately, there s 2 simple way 10 force the algorithm to
value. We can remove the node from the closed list and place it
wait until it is closed and have its connections reconsidered. Any

also eventually be processed once more.

Figure 4,14 shows the same graph as the prev
the updating of closed node in a graph. The ne
record for node B is updated accordingly, and it is
the value for node G s correspondingly revised.

S0 closed nodes that have their values revised are ré

Node C
heuristic: 3.7
cost-so-far: 1.1
connection: AC
estimated-total-cost: 4.8
current node

since we know that con

closed

recalculate and propa
back on the open list.
nodes that rely on its valu

o iterations later. Tt illustr
de C, is faster, and s
st. On the next iter

ious diagram, but tw
w route to E, via no
placed on the open li

Node F
heuristic: 1.4
cost-so-far: 2.7
connection: CF
estimated-total-cost: 4.1 estimated-total-cost: 4.4

moved from the closed list and plac
ay on the open list, as before.

open

cost-so-far: 3.0
connection: BE
estimated-total-cost: 4.6
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the cost-so-far value (the only reliable value, since it doesn’t contain any element of estimate), no
the estimated-total-cost. Nod
Unlike Dijkstra, the A* algorithm can find better routes to nodes that are already on the close he(z)u ﬁsﬁ‘c(.sia; node) Node B Node D
list, If a previous estimate was very optimistic, then a node may have been processed thinking cost-so-far: 0 :eutnstic: 3.2 heuristic: 2.8
. . . . QS1-SO- . s
was the best choice when, in fact, 1t was not. connection: none cofmnzgt:;:- 1\; cost-so-far: 2.8
This causes a knock-on problem. If 2 dubious node has been processed and put on the closed ef't'matEd‘tOtal'COSt 42 estimated-total-cost: 4.5 ZZ? nection: BT
list, then it means all its connections have been considered. It may be possible thata whole set of closed closed ' Opg,?ated'tOta"COSt 5.6
nodes have bad their cost-so-far values based on the cost-so-far of the dubious node. Updati @ Is updated
. e . . bl e
is not enough. All it connections will also have to be check 1.5 N %—\A
ode E
. Node E
heuristic: 1.6 heuristic: 1.6

cost-so-far: 2.6
connection: CE
estimated-total-cost: 4.2
open

Node G (goal node)
heuristic: 0.0
cost-so-far: 4.4
connection: EG

open

the open list. Open nodes that have their values revised st

gure4.14 Closed node update

Terminating the Algorithm

In many implementations, A* terminates when the goal node is the smallest node

de that has the smallest estimated—total—cost value {
st) may later need its value

nd put on the closed 1
We can no longer guarantee, just because the node is the smallest on the open list, tha
the shortest route there. So terminating A* when the goal node is the smallest on the P

not guarantee that the shortest route has been found.
ould run A* alittle longer to generatc a8

1t is natural, therefore, to ask whether we ¢
timal result. We can do this by requiring that the algorithm only terminates when t
mated~t0ta1—cost) hasa cost-so-far va

t cost-so-far (not esti
found to the goal. Then and only then can We guatad

forms a shortcut.
mination condition w

open list.
But as we have already seen, a noO

therefore be processed next iteration a

section,

op
the open list with the smalles

than the cost of the path we
future path will be found that
This is effectively the same tet
imposing this condition will genera
algorithm. The nodes may be searche
the set of nodes on the open list, but th
cobs A* of any performance advantage an

e saw in Dijkstra, and itcan b
te the same amount of fill as running the Dijkstre
and there may be slight

d in a different order,
e approximate fill level will be the same. In.©

d makes it effectively worthless.

A implem i y Y y y ]) ()(lll(e 1011 -
entations Completel rel h
c . : on the faCt that the can theOl'etican ¥
Inal‘ lesults I O..l tl.lnately,lthls can be COntl'Oned using the heufistic funCtiOn Depe]ldillg on
ho{ce Of heU.llStlc illnCthn we can uarant i , y O
il A ] ) g : ee Optlmal feSultS, Oor we can deliberate a 1%
g us 1as ecunion. ’1 return to .llluelc Ol ||e|eu]i l]’( ter
timn ll 1eSu“S to give ‘ ter ex fion. we l ret he 1 € S ate

cause A* so often flirts wi
irts with sub-optimal
. oex -optima results, a large number of A* im i
L perf(r)lrtmhz goal gode is first visited without waiting for it to be tgiezrrlrfnl;atlons
e eilge al'vanta.ge is not as great as doing the same thing in Di'k:t eStbOn
ry little bit counts, especially as the algorithm won't necJe r?l) lljlt
ssarily be

1 mf pad] 1N exact y Y . ( )| la 1 lg
‘ ac 1 tlle same wi b y
. ay as €f01e. b Startlng at the 1
gOa and accumu
¢ start I‘lOde. The COllneCtiOIlS are agaln ) erse (8]
1S a8 we move baCk fo th t evers d t |()11’1’1
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433 PSsSgU po-CODE 35 connections = graph.getConnections(current)
36
Exactly as before, the pathfinder takes as input a graph (conforming to the interface given in o # Loop through each connection in turn
de. Tt also requires an object that can generate 38 for connection in connections:

the previous section), a start node, and an end no
estimates of the cost to reach the goal from any given
Tt is described in more detail later in the data structures section.

The function returns an array of connection objects that represents path from the start no

node. In the code this object is “heuristic
© # Get the cost estimate for the end node

a endNode = connection.getToNode()
endNodeCost = current.costSoFar +
connection.getCost()

to the end node. ; -~

def pathfindAStar(graph, start, end, heuristic):
# If the node is closed we may have to

# skip, or remove it from the closed 1ist.

if closed.contains (endNode) :

# This structure is used to keep track of the

# information we need for each node

5 struct NodeRecord:

6 node ' # Here we find the record in the closed 1list
7 connection # corresponding to the endNode.

’ costSoFar endNodeRecord = closed.find(endNode)

estimatedTotalCost
# If we didn't find a shorter route, skip
if endNodeRecord.costSoFar <= endNodeCost:

# Initialize the record for the start node
continue;

startRecord = new NodeRecord()

13 startRecord.node = start
14 startRecord.connection = None 4 Otherwise remove it from the closed Tist
15 startRecord.costSoFar = 0 closed -= endNodeRecord

startRecord.estimatedTota]Cost =
heuristic.estimate(start)

# We can use the node's old cost values
# to calculate its heuristic without calling
# the possibly expensive heuristic function

# Initialize the open and closed lists
endNodeHeuristic = endNodeRecord.estimatedTotalCost -

20 open = pathfindingList{)
2 open += startRecord
endNodeR
2 closed = PathfindinglList() eRecord. costSoFar
# Skip if the node is open and we've not

# found a better route

# Tterate through processing each node
else. if open.contains(endNode):

2 while length(open) > 0:

# Here we find the record in the open list
# corresponding to the endNode.
endNodeRecord = open.find(endNode)

# Find the smallest element in the open list
# (using the estimatedTotalCost)
current = open.sma]]estE]ement()

# If it is the goal node, then terminate # 1f our route is no better, th ki

: . 3 en sKi

“ if current.node == goal: break . if endNodeRecord.costSoFar <= endNodeEost-
continue; '

# Otherwise get its outgoing connections
# UWe can use the node's old cost values
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# to calculate its heuristic without calling
# the possibly expensive heuristic function

endNodeHeuristic = endNodeRecord.cost -
endNodeRecord.costSoFar

know we've got an unvisited

# Otherwise we
a record for it

# node, so make

else:
endNodeRecord =
endNodeRecord.nod

new NodeRecord() -
e = endNode

ate the heuristic value

# We'll need to calcul
since we don't have an

# using the function,
# existing record to use

endNodeHeuristic = heuristic.estimate(endNode)

# yWe're here if we need to update the node
# Update the cost, estimate and connection
endNodeRecord.cost = endNodeCost
endNodeRecord.connection = connection
endNodeRecord.estimatedTota]Cost =
endNodeCost + endNodeHeuristic

# And add it to the open 1ist
if not open.contains(endNode):
open += endNodeRecord

d looking at the connections for
so add it to the closed list

m the open 1ist

# We've finishe
# the current node,
# and remove it frol
open -= current

closed += current

ound the goal, or
h, find which.

# We're here if we've either f
# if we've no more nodes to searc

if current.node != goal:

# We've run out of nodes without finding the

# goal, sO there's no solution
return None

else:

# Compile the list of connections in the path

43 A* 223

123 path = []

124

15 # Work back along the path, accumulating

126 # connections

127 while current.node != start:

path += current.connection

current = current.connection.getFromNode ()

128

129

# Reverse the path, and return it
return reverse(path)

L

Changes from Dijkstra

'fll(l)e illgorcllthrn 1Csl alrnccl)st identical to the Dijkstra algorithm. It adds an extra check to see if a
sed node needs updating and removing fr i
: g from the closed list. It also add, li
the estimated-total-cost of i i . e e o i the
a node using the heuristic function
| and add X i
NodeRecord structure to hold this information. san oxtra fed In the
A . .
. S;; 9f .cailculatlc.)ns ian be used to derive the heuristic value from the cost values of an existing
. This is done simply to avoid calling the heuristic functi
; nction any more than is y
- : : ave necessary. If
10de has already had its heuristic calculated, then that value will be reused when the node zeedz

pdating.

AOtl;er than these minor changes, the code is identical.

: S s o :

- ;)110 the.suppm ting code, the smallestElement method of the pathfinding list data structure
w return the NodeRecord with the smallest estimated-total-cost value, not the smallest

o-far value as before, Otherwise, the same implementations can be used

DATA STRUCTURES AND INTERFACES

raph da i

id(i]ticélti st;ucture an.d the SHT.lple path data structure used to accumulate the path are

o emen(i t os}c; used in the Dijkstra algorithm. The pathfinding list data structure has a
method that now considers estimated-total-cost rather than cost-so-far but is

‘ tl’lei’ diSCllSSiOl ij
. }. - on Dl kStl‘a that the f ) -ati i
1 ) : J oul COIllpOl’leIlt Opel ations llequlled on tlle

_entry to the list (the += operator);
1 entry from the list (the -= operator);
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1estElement method);

particular node (the conta Tree representation i
Array representation

3. Finding the smallest element (the sma

the list corresponding to 2 ins and find method

4. Finding an entry in
both do this).

Left children connections

GHEEANGCD

Right children connections

Of these operations, numbers 3 and 4 are typically the most fruit
optimizing these often requires changes to numbers 1 and 2 in turn).
optimization for number 4, which uses a non-list structure, later in this section.

A naive implementation of number 3, finding the smallest element 11 the list, 1

at every node in the open list, every time through the algorithm,

estimate. ;
There are lots of ways to speed this up, and all of them involve changing the way the list
structured so that the best node can be found quickly. This kind of specialized list data structu
is usually called a priority quete. Tt minimizes the time it takes to find the best node.

In this book we won't cover each possible priority queue implementation in depth. Priot
queues are a cCOMMON data structure detailed in any good algorithms text.

-
Layers fill
left to right

Figure 4.15  Priority heap

add{be tree is balanced, so that no branch is more than one level deeper than any other. In
tr 1}19n, it fills up .each Jevel from the left to the right. This is shown in Figure 4.15 '
- ftls stéu?tlﬁl'e E 1(1jseful because it allows the tree to be mapped to a simple arra;I in memory
eft and right children of a node are found in iti b
' the array at position 2i and 2 i
where i is the position of the i ; e
‘ parent node in the array. See Figure 4.15 for ’
: . ' . . T an exi :
tree \(;;nﬁlec‘.cmns are overlaid onto the array representation. emples whete the
- ;’rcl bthls u{trg—co}r}n%act representation of the heap, the well-known sorting algorithm heap
¢ applied, which takes advantage of the tree stru i “
ture to keep node -der. Findi
mallest element takes constant ti it i e ; e i
ant time (it is always the first element: the h
- : nt: the head of the tree). Removin
, lest element, or adding any new element, takes O(log 1), where is the number of elementi

Priority Queues
The simplest approach is t0 require that the open list be sorted. This means that we can g

best node immediately because it is the first one in the list.
But making sure the list is sorted takes time. We could sort it each time we need it, bu

would take a very long time. A more efficient way is to make sure that when we add thing
open list, they are in the right place. Previously, we have appended new nodes to the list
vegard for order, a very fast process. Inserting the new node in its correct sorted positio

list takes longer.
This is 2 common trade-off when designing dat

it may be costly to get it back, and if you optimize re
If the open list is already sorted, then adding a new item involves finding the correcti

point in the list for the new item. In our implementation so far, we have used a linked list
the insertion point in a linked list we need to go through each item in the list until we fi
with a higher total path estimate than ours. This is faster than searching for the best node
isn’t too efficient. k

If we use an array rather than
point. This is faster, and for a very

speed up.
Adding to a sorted list is faster than removing from an
as often as we removed them, then it would be better to haveas

many more nodes than it retrieves to the open list. It rarely removes no

at all.

A structures: if you make it fast to add

trieval, then adding may take time. The priority heap is a well-known data structure commonly used for scheduling bl
problems

is the heart of an operating system’s process manager.

ed priori
orizirrl](;lgydg;eieesd atroe more lc)(l)rnplex data structures that have partially sorted data. The
L g give a f?nd of per'fon.nance across different operations, so adding

1 ¢ too long and removing them is still fast.

Thg’lngclll(i tl;li;l;ets alre sm;all lists that contain unsorted items within a specified range
o fms? V?S are sorted, but the contents of the buckets aren’t.
e lfi (1)0t1 ﬁty ?ueue, you seard}1 tbrough the buckets to find the one your

- e e s art of th? bucket s.hst.. This is illustrated in Figure 4.16.
o (;gf in 'f\bsllmple list,as a priority queue themselves, or as a fixed array.

o gr henpt;)lssi) e values must be fairly small (total path costs often lie in a
- fr;)m e leo ulikets can be arranged with fixed intervals: the first bucket
o , the second from 10 to 20, and so on. In this case the data

o search for the correct bucket. It can go directly there, speeding up node

nary search to find th

a linked list, we can use 2 bi
ften huge) it provide

large list (and the open listis o

unsorted list. 1f we added no
orted list. Unfortunat
des from th

Priority Heaps
“based data structure which represents a tree of elements.
her values.

Priority heaps are an array
children, both of which must have hig

the tree can have up to two
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Sorted list or array

1 class Heuristic:

of buckets # G '
2 enerates an estimated cost to reach the goal
3 # from the given node
4 def estimate(node)

A Heuristic for Any Goal

Because it is i i X i
e ‘:;fl (;t tili 11;1c0n§fe1.11e'nt to produce a different heuristic function for each possible goal in
implemen,t t.e eur1sEc is often parameterized by the goal node. In that way a general hez:guristic
ation can be written that estimates the dist
emer . ance between an i :
The interface might look something like: Y two nodes i the graph

Unsorted list of entries
in each bucket

Figure 4.16 Bucketed priority queues
class Heuristic:

To find the node with the lowest score, you go to the first non-empty bucket and seardl
# Stores the goal node that this heuristic is
# estimating for

goalNode

contents for the best node.
By changing the number of buckets, you can get just the right blend of adding and rel
and is rarely needed. For veryl

time. Tweaking the parameters is time consuming, however,
graphs, such as those representing levels in massively multi-player online games, the speed u

be worth the programming effort. In most cases it is not.

There are still more complex implementations, such as “multi-1
sorted lists of buckets containing lists of buckets containing unsorted ite
a pathfinding system that used a multi-level bucket list, but it was more an act of hubti

programming necessity, and we wouldn’t do it again!

# Constructor, takes a goal node for estimating.
def Heuristic(goal): goalNode = goal

evel buckets,” which
ms (and so on). We

# Generates an estimated cost to reach the
# stored goal from the given node
def estimate(node)

Implementations |
1 can then be used to call the pathfinder in code such as

ere is little to choose from between
ve built production implementation.
(with millions of nodes in the graph), bucketed priority qu
o the processor’s memory cache and are therefore much fa
nd or tens of thousands of nodes, the simplicity of a ptio _

. 1c Speed

In our experience th
many applications. We’
large pathfinding problems
be written that are kinder t
indoor levels with a few thousa
is often sufficient.

In the source code on the website the A¥ 1
mentation for its pathfinding lists, for simplicity’s sake.

pathﬁndAStar(graph, start, end, new Heuristic(end))

mplementation uses a simple priority qus istic is called
- algii i:hl st the lowest point in the loop. Because it is making an estimate, it might
L ic process. If the process is complex, the time spent evaluating heuristi
. 'y dominate the pathfinding algorithm ° .
ome situations may all ilda
’ y allow you to build a lookup tabl isti i
- tions may p table of heuristic values, in
Sée§£§0;11t}>lmat1ons is huge so this isn’t practical. et
~ al that 3 :
. y\(;;’iun a prpﬁlei on the pathfinding system and look for ways to
= .al Vi seen situations where developers tried to squeeze extra speed
-~ g algorithm when over 80% of the execution time was spent evaluating

LIBRARY

Heuristic Function

n be implemented as
ode as an object

The heuristic is often talked about as a function, and it ca
Throughout this book; we've preferred to show it in pseudo-c
object we used in the algorithm has a simple interface:
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43.7 NODE ARRAY A*

lMPLEMENTATION NOTES

Node array A* i : i

- Casez ~ rllst;)lleng :relienr]; i): eIl co}rlm}lon 1mplem§ntation of the A* algorithm that is faster in
e o | t nt de implementation we looked at so far, data are held for each
node in the open or o ists, ?n these data are held as a NodeRecord instance. Records ar
reates rst considered and then moved between th s, a5
e, n the open and closed lists, as

n work with an

o far is the most general. It ca

algorithm we’ve looked at §
nodes, and with graphs that have a huge rang

The design of the A*
h any kind of data type for

kind of cost value, wit

A* for most gam
mall number (u
these nodes ca

better implementations of
that there is only @ relatively s
of nodes in the graph, and that

y comes at a price. There are
In particular, if we can assume
o fit in around 2Mb of memory)

This generalit
pathfinding tasks.

Thel €15a Ke y 11&1 P
1 Step m the algO m Wllele tlle 115 tsare SeaIChed fol a Il()de leCOId corres Olldlll
g

to a particular node.

to a 100,000, say, t

n significantly.

i speed up our implementati
e this name u

uld be aware that we've mad
it is described in detail below.

be numbered using sequential integers,
We call this node array A* (although

Keeping a Node Array

m is still just A*), and
the structure of the cost value
raph, even more efficient imp

strictly, the algorith

Depending on s returned and the assumptio

lementations can be created.

We can make a trade-off by i i
- y increasing memory use to improve executi
> ons . i
1c)reeai‘;fs a; }a;liuay é)f all the r}oc¥e records for every node in the whole graph bi?f)(rle rf}? dol thl"s, N
Wagst .f s node array will include records for nodes that will never be consid de B
¢ of memory), as well as for those that would have been created anyway. idered (hence the

made about the g
are outside the sco
ing variations), but the most 1

sily fill the whole book with just pathfin

n in a brief introduction at

pe of this book (we could e
mportant are give

owever, In some cases you may
ged into memory in sections
e complex implementations.
re more efficient implementations wer

plementation is still useful, h
el is being pa
ilable for mor

The general A* im
number of nodes (if your game’s lev
nough memory ava
ntation on several occasions whe

or there just isn’t €
general A* impleme

43.6 ALGORITHM PERFORMANCE

e performance of A* is the performance 0

nd the heuristic.
ly at the algorithm (this isequ

biggest factor in determining th
the pathfinding list, the graph, a

e can look simp
take constant time).

s is given by

Once again, the
data structures:

Once again, ignoring these, w!
that all data structure operations

The number of iterations that A*
cost is less than that of the goa
¢ analysis of Dijkstra. In general,

the number of nodes who

1. We'll call this number 1,
| should be less than n. T

estimated-path-
the performanc

Ifnodes : i ial i
o waer:arrllu;an; ed u51tr}11g seq;llentlal integers, we don’t need to search for a node in the two
. y use the node number to look up its r i
‘ : . p its record in the is 1 i
‘f using node integers that we mentioned at the start of the chapter) worey (his s helogie

hecking if a Node Is in Open or Closed

¢ need to find the node data i
c ata in order to check if we've f
O 2 g, :
cé) to add the node to one of the two lists. und a better route to & node orife
ut origin i i
o ther% ;iizlgorlthm checked through each list, open and closed, to see if the node w:
= ifw.e Couls la V(lery slow process, especially if there are many nodes in each list. It wo Tds
e h(}() k ata noc}e 'and immediately discover what list, if any, it was in' '
o Cct ist g node is in, we add a new value to the node record. This Valile tells
L ?a(z%otr;les t}.le node is in: unvisited, open, or closed. This makes the search st:;
, there is no search, and we ca i i
- , n go straight to th 'mati
new NodeRecord structure looks like the following: ; ¢ nformation we need)

gorithm is O

1 speed of the al
before. Similarly fo!

tions from each node, as
list, which is the peak me

has the same complexity as Dijkstra,

the average number of outgoing connec
with O(Im) entries in its open

usage, A* ends

ns of the pathfinding list a
alled very low in the loops i
nd can dom
s implementation to
ay be time-consuming,
y and so will not have
mple of when the alg

In addition to Dijkstra’s performance concet
function. The heuristic functionis ¢
the heuristic function requires so
however, for it

the heuristic
times. Often,
load of the algorithm. It is rare,
finding problem. Although it m
jon time and memor

the algorithm. This is an

size of the path
commonly hav
of the perfor

e O(1) execut

Th}s strl.xctur‘e is used to keep track of the
’ ormation we need for each node
ct NodeRecord:

. )
egory member is OPEN, CLOSED, or UNVISITED

you very much about the real performance of the code.

necessarily tell
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The Closed List Is Irrelevant A Variation for Large Graphs

d they are located in an array, we no longer nee
st is used is to checkif a node is containe
we have the node records immediatel
ook at the category value and see if

Creating i i
Creati fuwll thT nodes ;ncadﬁance is a waste of space if you aren’t going to consider most of th
graphs on a PC, the memory waste is oft i e
oLt ona P en worth it for th large gr
or f(In consoles with limited memory, it can be problematic “speedup-Forlarge graphs,
n C, or - i i |
. pomtel;tothecl1 languaéges with pointers, we can blend the two approaches to create an
's to node records, rather than an arra records tl i e to
A, , y of records themselves, setting all the pointers to
In the A* i :
i pomterailgotﬁthr?, we create the nodes when they are needed, as before, and set the appro
et Cheddnge.afu}t ay. When weI:\I come to find what list a node is in, we can see if it hasp]feen
if its pointer is NULL (if it is, then it hasn’
e if it U , sn’t been created and i
musrlt‘}l:.e unVlmtei), if it is there, and if it is in either the closed or open list by deduction,
is approach requires less memor i .
y than allocating all the i i
take up too much memory for very large graphs. ’ podes i advance, but may sl

>ve created all the nodes in advance, an
d list at all. The only time the closed li
to retrieve the node record. Because
the record. With the record, we can 1

Because we
to keep a close
within it and, if so,
available, we can find
has been closed.

The Open List Implementation

o be able to retrieve

the same way because we still need t
eed to retrieve a i

n use the array for times when we n
Il need a separate data structure to hold the prio

We can’t get rid of the open list in
element with the lowest score. We ca
d, from either open or closed lists, but we

recor
queue of nodes.

Because we no longer need to hold a complete node record in the priority queue, it cal
simplified. Often, the priority queue simply needs to contain the node numbers, whose rec
y looked up from the node array.
priority queue can be intertwined wi

3.8 CHOOSING A HEURISTIC

can be immediatel
Alternatively, the
the node records part of a linked list:

The more : isti
e a;cfulit}c; the' hleuustlc, the less fill A* will experience, and the faster it will run. If yo
- nodesl)) Afcw ﬂleuusttlc‘(l(_)lne thﬁlt always returns the exact minimum path distance b'etw}::eg
> go straight to the correct answer: i . ‘
|l sy er: the algorithm becomes O(p), where p is the
Unfort : i
é Shortestsnately, ];o work out the exact distance between two nodes, you typically have to find
» X i ’ O
o tl.1 Oilrlltet ec;wc.:en them. This would mean solving the pathfinding problemmwhichnis
L ;’er i C(t)h o 1{1 the ﬁrit place! In 9nly a few cases will a practical heuristic be accurate
euristics, A* behaves slightly differently depending on whether the heuristic'

th the node array records by ma

# This structure is used to keep track of the

# information we need for each node
struct NodeRecord:

node
connection '
00 low or i
costSoFar o hlgh‘
estimatedTotalCost
c - - . .
ategory erestimating Heuristics

nextRecordInList

euristic i i i
- mca;s: dti(())ti(ij«cr,o Z(t) tl.lﬁtb 1tb1%nderestunates the actual path length, A* takes longer to
f nodes in this linked list jumps aro than teality). So A* wil‘lVl X fe' e to'ward e contsorfar (because the heristic value i
s i his ke st Ju e .ple er to examine nodes closer to the start node, rather than those
modeon heopen it | i L 1f1c1ease.the time it takes to find the route through to the goal.
ot o T . - o If[nes.ﬁmates in all possible cases, then the result that A* produces will be
senersl approach b . | - pmble,m wi dl?e the exact .same.path that the Dijkstra algorithm would generate
jumping around memory ' euristic ever 0‘3’6. o ussed earlict with sub-optimal paths. |
iéati@ns o :;fSt}maFeS) how?vel', this guarantee is lost.
G underestilrlrll 2;}; is r\r/l\;);e Important tha}n performance, it is important to ensure
A gls ften you rcfad articles about path planning in commercial
e ?[IO unod e.n very }mpo1'ta'r1t, and so underestimating heuristics
‘ erestimating heuristics often influences developer
game developers.

ay has a link ¢

ange order, each element of the arr
und the art

Although the array will not ch
record in a linked list. The sequence O
be used as a priority queue to retrieve the

Although we’ve seen implementations tha
bucketed priority queues, our experience is that
{most nodes aren’t in the list, after all), unnecessary
priority queue can look very ugly), and cache problems (
avoided when possible).

The node array pathfinding implementation on
ommend you do the same,

the website uses the sepal
unless you have a good

queue approach. We'd rec

LIBRARY otherwise.
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ssing overestimating heuristics outright. A game isn’t about optimum

In practice, try to resist dismi
accuracy; it’s about believability.

Overestimating Heuristics

ength, A* may not return ¢

If the heuristic is too high, so that it overestimates the actual path 1
f the connections betwe

best path. A* will tend to generate a path with fewer nodes in it, even i

nodes are more costly.
The estimated-total-cost v
proportionally less attention to

alue will be biased toward the heuristic. The A* algorithm will p
the cost-so-far and will tend to favor nodes that have less dista

of the search toward the goal faster, but with the prospect

to go. This will move the focus

missing the best routes to get there.

This means that the total length of the path may be greater than that of the best
Fortunately, it doesn’t mean you'll suddenly get very poor paths.
heuristic overestimates by at most X (i.e., x is the greatest overestimate for any node in the gr

then the final path will be no more than x too long.
An overestimating heuristic is sometimes called an “inadmissible heuristic.” This doesn’ts

you can’t use it; it refers to the fact that the A* algorithm no longer returns the shortest path

Overestimates can make A* faster if they are almost perfect, because
more quickly. If they are only slightly overestimating, they will tend to produce paths t

It can be shown that i

Heuristic value
~— Connection cost

often identical to the best path, so the quality of results is not a major issue. ,
But the margin for error is small. As a heuristic overestimates more, it rapidly mak
perform worse. Unless your heuristic is consistently close to perfect, it can be more effi
underestimate, and you get the added advantage of getting the correct answer.

Let’s look at some common heuristics used in games.

gure 4.17 Fuclidean distance heuristic

Fuclidean Distance

r pathfinding problem refer to distances in the gamne

Imagine that the cost values in ou
ive points of tw

connection cost is generated by the distance between the representat \
This is a common case, especially in first-person shooter (FPS) games where each rout
the level is equally possible for each character. k
In this case (and in others that are variations on the pure distan
heuristic is Euclidean distance. It is guaranteed to be underestimating.
Fuclidean distance is “as the crow flies” distance. It is measured directly betweenl

in space, through walls and obstructions.

Figure 4.17 shows Fuclidean distances measured in an indoor level. The cost ofa
between two nodes is given by the distance between the representative points of each
estimate is given by the distance to
direct connection.

Fuclidean distance is always eit
obstructions can only add extra dist:
accurate. Otherwise, it is an underestimate.

¥ Heuristic

ce approach),

ers for each room).

her accurate or an underestimate. Traveling ato

In outdo i i i
. ‘(I)irdie‘;tnégs, with fc'aw cons'tramts on movement, Buclidean distance can be v
- dramaﬁcelils (Il)athignd1ng. In indoor environments, such as that shown in Figureer }:1 a167611:t
nderestimate, causing less than optimal i o
L ite, C: ptimal pathfinding.
S Wl(')cx}/lvs; }tl};eE ilillcllxif:liuah(z;.aci fora }Il)athﬁnding task through both tile-based indoor and
. an distance heuristic, the fill f i i
S , or the indoor level i
€ 15 poor. The outdoor level has minimal fill, and performance is g:):oils dramatic and

t heuristic i
- le\gecir:;fal:)ifsg}rlglﬁm'g nodes together in clusters. The nodes in a cluster represent
L Eg y ];nterconnected. Clustering can be done automatically usin
e tha are ey(?nd the scope of this book, Often, clustering is m {5
of the level design (portal-based game engines lend themsilves V::ﬁl:o’

the representative point of the goal node; even i bl is the
w ‘ 1 offline prgcgsr:_l)afed that gives the smallest path length between each pair of clus
: ers and accumlglgt'Step th.at requires running a lot of pathfinding trials between all
ance. If there are no such obstructions, then t , . mulating their results, A sufficientl .
n be done in a reasonable i y small set of clusters is selected
. ( e time frame and stored in a reasonable amount of




234 Chapter 4 Pathfinding

43 A* 235

-

Outdoor level

Indoor level

®OXXK XXX 000000 - - KKOO .« oo
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X XXX XXXXXXXXX ..... OOX XOO. . - -

X KRHKAXXX X ... .00 OXOO -« +

X . XXX XX RKHKXKXK XXX L e e e e oOOXOO .+ « - A B c
X O KKK KX XXX XX x ety oOOXOO - -+ -+ -

XX RKXXXX X OOXOO x 113 ] 29
X X . OX S OOXOO

PR S 2:9.3.9.9.8 . OOXX wx e OOXOO - - B|{13] x 7
X KHEXHKXXXK - ot R OOXOO -

X PEP 39348 T OOXOO Clool 7 N
X PP 2.9.9.2 GOX T OXXO

X XXXXHXX XX e OO ook
XXXXXXXXX K XXX oxX ookup table

% Closed node
© Open node
. Unvisited node

Ruclidean distance £l characteristics

Figure 4.18

ed in the game, if the start and goal nodes are in the same clust © st
 ea o 0 dlusters sets of locati

vide a result. Otherwise, the est ; of locations together. S

; tween cluster . Some of the calculations we’ . .

ters can be adapted to calculate the heuristics between ‘:16 Ht meet there for distance

usters.

her fallback) is used to pro
hown in Figure 4.19 for a graph where each connection i
without such optimizati
~ optimizations, the cluster heuristic is worth trying for labyrinthi
yrinthine indoor

‘When the heuristic is call
Fuclidean distance (or some ot
looked up in the table. This is s
same cost in both directions.

The cluster heuristic often dram
over Fuclidean distance, because it takes into account the convolu

nearby locations (the distance through a wall may be tiny, but the ro
corridors and intermediate areas).

performance in indo
ted routes that fink se
ute to get between th

atically improves pathfinding

. i e given the same heu
., hgzv :;I:illnylerfgutsheealEe?toiiitlc}ltﬁ123;?;;;2; n\fisualized mn te 4ﬁ20 shows the fill patterns of a tile-based indoor level usi .o
« almost completely flled before the algorithm moves on I utjlt de;(am(?le uses a cluster heuristic tailored specif‘llceallll;ltngt}? Iﬁﬂ; different heuristics.
‘ an distance, and the fix o this level. The second
. ) 1al example h : ot ond example
. matic underesti ' ple has a zero heuristic which always retur
and the accuracy of the heut! Jittle 11 whor timate possible). The fill increases in each . ays returns 0 (the
(and the pre-proceSSiﬁgt - éw ereas the zero heuristic fills most of the level example; the cluster heuristic
‘ 00 evel.
- fristicei};ann:ple of the knowledge vs. search trade-off we looked at in Ch
ore . atin :
T CC}(I)Ilnple)I( and more tailored to the specifics of the game 1:\1: tlelt}?:
| ‘ L this i flss. ..t PI‘OV}deS a good deal of knowledge about the pr eb)l e
rovide better estim o euristic with ultimate knowledge: completel b e@. The
Jculations fot & ther h doid produce optimum A* performance V\;'th o sea Y;CCUl'ate eeimates
¢ and, the Euclid, : ith no search.
are 0O accept We > idean distance Pl'OVides i
! ‘ tween two boi proy a little knowledge. It kn
the context 0 Gl u'P~ nts depends on their distance apart. This lit';gl o ows that the cost
‘ , L qh 1res more searching than the perfect heuristi e bit of knowledge goes
¢ hs ' ristic.
: as no knowledge, and it requires lots of search

may involve lots of
It has one cavea
the A* algorithm cann
a cluster will tend to b
cluster.
1f cluster sizes are small,
excellent. On the other hand,
huge).
If cluster sizes are too large,
heuristic would be a better choice.
We've seen various modifications to
a cluster, including some that include seve
There are opportunities for performance ga
for reliable improvement. 1t seems to be a cas

particular level design.

then this is not a problem,
the lookup table will be large

then there will be marginal performance gain, d

the cluster heuristic to P
ral Euclidean distance ca
in here, but as yet there
¢ of experimenting in
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Cluster heuristic Euclidean distance heuristic Null heuristic ; . .
KRR KKK KKK Euclidean distance heuristic

B A A XX XXX QO0000. - - X XXX XXX o
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- Unvisited node

Figure 4.20  Fill patterns indoors , .
8 P igure 4.21  Fill patterns outdoors

In our indoor example, where there are large obstructions, the Euclidean distance is |
best indicator of the actual distance. In outdoor maps, it is far more accurate. Figure 421
the zero and Euclidean heuristics applied to an outdoor map, where there are fewer obstrui
Now the Euclidean heuristic is more accurate, and the fill is correspondingly lower.

In this case Euclidean distance is a very good heuristic, and we have no need to ity to
a better one. In fact, cluster heuristics don’t tend to improve performance (and can dra _
reduce it) in open outdoor levels. Stra Is A*

Iﬂost devel()pels alium l()l 1euristics that arec ose, bul err on the Slde ()1 ulldelestl]llatl]lg. l he
’ . . .

3, most Common, heurlstlc 18 Euclldean dlstance, and 1w 1]_1 COntlnue to be SO f()r Som
nlpleSt and (0] (¥

orth notici ij ithm i
noticing that the Dijkstra algorithm is a subset of the A* algorithm. In A* we calculate

Inated tOtal-COSt 0( a y i -50-
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Quality of Heuristics

Producing a heuristic is far more of an art than a science. Its significance is
mated by Al developers. In our experience, many developers drop in a simple
heuristic without thought and hope for the best.

The only surefire way to get a decent heuristic is to visualize the fill of your algo
can be in-game or using output statistics that you can later examine. We've found.to 9
tweaks to the heuristic we thought would be beneficial have often produced inferiof

There has been some research done into automatically generating heuristics bas
ining the structure of the graph and its connections. This may lead in time to autom
algorithms that can produce better than Euclidean performance and may suppot
non-distance-based costs. It is an interesting line of attack, but the results hav
compelling. ‘

t will always b 1
h ' : ys be equal to the
chooses the node with the smallest estimated-total-cost, it is choosing

with the smallest -$0- is i *
o cost-so-far. This is identi ij i i
: i i . cal to Dijkstra. A* with a zero heuristic is

RLD REPRESENTATIONS

sumed that pathfindin

o tak
o A o g takes place on a graph made up of nodes and connections

athfindi i
o r ing algorithm knows about, but games aren’t made
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4.4 World Representations

to do some translation—from
¢ characters to the nodes and

To squeeze your game level into the pathfinder you need
the geometry of the map and the movement capabilities of you
connections of the graph and the cost function that values them.

For each pathfinding world representation, we will divide the gam
that correspond to nodes and connections. The different ways this can
division schemes. Each division scheme has three important properties W
quantization/localization, generation, and validity.

You might also be interested in Chapter 11, Tools
the pathfinding data are created by the level designer 0

game, the choice of world representation will have as much

implementation issues.

e level into linked regior
be achieved are calle
&1l consider in tut

.and Content Creation, which looks at ho

r by an automatic process. In a comple
to do with your toolchain as techni

Figur g izati
gure 4.22  Two poor quantizations show that a path may not be viable

A division scheme i id i i
s valid if all points in t i
| Gision valic wo connected regions can be reached fr
o p . ce, most division schemes don’t enforce validity. There be di o
Y, as Figure 4.22 demonstrates . con be iffrent evel of
In the first part of th i
e figure, the issue isn’t too bad. An “avoi
| eftparto : 00 bad. An “avoid walls” algorithm (see C
- diVin « 5SC‘{;’:£ tlzfl problem. In the second figure with the same algorithm( itis Ea?l)lt?r 31)
s wsion pmbl;n ab gafve the second graph would not be sensible. Using tk’le first sdlllr;aq.
s. Unfortunately, the dividing line is di . sily
- ‘ rer pr g g line is diffi redi i
?tl;ed invalidity is only a small change away from being pathologiccuallt o precict and an casly
s important to understand the validi i .
alidity propert 3
L stan y properties of graphs created by each divisi
o understand y ivision scheme;
d j pact on the types of character movement algorithm that can bé

So, let’s jor divisi
50, let's look at the major division schemes used in games

Quantization and Localization

pler than the actual game level, some mechant
nodes in the graph. When a character deci
o be able to convert its oWn position an
s is called quantization.
ated by the pathfinder, it needs to co

game world locations so that it can move correctly. This is

Because the pathfinding graph will be simy
needed to convert locations in the game into
wants to reach a switch, for example, it needs t
position of the switch into graph nodes. This proces

Similarly, if a character {s moving along a path gener
nodes in the plan back into
localization.

Generation
There ave many ways of dividing up a continuous space into regions and connections fe TILE GRAPHS
finding. There are a handful of standard methods used regularly. Fach works eithet

ased levels, i . . ,

: in the form of two-dimensional (2D) isometric graphics, have almost disap

(the division being done by hand) or algorithmically.
tomatically. On fio )
m . o
mainstream games. The tile is far from dead, however. Although strictl 4
i . '1ctly not made

Ideally, of course, we'd like to use techniques that can be run au

hand, manual techniques often give the best results, as they can be tuned for each partic s . large numb
¢ mber R .

nber of games use grids in which they place their three-dimensional (3D)

level. o
The most common divis g;geclg“;g the gll‘aphics is still a regular grid.
. . C 1 be simply turned int ile-
most common algorithmic met _ Y into a tile-based graph. M -eal-ti .
g ?lle based graphs extensively, and many Out%iocf)l' gamaensyul:ealg um}? Sltal ate§Y N fames
raphs based on height and

these, navigation meshes and pot .
generate graphs with some user supervision.

hniques is the Dirichlet do
visibility, and navigation
ented so that they aut

ion scheme used for manual tec
hods are tile graphs, points of
nts of visibility are often augm:

b‘asedlevels Sp i W g l uk l y (| are ]egl()lls alth()ugthXagOIla
: X ular, usua squars 3 i
OCCaSlolldHy Se€en 1n tul'n"based war Sinlulatiol] gal]les) ) ( l

Scheme

Validity
de B, then !
character ‘ pathfi
‘ nder’s gr repr iles i
o . e Si apfh 1ejp1esent tiles in the game world. Each tile in the game world
. b0 m:lelghbors (the eight surrounding tiles in a rectangular 1'idol1C :
etween nodes connect to their immediate neighbors e

on from node A to no
ans that wherever the
antization regions

If a plan tells a character to move along a connecti
should be able to carry out that movement. This me
it should be able to get to any point in node B. If the qu
allow this, then the pathfinder may have created a useless plan.
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Quantization and Localization

and this is often a fast process. In

1 the world is within,
ordinates to determine the

mine which tile any point i
use a character’s x and z €0

We can deter
the case of a square grid, we can simply
square it is contained in. For example,

floor{x / tileSize)
floor(z / tileSize)

-

d integer less than or equal to

where floor() is 2 function that returns the highest value
ular grid of tiles.

Valid partial blockage

Invalid partial blockage

entify the tile within the reg
an use a representative point in the tile (often

argument, and tileXand tileZ id
Similarly, for localization we ¢

tile) to convert a node back into a
Figure 4.23

game location.

Generation
y are SO regular (always ha
can be generated at run
for each 1

matically. In fact, because the

Tile-based graphs are generated auto
eing simple to quantize), they

the same possible connections and b
An implementation of a tile-based graph does’t need to store the connections

advance. It can generate them as they are requested by the pathfinder.
les to be blocked. In this case the graph will not return connecti

Most games allow ti
blocked tiles, and the pathfinder will not try to move through them.
For tile-based grids representing outdoor height fields (a rectan:
the costs often depend on gradient. The height field data are used to calculate 2 connect
based both on distance and on gradient. Each sample in the height field represents the cente
of a tile in the graph, and costs can be calculated based on distance and the change in ele
between the two points. In this way it will cost less to go downhill than uphill.

ee Section

Qfaﬁn

Validity

etely blocked ot

e graph will beg ling

ts, a tile will be either compl
¢ connected are empty; then th

mes that use tile-based layou

In many ga
s case, if the only tiles that ar

empty. In thi
to be valid.

When a graph node is only partially blocked, then the graph may not be valid, de
the blockage. Figure 4.23 shows two cases: one it which a partial blocka:
hich it does.

the shape of
make the graph invalid, and another in w.

0

Usefulness
resentations th

hundreds ©
paths.

to convert to a graph rep
RTS level can have many
k hard to plan sensible

While tile-based levels are one of the easiest
a vast number of tiles in the game. A small

tiles. This means that the pathfinder has to wor

Tile-based graph with partially blocked validity

When the plans returned b
the pathfinder are d

 Denthep y the p r are drawn on the graph (usi izati
o int e p'lal‘l), they can appear blocky and irregular, Charg tp f( Slow e o il
= 'eltnge. This is illustrated in Figure 4.24 . rcters following the plan wil

ile this i i ivision s

is is a problem with all division schemes, it is most noticeable for tile-based h
-based graphs

4.4. i
7 on path smoothing for an approach to solving this problem)

DIRICHLET DOMAINS

111Clllet dOI“aH aIS e(] to as a Voronoi I)()Iy on 11 \%Y € O 1S eg]()l arou [1I
(¢}
> refelr g two dlm 11810118, ar
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ce point than any other.

ision Scheme

IlOdeS have an a. i i i
SSOClated pOlnt m Space Caued the Cha actet iS iC Poin and the q n
1 1 t t, uan-

akes place b i ions i
s fo}; irlnle(l}zpi‘ng a]l locations in the point’s Dirichlet domain to the node. T
e a Oli(;ri in the game, we find the characteristic point that is closes;3 -
points is usually specified by a level designer as part of the level (.1at
a.

think of Dirich i i

L asleitndgimjins:; being cones originating from the source point. If you
- Soqrce ot Thigs ise ft 5, the area .of ee.lch cone that you see is the area that

o eXtende(iot en a us'eful visualization for troubleshooting.
e (zh use dlff.erer.lt falloff functions for each node, so some
e e qu;ntu'atlon step. This is sometimes called a weighted
L e c12}te weight value that controls the size of its region
o e anging the slope on the cone; squatter cones end u w't};
ken. Once you change the slope, you can get strange Effeclts
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Side view Top view

Figure 4.26  Problem domains with variable falloff

Figure 4.26 shows the Dirichlet domains in a passageway. You can see that the end of the
_ passageway belongs to the wrong source point: the fat cone has peaked back out. This can make
it difficult to debug pathfinding problems.

If you are manually assigning weighted Dirichlet domains, it’s a good idea to have them
displayed to check for overlapping problems.

Connections are placed between bordering domains. The pattern of connections can be found
using a mathematical structure that has deep connections to Voronoi diagrams, called a Delaunay
iangulation. The edges of the Delaunay triangulation are the connections in the graph, and the
ertices are the characteristic points of the domains, Creating a Delaunay triangulation of a set of
oints is beyond the scope of this book. There are many websites dedicated to the algorithms for
onstructing Delaunay triangulations.

Most developers don’t bother with a mathematically correct algorithm, however. They either
ake the artist specify connections as part of their level design, or they ray cast between points to
k for connections (see the points of visibility method below). Even if you use the Delaunay
igulation method, you will need to check that domains that touch can actually be moved
€en, as there might be a wall in the way, for example.

Key

Output blocky plan
A oup

Ideal direct plan

Figure 4.24 Tile-based plan is blocky

antization and Localization

15 dre quantized by finding the characteristic point that is closest.

ching through all points to find the closest is a time-consuming process (an O(#) process,
is the number of domains). Typically, we will use some kind of spatial partitioning
1 (quad-tree, octree, binary space partition, or multi-resolution map) to allow us to
nly those points that are nearby.

calization of a node is given by the position of the characteristic point that forms the
s the/ﬁp of the cone in the example above).

Side view

Top view

Figure 4.25 Dirichlet domains as cones ains can form intricate shapes. There is no way to guarantee that traveling from a

main to a point in a connected domain will not pass through a third domain. This
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the pathﬁnder. In this case
t domains produce invali

and might have been discounted by

third domain might be impassable
blem. Strictly, therefore, Dirichle

following the path will lead to a pro
graphs.

In practice, however, the pla
Obstacles are not normally given

exposed.
some kind of backup mechanism (

To make sure, you can provide
behavior) to solve the issue and avoid your characters happily running

the structure of obstacles

cement of nodes is often based on
dity of the graph is rarel

their own domains, and so the invali

like an avoid walls steerin
headfirst into walls.

e

Usefulness

d. They have the advantage of being very easy to proge
sible to rapidly cha

having to chang

Dirichlet domains are very widely use
s aside) and easy to change. It is pos

(automatic generation of connection:
the structure of the pathfinding graph in a level editing program without

level geometry.

443 POINTS OF VISIBILITY

It can be shown that the optimal path through any 2D environment
he direction changes) at convex ver

points (i.e., points on the path where t
If the character that is moving has some radius, these inflection points

circle at a distance away from the vertex. This is illustrated in Figure 4.27.
hing applies, but inflection points are located at eithe

In three dimensions, the same t

polygon edges or vertices.
In either case, we can approxima

tices in the environ

are replaced by
Key

-~ Optimal path for zero-width character

te these inflection points by choosing a characterist / Path for character with width
that is shifted out from the vertices a short distance. This will not give us the curves, 1
give us believable paths. These new characteristic points can be calculated from the geor

extending out the geometry a little way and calculating where the edges of the new geo

/ Path using vertex offsets

"$- Original characteristic points at vertices

- Offset characteristic points

Division Scheme
4 ith i i
27 Path with inflections at vertices

ccur in the shortest path, we can use themas 1

Since these inflection points naturally o
pathfinding graph.

Working on the actual Jevel geometry will provide us with far too
A simplified version is needed so that we can find inflection points where
changes. It may be possible to take these points from collision geometry,

generated specially. ,
These inflection points can then be used as the node locations to build a graph: o . L )
To work out how these points are connected, rays are cast between them, and 1, Localization, and Validity
is made if the ray doesn’t collide with any other geometry. This is alllmdost ‘equ_i‘f ' bility are usually tal
her. For this reason it is calle a ‘poinl ' ally taken to represent the centers of Dirichlet domains
~ for the purpose

that one point can be seen from the ot

I many cases th i A\ Vi
¥ e resultant graph is huge. A complex cavern, for example, may have
b

'H lﬂe‘ dl e(l f] t
many > S Of in ecti i i 1S 18
10n POlntS, eaCh Of Wthh may be able to see most Of the Others Th' i
.

the Jarge-5¢:
or they mu
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Thenavigation mesh approach to pathfinding takes advantage of the fact that the level designer
already needs to specify the way the level is connected, the regions it has, and whether there is any
Al in the game or not. The level itself is made up of polygons connected to other polygons. We
can use this graphical structure as the basis of a pathfinding representation.

Division Scheme

Many games use floor polygons, as defined by artists, as regions. Each polygon acts as a node in
the graph, as shown in Figure 4.29.

The graph is based on the mesh geometry of the level and therefore is often called a navigation
mesh, or just “navmesh.”

Nodes are connected if their corresponding polygons share an edge. Floor polygons are typi-
cally triangles, but may be quads. Nodes therefore have either three or four connections.

Creating a navigation mesh usually involves the artist labeling particular polygons as floor
in their modeling package. They may need to do this anyway to specify sound effects or grip

characteristics. Navigation meshes require less artist intervention than other approaches, with the
exception of tile-based graphs.

Key
/ Connection between nodes

Figure 4.28 Points of visibility graph bloat

quantized to two con
s above, thism

t domains are used for quantization, points

In addition, if Dirichle tizatio nts du
nodes may not’be able to reach each other. As we saw in Dir ichlet

the graph is strictly invalid.

Usefulness
ar 1y

e ISE! . . . . 1 O ul
Despite its major shortcomings, a points of visibility approachisa relatively pop
es

automatic graph generation. ‘ .
However, we think the results are not wor th the c?ff01
y hand is needed, which defeats the object.

t, In our experience a 1o't of fi
Wed recommend looking at

clearing up b
hes instead. o .
mesSome Al developers will passionately disagree, however,

and swear by points of

Key

.~" Edge of a floor polygon
.~~~ Connection between nodes

444 NAVIGATION MESHES

divisions
(often

s, and points of visibility are all useful

i : irichlet doman rea
e put the odern games use navigation meshes

in your toolbox, but the majority of m
“navmesh”) for pathfinding.

Polysonal mesh graph
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Quantization and Localization

t contains it. We could se

A position is Jocalized into the floor polygon tha
ht one, or we could usea coherence assumption.

polygons t0 find the rig

Coherence refers to the fact that, if we know which location a characte

frame, it is likely to be in the same node or an ;mmediate neighbor on the next frame. We car

check these nodes first.
This approach is use

navigation maps.
The only wrinkle occurs when a character 1

first polygon below it and quantize it to that. Un
placed in 2 completely inappropriate node as it
character is quantized to the bottom of the room,
above. This may then cause the character to replan

room; not the desired effect.
gon, but normally uses the geometric C

Localization can choose any point in the poly
(the average position of fine for triangles. For quads or polygons

more sides, the polygon o work, Geometric primitives used in gra

engines have this requirement anyway. So if we are using the same primitives used for rend

ucial when dealing wi

ful in lots of division schemes, bgt is particular cr

We can simply find t

s not touching the floor.
e for the character {0

fortunately, it is possibl
falls or jumps. In Figure 4.30, for example,
even though it is actually using the walkw

its route as if it were in the bottom of
Validity

Figure 4.31  Non-interpolation of the navigation mesh
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V ) i . .
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€ occasional oo
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he face o eacl olygon. Figure 4.32

Figure 4.30 Quantization into a gap
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445 NON-TRANSLATIONAL PROBLEMS

There is nothing in the above discussion about regions and connections that requires us to be
dealing with positions only.

In some tile-based games, where agents cannot turn quickly, tiles are created for each location
and orientation, so an agent with a large turning circle can only move to a tile with a slightly
different orientation in one step.

In Figure 4.34 an agent cannot turn without moving and can only turn by 90° at a time.
Nodes Al, A2, A3, and A4 all correspond to the same location. They represent different orienta-
tions, however, and they have different sets of connections. The quantization of an agent’s state
into a graph node needs to take account of both its position and its orientation.

The result from planning on this graph will be a sequence of translations and rotations. A plan
on the graph in Figure 4.34 is shown in Figure 4.35.

Figure 4.32 Portal representation of a navigation mesh

4.6 CosT FUNCTIONS

In the simplest cases, where we are interested in finding the shortest path, the cost of a connection
can represent distance. The higher the cost, the larger the distance between nodes.

If we are interested in finding the quickest path to move along, we could use costs that depend
n time, This isn’t the same thing as distance; it is quicker to run 10 feet than to climb a 10-foot

tions for different directions

Figure 4.33  Different node posi

We can add all sorts of other concerns to the costs on a graph. In an RTS, for example,

sed renderin

in association with portal-ba

X i ink all portals within the
+tals and where connections lin
B, where the geometry of the W

“ne is a graphics technique of :
dering 1~t 1sga ED polygonal interface between the regions. By‘sel()la ‘
P e to o be drawn, reducing the rendet

et to test which chunks need t ‘ -
lelcope of this book, but should be covered in any good mo

This approach is also commonly used

nodes are assign
another, Portal ren
into chunks, linked by
level into chunks, it is eas
Full details are beyond the s
game engine design.

In the navigation mesh, the
their own node. We don’t need to
floor polygon can be seen from every

Some articles we've come across SUgge
dynamically in the best position as the path
the character is moving, the nodes should b.e a

This is a kind of continuous pathﬁnd@g,
pathfinding later in the chapter. In our opinion, e
work with the faster fixed graph. If the r.esultl.ng I;a ook
step (which we’ll cover in Section 4.4.7) is perfectly Zu . .eséntaﬁons N

Both the polygon—as—node and the edge—as—no e repres o e ingsi
meshes. Often, one or the other approach is e%ssumed, s? it 1115(1 K o
source you are using makes it clear which version they are talking

ost functions for different characters in a game. A reconnaissance squad, for example,
be interested in visibility and speed. A heavy artillery weapon would be more inter-

t like a portal and therf;

- . ac ;
edges of every floot polygon ke s por el

do the line-of-sight tests. By de

other edge. . .
st that the nodes on the edges of floor polygm_l ATH SMOOTHING

. i dine on the dif
finder ;cf)fes ;itvfgéeltti?rf.p;ﬁis jsgshown in I 1at travels from node to node through a graph can appear erratic. Sensible node placing
ta il ere,u look at the algorithm for 5¢ o very odd looking paths. Figure 4.36 shows a section of a level with nodes placed
aEOW\ZveI this approach is oV erldll I 1able manner. The path shown constantly switches direction; a character following the
0(;ks too crinkled, then a pat . tlook intelligent.

; orld representations are more prone to rough paths than others. Portal representations
of visibility connections can give rise to very smooth paths, while tile-based graphs
Ighly erratic. The final appearance also depends on how characters act on the path. If
g some kind of path following steering behavior (see Chapter 3), then the path will
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Figure 4.34 A non-translational tile-based world
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Figure 4.35 Planona non-translational tile graph
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v P

/" Original path
<

+" Smoothed path

4

/ Optimal smoothing

 Figure 436 Smoothed path with optimal smoothing indicated

be gently smoothed by the steering. It is worth testing your game before assuming the path will
eed smoothing,

; Ff)r some games, path smoothing is essential to get the Al looking smart. The path smoothing
igorithm is relatively simple to implement but involves queries to the level geometry. Therefore,

an be somewhat time-consuming,

vill assume in this algorithm that there is a clear route between any two adjacent nodes in the
.path. In other words, we are assuming that the division scheme is valid.

Vllﬁst, We create a new empty path. This is the output path. We add the start node to it. The
t path will start and end at the same nodes as the input path.

Ing at the third node in the input path, a ray is cast to each node in turn from the last
he output path, We start at the third node because we are assuming that there is a clear
ssed ray cast) between the first and second nodes.

y fails to get through, the previous node in the input path is added to the output
asting starts again from the next node in the input path. When the end node is reached,

o the output path. The output path is used as the path to follow.

’ 36 i.ﬂustrates a path that has been smoothed with this algorithm.

gh th1§' algorithm produces a smooth path, it doesn’t search all possible smoothed paths
est one. The figure shows the smoothest possible path in our example; it cannot be

‘ :hls algorithm. To generate the smoothest path, we’d need another search among all
othed paths. This is rarely, if ever, necessary.
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line of sight, but are unlikely to have any connections between them (if they were connected in
the graph, the pathfinder would have found the smoothed route directly, unless their connections
had dramatically large costs).

Pseudo-Code

The path smoothing algorithm takes an input path made up of nodes and returns a smoothed

output path:
Performance

def smoothPath(inputPath):

1

The path smoothing algorithm is O(1) in memory, requiring only temporary storage. It is O(n)
in time, where # is the number of nodes in the path.

4 1f the path is only two nodes long, theq
The majority of the time spent in this algorithm is spent carrying out ray casting checks.

# we can't smooth it, so return <
5 if len(inputPath) == 2: return inputPath

# Compile an output path ‘ 4.5 IMPROVING ON A¥
outputPath = [i nputPath[01]
With a good heuristic, A* is a very efficient algorithm. Even simple implementations can plan
across many tens of thousands of nodes in a frame. Even better performance can be achieved
using additional optimizations, such as those we considered in the previous sections.
 Many game environments are huge and contain hundreds of thousands or even millions of
locations. Massively multi-player online games (MMOGs) may be hundreds of times larger still.
While it is possible to run an A* algorithm on an environment of this size, it will be extremely
slow and take a huge amount of memory. The results are also less than practical. If a character is
trying to move between cities in an MMOG, then a route that tells it how to avoid a small boulder
in the road five miles away is overkill. This problem can be better solved using hierarchical
athfinding.

Often, many different plans need to be made in quick succession: a whole army may need to
lan its routes through a battlefield, for example. Other techniques, such as dynamic pathfinding,
) increase the speed of replanning, and a number of A* variations dramatically reduce the
unt of memory required to find a path, at the cost of some performance.

The remainder of this chapter will look at some of these issues in detail and will try to give a
1 for the range of different A* variations that are possible.

# Keep track of where we are in the input path
# We start at 2, because we assume two adjacent
# nodes will pass the ray cast

13 inputIndex = 2

# Loop until we find the last item in the input
while inputIndex < len{inputPath)-1:

18 4 Do the ray cast
if not rayC]ear(outputPath[]en(outputPath)-l],

inputPath[i nput Index] B

# The ray text failed, add the last node that

# passed to the output list
outputPath += inputPath[inputIndex-l]

# Consider the next node

. inputindex ++ HIERARCHICAL PATHFINDING

# We've reached the end of the input path, add the
# end node to the output and return it

outputPath += 1‘nputPath[1en(inputPath)—1]

n return outputPath

hical pathfinding plans a route in much the same way as a person would. We plan an
route first and then refine it as needed. The high-level overview route might be “To get
‘ parking lot, we’ll go down the stairs, out of the front lobby, and around the side of the
or “We'll go through the office, out the fire door, and down the fire escape.” For a longer
igh~leV§1 plan would be even more abstract: “To get to the London office, we’ll go to
, catch a flight, and get a cab from the airport.”

- age of the path will consist of another route plan. To get to the airport, for example,
thfinding algorlthnflk know the route, The first stage of this route might be to get to the car. This, in turn,
his kind of path & e a plan to get to the rear parking lot, which in turn will require a plan to maneuver
rithm links no . esks and get out of the office.

Data Structures and Interfaces

aths that are a list of nodes. The pa
ections. Although we could take t
connections. The smoothing algo

The pseudo-code works with p
returned a path as a list of conn
output path cannot be made up of
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