
IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 3, SEPTEMBER 2011 187

Answer Set Programming for Procedural Content
Generation: A Design Space Approach

Adam M. Smith, Student Member, IEEE, and Michael Mateas

Abstract—Procedural content generators for games produce ar-
tifacts from a latent design space. This space is often only implicitly
defined, an emergent result of the procedures used in the generator.
In this paper, we outline an approach to content generation that
centers on explicit description of the design space, using domain-
independent procedures to produce artifacts from the described
space. By concisely capturing a design space as an answer set pro-
gram, we can rapidly define and expressively sculpt new genera-
tors for a variety of game content domains. We walk through the
reimplementation of a reference evolutionary content generator in
a tutorial example, and review existing applications of answer set
programming to generative-content design problems in and out-
side of a game context.

Index Terms—Answer set programming, constraint program-
ming, game design, logic programming, procedural content
generation.

I. INTRODUCTION

P ROCEDURAL CONTENT GENERATION (PCG) is a
game-design technique that involves creating game con-

tent via automated processes rather than via hand-authoring.
PCG readily provides the means to generate entire game worlds
on the fly, ranging from the galaxies of the venerable Elite
(Acornsoft 1984) to the infinite, rolling terrains, and subsurface
caverns of the recent Minecraft (Mojang Specifications 2009).
Beyond generating the physical details of a game world, PCG
is applicable to more abstract content such as the detailed histo-
ries of lost cultures in Slaves to Armok: God of Blood Chapter
II: Dwarf Fortress (Bay 12 Games 2006), even generating the
mechanics for the various stages in ROM CHECK FAIL (Farbs
2008).
As the name suggests, PCG revolves around a procedure

which is used to generate instances of content, which we call
artifacts. As many content generators are nondeterministic, it is
meaningful to talk about the generative space or design space
of a generator: the set of artifacts that it will eventually produce
given some (optional) input.
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In the context of a complete game design, the shape and pop-
ulation of this space can have a dramatic impact on gameplay
experiences. A generative procedure may fail by producing an
undesirable artifact such as an unsolvable puzzle, a nonsensical
story, or, worse, level data or mechanical logic that crashes a
game engine. Design concerns, such as avoiding pathological
failures, dictate constraints on the design space of a generator,
some of which may be very difficult to resolve without an ex-
tensive redesign of the generative procedure.
Often, what constitutes a success or failure may not even be

clear until many artifacts have been sampled from a prelimi-
nary design space. As a design problem, PCG inherits a default
“ill-definedness” in requirements. What exactly are you looking
for in these artifacts? Thomas and Carol suggest that this un-
certainty in the requirements of a design problem should be re-
solved, in iterative steps, by proposing candidate solutions [1].
Properties of certain candidate artifacts may inspire a revision
to the definition of the content design space, spurring the need
for a new generator.
To minimize commitments to a particular generative process

and support direct, iterative refinement of a generative space
by a designer, we look to the declarative specification methods
afforded by answer set programming (ASP). We do not pro-
pose a new algorithm for generation. Instead, we suggest en-
coding domain-specific PCG problems as the well-formalized
problem of generating answer sets, which can readily be solved
by several existing domain-independent algorithms. This, cou-
pled with programming guidelines for how to create and evolve
generative spaces described with ASP, represents a novel solu-
tion to the meta-level problem of generator design.
This paper is intended to provide equal weight in its technical,

tutorial, and survey contributions. Our technical contribution is
the general mapping of PCG problems to answer set program-
ming (incrementally specifying a design space in a declarative
language and using an off-the-shelf ASP solver as the runtime
generative component). This methodology links PCG, as a two-
layered design problem, to the design studies and declarative
programming literature and contrast deeply with feedforward
and generate-and-test PCG techniques. Our tutorial contribu-
tion is a game-flavored introduction to ASP terminology and
software engineering practices along with a code-level walk-
through of reimplementing an existing PCG system. Finally, our
survey contribution is the contextualized review of the only two
existing applications of ASP to PCG and two more ASP appli-
cations with a generative focus outside of game content.
The overarching theme of this work is that the tools used in

PCG should respect inherent ill-definedness of content design
problems and assist the designer, not only in literally producing
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the content, but in coming to understand what makes poten-
tial artifacts desirable. We offer the iterative exploration using
declarative specification for design spaces afforded by ASP as
an example of this kind of tool.

II. MOTIVATION

We claim PCG is concerned with two design problems. The
first is a concrete design problem dealing with the production
of game content with desirable properties. The second is a
meta-level problem dealing with the production of generative
procedures with desirable properties (such as, among others,
the ability to produce desirable content). While we might
judge individual artifacts by their effects on gameplay or their
aesthetic qualities, we should judge generative procedures on
their runtime performance, expressiveness,1 and manipulability
in the face of shifting design requirements (mnemonically, we
are looking for generative procedures that are fast/fancy/flex-
ible). Solutions to the base, artifact generation problem should
be found by machines (likely via automated search within a
design space), and solutions to the meta-level, generative space
design problem should be found by human designers (likely
via iterative refinement of the design space’s definition).
The essential problem in PCG, then, is to pick a design space

that is both feasible to algorithmically sample while also con-
taining only those artifacts that are desired. Solving this problem
requires experimentation, both in generator design and in design
space definition (deciding the specifics of what to generate).
Looking first at the artifact generation problem, a traditional

decomposition is the generate-and-test process [2]. Generate-
and-test is a proven method for automating artifact design in
PCG, with success in several game content and visual art do-
mains [3]–[6].
The design space captured by a procedure based on this de-

composition is the emergent result of composing the “generate”
and “test” procedures. Some commitments made in the generate
procedure (perhaps to a specific set of search operators) or in
the test procedure (perhaps to an evaluation function) represent
some accidental complexity in the larger PCG system [7]; the
final artifacts could have been produced by a wildly different
procedure that happened to cover the same design space. During
development, generate-and-test processes are often refactored
while preserving the design space they encode, often folding
parts of the test deeper into the generator as a means to im-
prove runtime efficiency [8]. At the same time, though some
shifts in requirements on the design space may manifest as lo-
calized tweaks to a test procedure, other changes (particularly
those that involve changing the level of abstraction used in rep-
resenting artifacts) will require a complete overhaul of both the
generate and test procedures.
Thus, in easing refinement of a generator by providing direct

control over a design space, we should minimize commitments
to procedural details. We should focus only on assertions about
artifacts or the shape of the space from which they come. Direct
specification should allow us to expend less effort in getting a
content generation project started, and throw away less effort as

1Here, “expressiveness” refers to the ability to generate artifacts with co-
herent, fine detail in the same way one would speak of the expressiveness of
a particular musical instrument.

design requirements change in light of new experiences. Doing
this requires an alternate paradigm which allows us to factor out
procedural details.
Declarative programming (in which knowledge is expressed,

absent of control flow; describing what to compute instead of
how to compute it) holds promise for avoiding accidental com-
plexity [9], and it has already been used for a number of PCG
applications. The declarative nature of the Tutenel’s semantic
scene description language [10] and Smelik’s SketchaWorld
system [11] is reported to reduce designer effort and provide
a more intuitive mode of expression. Likewise, the use of a
constraint solver in Tanagra reduced overall system complexity
by placing the details of low-level geometry placement out
of sight, foregrounding the constraint structure of playable
platformer levels [12]. Even the use of design grammars, such
as in Dormans’ work in generating missions and maps for
adventure games [13], is an example of content generation
using a declarative representation of the design space.
Answer set programming has emerged as a declarative pro-

gramming paradigmwith particularly potent affordances for de-
scribing the design spaces of PCG problems. Although nomi-
nally designed for knowledge representation and search-inten-
sive reasoning tasks, it is easily repurposed for “answer set syn-
thesis” in which ASP is exploited primarily for its generative
capabilities [14].
In LUDOCORE [15], an ASP-backed framework for producing

formal models of videogames, a designer can use “structural
queries” to solve for (or generate) elements of game content
that are consistent with dynamic gameplay constraints. While
LUDOCORE primarily used ASP to implement gameplay trace
inference, generation of rudimentary dungeonmaps (as the pres-
ence and connectivity of rooms) was a welcomed side effect.
In Variations Forever [16], our recent experiment with PCG

for mini-game rulesets (described in more detail in the survey
later), we sought out ASP as a programming paradigm capable
of expressively handling code-like game content. The approach,
it turned out, was quite general. Further, we found reshaping the
design space of our generator so engaging that we suggested
using online, player-driven expansion and sculpting of the space
as a novel game mechanic.
In this paper, we generalize the PCG approach first articu-

lated in Variations Forever and demonstrate its use in a variety
of domains. This approach includes concrete code strategies
for creating answer set programs that model design spaces and
meta-level strategies for evolving a design space in response to
experience with generated artifacts.

III. ANSPROLOG AND ASP

Before we launch into using ASP for content generation, the
reader should have a basic level of literacy with AnsProlog,
the language accepted by common answer set solvers [17].
Note that “answer set programming” refers to the programming
paradigm (as one would refer to the paradigms of functional
or object-oriented programming) and “AnsProlog” refers to
a concrete syntax one uses to write answer set programs (as
one would refer to Scheme or Java syntax). Though they share
common syntax features for the description of logical terms,
answer set solvers are not Prolog interpreters.
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A. Basic Logic Programming

AnsProlog syntax is derived from Prolog, the well-known
deductive logic programming language. As such, both code-
like and data-like knowledge is represented using a common
scheme: logical terms. Terms may either be atoms (named sym-
bols, numbers, or strings) or compounds consisting of functor
(a symbol) and a list of logical terms as arguments. Collections
of logical terms can readily represent any data structure; the fol-
lowing terms might describe properties of various game content
artifacts:

teleportation_disabled.

initial_health(100).

weather_model(springtime).

allies(humans,elves).

damage(sword_of_might,11).

scripted_event(spawn(boss,temple),120).

valid_move(rock),

valid_move(paper),

valid_move(scissors),

valid_move(lizard),

valid_move(spock).

phase(1,movement),

phase(2,combat),

phase(3,diplomacy).

Each set of the above terms was terminated with a period to
indicate that they could also be interpreted as simple sentences
in first-order logic, i.e. facts. More complex logical sentences,
called rules, are possible using logic variables and the if-oper-
ator “:-” (called the neck because it connects the head of a rule
to a body). These rules might be used to derive properties of an
artifact described in terms of facts like those above. Note the use
of a comma in rule bodies to mean “and” and reuse of a rule’s
head to signify an “or” between the various clauses of a rule:

plateau_at( ):-

height( ), height( ), height( ).

hostile( ):- enemy( ).

hostile( ):- enemy( ), friend( ).

hostile( ):- friend( ), enemy( ).

The first rule above roughly translates as “there is a plateau
at a position if its immediate neighbors have the same height”
(where is the position and is the particular height level
they share). The second rule is more complex; it captures the
logic of this statement: “I am hostile to someone if they are my
enemy, if they are the friend of one of my enemies, or if they
are the enemy of one of my friends.”
We say that the collection of rules and facts with structurally

matching heads defines a predicate, a logical condition which
may either be true or false for each instantiation of its arguments
(e.g., hostility may perhaps exist between two characters Alice
and Bob, but not between Alice and Eve). Some predicates are

extensionally defined by a list of facts (as in a modern database)
while others are intensionally defined by a set of rules (for which
unbound variables are treated as universally qualified, in a log-
ical interpretation). It is sometimes useful to think of facts as
simply rules with no body (in fact, solvers treat them as such).

B. Answer Set Programming

While general facts and rules are common to all logic pro-
gramming languages, AnsProlog uses two additional constructs:
choice rules and integrity constraints. These constructs are the
key to the generative faculties of ASP.
Where traditional logic programming is concerned with what

must be true in some logical world, choice rules allow the de-
scription of what might be true (facts available for inference
through abductive reasoning). In choice rules, braces are used
to group a collection of terms, some number of which might be
true as facts in the logical world. The following is a traditional
example of reasoning with choice rules:

{rain, sprinkler}.

wet:- rain.

wet:- sprinkler.

dry:- not wet.

Translating, this snippet says that it might have rained and
a sprinkler might have been on (or both, or even neither). It
also says both rain or sprinkler necessarily imply wet (grass,
perhaps). The final rule allows us to derive the expectation of
dryness if there was no means of producing wetness.
ASP takes its name from its focus on “answer sets.” Answer

sets are the collections of ground (variable-free) facts that are
consistent with the logical worlds an answer set program de-
scribes. The small program above admits four answer sets, each
representing the combination of things that might be true along
with the necessary deductive consequences of those selections:

dry.

wet, rain.

wet, sprinkler.

wet, rain, sprinkler.

Meanwhile, integrity constraints let a programmer express
what must not be true in a logical world, independent of what
other rules say. They resemble traditional rules with a missing
head (they can be imagined to read “implies contradiction”).
In the grass scenario, we can incorporate the new knowledge

that, perhaps, our sprinkler has an automatic shutoff that pre-
vents it from running in the rain. To do this, we simply write
the integrity constraint that sprinkler can never be assumed at
the same time as rain (i.e., the conjunction of sprinkler and rain
implies a contradiction):

:- sprinkler, rain.

The combined program now only admits the first three answer
sets.While an equivalent program could have beenwritten using
choice rules alone, the benefit of integrity constraints comes
from their ability to filter out (or reject) undesirable answer sets
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without having to understand the process by which those unde-
sirables might arise. Integrity constraints do not simply block
the final display of certain answer sets; they actually prevent
undesirable answer sets from ever being generated in the first
place.

C. ASP Solvers

To generate a number of answer sets for a given answer set
program, one feeds the program to an ASP solver. This process
is conceptually similar to how one may feed problems to a SAT
(Boolean satisfiability checking) solver in order to produce one
or more satisfying truth assignments. Indeed, some ASP solvers
make use of unmodified SAT solvers internally [18]. Regardless
of solver choice, equivalent results are guaranteed by the seman-
tics of AnsProlog. Solvers may be treated as interchangeable
black boxes. Even those solvers which are capable of using in-
complete (but potentially faster) search algorithms will fall back
to a complete search algorithmwhen the heuristic method floun-
ders [18]. Genetic algorithms have been proposed for this role
[19], and ant colony optimization has been demonstrated as a
core answer set solving algorithm in small-scale examples [20].
The interaction between solver and problem in ASP differs

greatly from the setup used with metaheuristic search processes.
Generic, “black-box” search algorithms are only allowed to ac-
cess the problem domain by invoking an evaluation procedure
on complete, candidate solutions. Because the evaluation pro-
cedure is opaque from the search algorithm’s perspective, the
problem designer is free to use any means of implementing
the procedure they see fit. Having a single, tightly controlled
channel for domain specific to enter the search algorithm makes
these algorithms very general, even domain agnostic. At the
same time, it also strongly limits the search algorithm’s access to
knowledge about the domain’s structure which could speed up
the search process. By contrast, though also domain agnostic,
ASP solvers require a “white-box” declaration of the domain
structure in a language the solver can recognize and reason over.
While this can in some cases require more effort than producing
a black-box evaluation procedure, it avoids the need to invent
informative numerical evaluation metrics for domains that lack
a natural metric. ASP and metaheuristic search, as generation
techniques, fundamentally differ in their problem formulation.
Common ASP solvers generally use search algorithms that

are not explainable as the kind of generate-and-test processes
used in metaheuristic search algorithms; the Davis–Putnam
algorithm often used as a base for more specific answer set
solving algorithms fundamentally works property by property
[21], rejecting whole subspaces of potential solutions before
any are even fully “generated.” Applied to a traditional maze
generation problem where the solver must place walls on a map
while ensuring the maze’s finish is accessible from the start, the
solver will conceptually build the map wall by wall, analyzing
a potential maze based on properties of only those walls and
passages committed so far. In this way, the solver can reject
the large subspace of potential mazes which include walls that
completely surround the start of the maze after only a few
exploratory commitments. Having reached this dead-end in the
design space, a Davis–Putnam-inspired solver will backtrack
and try alternatives for its recent choices. For more detail,

AI textbooks such as Russel and Norvig’s [22 p. 221] will
generally provide approachable pseudocode and examples for
the well-known Davis–Putnam algorithm and its variants.
By contrast to these algorithms, a generate-and-test process

would entail generating a complete maze (even if it only had
a few walls) before attempting to test the maze for validity
(reachability in this case). The important distinction is that
generate-and-test process always evaluates individual artifacts
in a global manner whereas most ASP solvers will evaluate
an incompletely defined artifact (standing in for the space of
all artifacts which share the committed substructure) in a local
manner, allowing the search process access to information
about which substructures to credit or blame for an artifact’s
overall desirability.
Many ASP solvers even incorporate opportunistic learning

that finds ways to simplify the search process during execution
(learned “nogoods” are automatically discovered bounds on
infeasible regions of a search space [23]). In a sense, these
advanced solvers self-refactor (in a design-space-preserving
manner) in response to emergent structures in the search space.
This is not to say that generation via answer set solving

will actually be faster than with a generate-and-test process.
Instead, we point out that common ASP solvers employ so-
phisticated search processes that are meaningfully distinct
from generate-and-test processes. From the perspective of the
programmer using an ASP solver, whether that particular solver
uses generate-and-test internally is an invisible implementa-
tion detail so long as the AnsProlog language semantics are
respected.
While there are several ASP solvers available, we have been

most productive using Clingo [24], an advanced, integrated
solver from the Potassco toolset [25]. We chose Clingo pri-
marily for its rich documentation and simple command-line
interface.

IV. A METHOD FOR USING ASP FOR PCG

Recall that the concrete design problem in PCG is the gen-
eration of artifacts from some design space (the set of artifacts
with desirable properties). This design space needs some repre-
sentation that a machine can understand before any automatic
generation can be done.
Instead of jumping all the way into committing to a parti-

tioning between isolated generate and test procedures, we pro-
pose capturing a design space as the range of answer sets ad-
mitted by an answer set program. Doing so, we can directly
import the sophisticated search algorithms used in ASP solvers
into our specific PCG domain “for free,” without the cognitive
overhead of juggling the implementation of a generative pro-
cedure. The use of a declarative, logical language to express a
design space keeps the focus on properties of artifacts and the
properties of the space itself.
Fig. 1 illustrates how ASP solving parallels the intent of the

concrete design problem. Because the design space is a con-
ceptual construct accessible only to the designer, one can only
directly generate artifacts from this space via manual construc-
tion (“hand authoring”). The design space is modeled (explained
to a machine) as an AnsProlog program, which is given to an
off-the-shelf ASP solver to produce answer sets, which can be
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Fig. 1. In our method, the intent to generate artifacts from a (conceptual) design
space is carried out by first modeling the design space with a logic program, and
then invoking a domain-independent solver to produce answer sets which can
be interpreted as descriptions of the desired artifacts. Experience with generated
artifacts inspires redefinition of the design space. This diagram mimics a similar
diagram in ASP software engineering for which “design space” and “artifacts”
replace the more generic “problem” and “solution” [26].

interpreted in the context of some game to construct the arti-
facts the answer sets describe. Generated artifacts will often in-
spire changes to the design space, allowing new structures or re-
jecting undesirable emergences. In the remainder of this section,
we will keep the discussion at a high level, as the subsequent tu-
torial example and case study sections will strongly ground the
method.

A. Representing Artifacts and Spaces

Artifacts, in ASP, are represented by logical facts that de-
scribe their in-game properties. There is a certain minimal set
of facts that is needed to reconstruct an artifact in the context
of a game (for a maze: the start and finish locations, along with
traversability of the map). However, we will also describe arti-
facts with extra annotations about properties of an artifact which
are derivable (analyzable) from its basic structure (for a maze:
the reachability of a given location, the length of the shortest so-
lution, the number of dead ends, etc.). While these annotations
are not needed in the running game, they provide a powerful vo-
cabulary for describing the shape of a design space.
The design space itself is represented with some assertions

about what properties individual artifacts might have (using
AnsProlog choice rules) and other complimentary asser-
tions about properties artifacts must or must not have (using
AnsProlog integrity constraints). Passing such a design space
model to an ASP solver produces the collections of facts we
use to construct the in-game artifact.
Supporting the idea of basic structure and optional annota-

tions, the design space representation may also use logical rules
to describe how artifacts should be analyzed (these are the rules
by which those annotations are deduced). As a design space
model becomes more refined, the bulk of its AnsProlog rep-
resentation may be devoted to building up a sufficiently nu-
anced vocabulary to express a critical property that all desirable
artifacts must or must not have. This complexity is unavoid-
able when that property really is a definitional aspect of the de-
signer’s intention.
Returning to the maze generation scenario, the program de-

scribing a design space of mazes might contain rules for de-
riving the minimum solution length for a maze and integrity
constraints to require certain bounds on that length. While this

information is never displayed to a player, it is an integral com-
mitment of themaze design space wewill describe in the tutorial
example later.
By describing the schema, requirements, and analysis of ar-

tifacts in a declarative manner, the designer using ASP simulta-
neously avoids commitments to (some) accidental complexity,
and gives the ASP solver the knowledge that it can use to adapt
its internal search process to the domain at hand (via constraint
propagation, clause learning, and other techniques).

B. Modeling, Interpretation, and Refinement

In applying ASP to a map generation problem, modeling is
the process of capturing the design space of desirable maps as a
logic program. Interpretation is the process of importing logical
facts about a particular map into a game where it can be played.
Clearly, both need to be addressed, at least in a tentative fashion,
before we can feel the implications of our design space on the
gameplay experience.
An advantage of using ASP solvers over handcrafted genera-

tive procedures is that they can be used as black boxes—detailed
knowledge of their internals is not required (or even visible).
The details of the modeling and interpretation processes that
map our concrete artifact design problem into ASP are, how-
ever, critical. For the meta-level design problem of sculpting an
appropriate artifact design space, both processes need to work
together so that a designer can sample artifacts in-game and
make intelligent decisions about the next iterative design move.
The first thing that needs commitment is the schema for

(or expected structure of) logical terms that will be used to
represent artifacts. As described in the previous section, these
terms have a universal representational ability; however, we
have found many PCG problems to be well covered using only
global Boolean flags, sets, and simple table structures. Concrete
examples will be given for the various systems described later
in the paper, but the game-themed logical terms in the previous
section should spark the imagination.
Once the basic structure of artifacts has been decided, the de-

signer/programmer can start the interpretation process by cre-
ating a loader for a few handwritten answer sets into a game
engine where the artifacts will be observed. The fixed grammar
of logical terms makes them relatively easy to parse and convert
into the data structures required by a game engine.
With basic interpretation in place, it is time to replace the

handwritten answer sets with the output of a minimal ASP-
based generator. For each type of term used to describe artifacts,
one or more choice rules should be created which will allow the
blind generation of terms that are at least in the right language.
These core choice rules can be imagined to define a basic “gen-
erate” procedure (or a default design space), though really they
form a specification to which a procedure should conform.
Now, using a solver, the programmer can generate several

answer sets from the extremely broad, basic generative space
(which will probably include many obviously undesirable re-
sults due to a lack of constraints). The presence of undesirable
artifacts in the minimally constrained generative space becomes
the feedback that drives refinement of the model, which is a step
in the larger design-space “sculpting” process (building out sup-
port for new structures and then carving away unwanted inter-
actions). For example, in developing a map generator, noticing



192 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 3, SEPTEMBER 2011

unreachable areas of terrain might suggest the addition of a con-
straint that would forbid this from happening in the future (per-
haps by requiring a viable path between all locations of interest).
Again, while the constraints that the programmer adds during

the iterative development of a generator seem to function as
postfiltering processes, most ASP solvers will embed them into
the core search process, interleaving their evaluation with the
construction of partial artifacts.
As the logic program grows in detail, with choice rules

gaining more detailed bodies, integrity constraints rejecting
corner cases, and auxiliary rules defining higher and higher
level patterns in the artifacts which can be used in filtering, the
details of interpretation process will likely change very little
(as changes to the basic structure of artifacts is rare). In the rare
case of making a representation change, often auxiliary rules
can be used to deduce the facts describing a new-style artifact
in the schema of the old-style artifacts, allowing the reuse and
incremental upgrade of an interpretation procedure.
Interpretation need not always refer to the literal loading of

answer sets into a game engine. Instead, answer sets may be
interpreted as describing the inputs to a different PCG algorithm
which expands them to produce the final in-game content or
even as the inputs to another declarative, solver-based process.
Both of these expansion techniques are employed in DIORAMA,
a map generation system described later in this paper.
For a detailed walkthrough of software engineering practices

for ASP, we refer the reader to the (illustrated) “Pragmatic Pro-
grammer’s Guide to ASP” which is aimed at general problem
solving as opposed to the specific PCG context introduced here
[26]. The iterative programming practice it describes for finding
solutions to logical problems exactly corresponds to a human-
directed, meta-level search in the space of content generator de-
signs in the PCG domain.

C. Modeled and Unmodeled Properties

AnsProlog integrity constraints provide very expressive, di-
rect control over the properties of generated artifacts. In fact,
they combine the convenience of a postfilter that might nor-
mally be applied in one of the phases of an explicit generate-
and-test process with the runtime benefits of providing this fil-
tering knowledge to the ASP solver (which may even run faster
in the presence of additional constraints). However, this descrip-
tion is somewhat misleading because it only applies to proper-
ties of artifacts which can be modeled using logic expressible in
AnsProlog.
In contrast to traditional (Prolog-style) logic programming

(a Turing-complete programming paradigm), ASP specifically
targets NP-complete problems (informally, those problems for
which solutions are easy to verify). As a result of this, there
are computations which cannot be expressed in AnsProlog,
particularly thosewith infinite loops (conforming solverswill al-
ways terminate in finite time). Many solvers support extensions
which allow a programmer to encode variants on the Weighted
MAX-SAT problem (a problem just outside NPC which enables
combinatorial optimization aswell as the use of soft constraints).
Nonetheless, many interesting properties of artifacts are im-

practical to accurately capture in AnsProlog. The results of run-
ning an arbitrary program or the elicitation of a human of feed-

back are obvious examples of such properties that would be left
unmodeled in an ASP-based generator. Consider this example
from the generative visual art domain: The output of a Neuro
Evolutionary Art (NEvAr) system, is often interesting when
its otherwise very abstract compositions resemble a human or
animal face [5]. NEvAr uses neural network trained on audi-
ence feedback to capture a local, fuzzy sense of interestingness
which can permit the system to generate many face-like images
without a logical model of how images come to resemble faces.
This neural network evaluation (rich with floating-point arith-
metic) is a natural fit for a generate-and-test architecture, but is
impractical with the purely symbolic ASP framework.While fu-
ture ASP solvers may eventually integrate efficient support for
floating-point arithmetic, other properties of artifacts are perma-
nently off-limits to machines.
Often, only human inspection is capable of accurately

judging the most subtle properties of artifacts (such as beauty
or fun). Aside from literally embedding a human in the gener-
ation process (as in the case of interactive genetic algorithms,
manual postfiltering, or inductive logic modeling),2 the primary
tactic is to substitute the subtle property for a more practical
one (as done by the neural network in NEvAr above). In ASP,
a common tactic for producing approximate property descrip-
tions is to collect definitions for a series of concrete failure
cases—in the maze generator described later in this paper, ac-
curately capturing the “difficulty” of a maze is an AI-complete
problem, but recognizing a collection of ways in which a maze
appears “too easy” is a tractable logical modeling problem.
Where unmodelable properties of artifacts are a requirement

of the design space, a declarative, solver-based generator can
be nested inside a larger generate-and-test process, as done
with Choco, the numerical constraint solver, in Tanagra [12]. It
bears mentioning, however, that ASP provides a dramatically
wider modeling palette than do numerical constraint solvers,
especially in concert with a gameplay modeling framework
such as LUDOCORE [15]. Some solvers actually modestly
extend AnsProlog syntax to allow the use of an embedded
numerical constraint solver, supporting mixed structural–nu-
merical search over integer domains [27] (generic solvers will
treat such problems purely structurally, incurring inefficiency).
While increasingly specialized solvers have better runtime
performance, they generally come with reduced productivity
for the designer/programmer (who is now responsible for more
complex modeling and interpretation work) [28].
The focus on quickly modeling properties of artifacts is per-

haps the most important idea in our method. We claim that it is
easier to sculpt a design space by repeatedly carving away un-
desirable regions (identified by describable flaws) than it is to
guess a procedure which implicitly defines the same space.

D. Applicability

Although it is difficult to characterize the class of problems
for which ASP is a desirable implementation technique (as prob-
lems can be solved to various degrees and by several solutions),
we can, however, describe the space of solutions afforded by
ASP.

2Inductive logic programming has been proposed as an ASP-compatible way
of automatically producing approximate player models for games [15].
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ASP provides a means for rapidly creating and easily mod-
ifying search-based generators over finite data structures. We
emphasize the “search-based” label here to point out the fact
that ASP-based generators are meaningfully grounded in search
while being strictly incompatible with the definition of term
given in a recent PCG survey [3]. ASP solvers use search to
generate content without the use of a real-valued fitness func-
tion or contingent generation of new artifacts based on the score
assigned to previously evaluated, complete artifacts. In the ex-
isting applications we survey later, three of the four systems lack
any numerical properties which are meaningful to optimize, and
the exception, DIORAMA, uses optimization as a means to imple-
ment layered preferences.
We should clarify that ASP’s focus on finite data structures

refers to a countable set of alternatives to search over. A vector
of real numbers has a fixed number of dimensions, but it has
an infinite number of concrete instantiations. Meanwhile, planar
graphs (perhaps representing connectivity between rooms in a
generated dungeon map) have a variable structure, but readily
become a finite search space if we upper-bound the number of
nodes that may be used. The same applies to bounded trees,
sequences, and other data structures.
Thus, ASP is applicable to problems where the apparent task

is to select structures with desirable properties from a vast but
countablyfinite spaceof structures,where theseproperties canbe
described using AnsProlog. While few PCG problems meet this
description exactly (due to requiring properties that are imprac-
tical to model in logic or involving infinite spaces), many prob-
lems will contain significant subproblems that do meet this con-
dition. Whether ASP is an attractive choice, then, hinges on the
complexity of factoring out the ASP-solvable problem and inte-
grating its solution into a larger generator. TheDIORAMA system,
described later, provides an excellent example of this nesting of
an ASP-based generator inside a general Python program.
For applications where finiteness would exclude the use of

an ASP solver, another declarative, solver-based solution will
often be available and provide similar benefits. For unbounded
structural spaces, HYPROLOG implements the same abductive
reasoning that supports the generativity of ASP [29]. For con-
tinuous spaces, CLP(Q,R) blends nonlinear constraints and opti-
mization for the rationals and real numbers with traditional logic
programming [30]. Such alternatives gain wider applicability in
exchange for increased language and integration complexity. In
particular, both of these systems are implemented in the context
of Turing-complete Prolog systems which requires programmer
attention to ordering of code fragments and the avoiding of in-
finite loops. We have found that ASP represents a sweet-spot
for PCG in the realm of declarative, solver-based generative
approaches because the ability to rapidly try out alternative de-
signs with minimal debugging time is so important in design
problems.

V. TUTORIAL EXAMPLE

To illustrate a simple but complete application of ASP to a
toy PCG problem, we now describe our reimplementation of the
“chromatic maze” generator described in Ashlock’s “Automatic
Generation of Game Elements via Evolution” [31]. The original
system used a straightforward genetic algorithm with a fitness
function measuring maze solution lengths calculated using a dy-
namic programming algorithm adapted to the unique mechanics
of chromatic mazes. The paper additionally described a chess

Fig. 2. A chromatic maze created with our ASP-based generator. Valid moves
consist of single steps on a red–yellow–green–cyan–blue–magenta color wheel
(repeats allowed). The dark line represents a shortest path between the start and
finish tiles.

maze generator which we have also recreated but will not detail
in this paper.

A. Chromatic Mazes

Chromatic mazes are a kind of puzzle using a square map
consisting of colored tiles. Where other mazes might have ex-
plicit walls, passage between tiles in chromatic mazes is reg-
ulated by the adjacency of the tile colors on a color wheel.
Red–yellow–yellow–red–magenta is a valid path, but red–blue
is an illegal move (for the color wheel used in our generator).
In addition to the colored grid, two tiles are marked for the start
and finish (entrance and exit) of the maze. See Fig. 2 for an ex-
ample chromatic maze with an overlaid solution.
The content generation task for chromatic mazes is to invent

several unique, playable mazes with preferably long shortest
path distances between the start and finish. While path lengths
are a very crude measure maze difficulty, they provide us with
a reasonable example of how to work with numeric desirability
metrics in PCG problems.

B. Modeling the Design Space

While modeling and interpretation are usually carried out in
parallel, we will rearrange the development of our ASP-based
generator to form a less chaotic story.
First, laying down a schema for logical terms that describe

a chromatic maze, we want to generate terms shaped like the
following:

cell(Color, , ), start( , ), finish( , ).

Creating the choice rules that would generate these kinds of
terms requires some background definitions to specify the range
of values for the Color and variables. These ranges are
easily asserted using these simple AnsProlog statements:

color(red; yellow; green; cyan; blue; magenta).

dim(1..6).
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This snippet captures the valid range of our representation
language using choice rules:

1 {cell( , , ):color( )} 1:- dim( ),dim( ).

1 {start( , ):dim( ):dim( )} 1.

1 {finish( , ):dim( ):dim( )} 1.

The unfamiliar elements of syntax used here describe the
scope of quantification for variables and put bounds on the
number of generated facts. In this case, the colon operator
and the numerals together ensure that exactly one cell fact is
produced for each possible assignment of and in the first
rule (36 facts), and exactly one start fact and one finish fact are
produced for the entire puzzle.
The last five lines of AnsProlog code above actually consti-

tute a working generator for chromatic mazes. The design space
it describes, however, needs some refinement as the finish tile
may not be reachable from the start tile (the generative space
contains some undesirable mazes). Expressing that a mazemust
not be impossible to complete is indeed a job for integrity con-
straints. The following constraint accomplishes this, but sets up
the need for additional definitions:

:- not victory.

The next snippet grounds the idea of “victory” required by the
above constraint using traditional logical rules. In it, we have
elided the definition of a predicate for passage between tiles;
however, this predicate is easy to define in terms of the color
and cell facts with some arithmetic to model grid-adjacency.

player_at( , , ):- start( , ).

player_at( , , ):-

player_at( , , ),

passable( , , , ),

0 {player_at( .. , , )} 0.

victory_at( ):- player_at( , , ), finish( , ).

victory:- victory_at( ).

In exchange for describing the mechanics of our mazes in
AnsProlog, we gain a high level vocabulary for talking about
properties of potential mazes. At this point, our answer set pro-
gram captures the idea of provably valid maze designs; all that
is needed to upgrade our generator to one that produces desir-
able mazes (with long shortest path lengths) is to add one more
integrity constraint:

:- victory_at( ), < 22.

While AnsProlog provides an additional construct (the max-
imize statement) that we could used to produce a best-possible
maze with the introduction of just one more predicate, we have
found that absolute optimization is rarely desirable for PCG
problems. Instead, a good generator will produce a large space
of artifacts with critical metrics guaranteed to fall in a good-
enough range (as in the case for our chromatic maze gener-
ator)—satisficing [2].

C. Interpreting Artifacts

Thus far, we have treated the collection of facts describing a
maze as if it were the maze itself. This is a productive mindset
for modeling the design space, but human players will greatly
appreciate a graphical display with literal, colored tiles. As
mazes need not be loaded into any existing game engine,
we were satisfied to create a program that produced colored
ASCII-art in a terminal display.
The mapping from logical terms written as output from the

ASP solver to pictures on the screen is quite straightforward, so
we will not describe the details of the small Python program that
accomplished this. Instead, we would like to share a particular
change we made to the generator code to support more flexible
interpretation.
During the development of a generator, often viewing arti-

facts as they will be experienced in-game is not enough to pro-
vide useful feedback in the design process. To get a better idea
of the mazes we were generating, we wanted a visualization of
the shortest path distances in addition to the literal tile colors.
Instead of producing a specialized debug visualizer, we opted to
generalize our visualizer to render arbitrary, colored ASCII-art
tables using the following rules:

tile_color( , , ):- cell( , , ).

tile_char( , , ):- start( , ).

tile_char( , , ):- finish( , ).

tile_char( , , #mod10):-

> 0,

player_at( , , ),

not start( , ),

not finish( , ).

Translating, the above logic describes a table display for chro-
maticmazes where ’s and ’smark the start and finish and other
tiles are represented with the last digit of their distance from the
start (useful for debugging). These single characters are colored
by the corresponding maze tile.
Using this approach, treating the tile_char and tile_color

terms as the primary output of our generator, we were able
to completely reuse our external visualization program in a
reimplementation of the chess maze design space (with ’s and
’s for occupied and threatened tiles on the chess board). In ac-
tuality, our chromatic maze generator was produced by a series
of small refinements to our chess maze generator: changing the
annotation for tiles, changing the passage criterion between
tiles, and updating the visualization logic, leaving the general
calculation and bounding of shortest paths and victory times
unmodified during the evolution.

D. Comparison

We have captured the essence of Ashlock’s evolutionary
chromatic maze generator in an ASP-based generator. Our
model encodes the very same design space implicitly defined
by the intent of the evolutionary generator (though what counts
as the actual generative space for an evolutionary generator is
not entirely clear). Where shortest path length was a black-box
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fitness function used in the original system (its implementa-
tion was not constrained by the surrounding system), it is a
white-box modeled property of mazes in our system, subject to
directly enforced constraints. In place of explicit data structures
and algorithms for computing solution lengths in the original
system, our system defines the meaning of solutions in just a
handful of AnsProlog lines, exploiting the search processes
already embedded in the external solver for both analysis and
generation.
Just as the development of the evolutionary generator

prompted its author to perform a parameter study to understand
the effects of varying population sizes and mutation rates, the
design of our ASP-based generator prompted its own parameter
study. With the (output) fitness value of the original generator
under our direct control (as an input), we were able to directly
locate mazes with solution lengths outside the range of those
found by the original system. This allowed us to discover some
previously unreached chess mazes, and lead to our formally
proving the nonexistence of chromatic mazes with a shortest
path length above a certain bound (the natural interpretation
of an ASP solver’s complete search algorithm returning no
solutions).
Using a generation paradigm which foregrounds an iterative

design process, we are obliged to read the fine details of indi-
vidual generated mazes and think what would make them more
desirable. Consider the run of magenta tiles in the bottom row
of the generated maze in Fig. 2. Towards making our generated
mazes more interesting, we might want to ensure that all of our
mazes had shortest paths without such obvious runs. While en-
forcing that no color is ever used adjacent to itself would be
one way of doing this, it would eliminate mazes which used
runs of a single color to sneakily lead the player further from
their goal. Instead, what we want is a constraint on colors tra-
versed on all possible shortest paths, while still allowing runs
on other paths. Such a constraint is expressible in exactly three
more lines of AnsProlog and no modifications of existing rules,
but would be nontrivial to encode in a new fitness function for
the original evolutionary generator. The fact that feasible–in-
feasible two-population genetic algorithms are an active area
of research is evidence of the subtlety required to blend con-
straint enforcement with the optimization of an existing numer-
ical metric [32].

E. Metrics

While it is not possible to directly compare the followingmet-
rics with the original implementation given the published de-
tails, we provide them to the reader to convey the idea that ASP-
based generator development is likely easier than onemight sus-
pect and that the generators produced (with no careful attention
paid to runtime performance concerns) are not burdensomely
slow.
Our chromatic maze generator, which is reproduced in full

in the Appendix of this paper, consists of 49 source lines of id-
iomatic AnsProlog (half of which are identical to those in the
chess maze generator). Running this program through Clingo
and our Python visualization program on a single core of an Intel
Core2 Quad at 2.66 GHz, we can generate and render a single

6-by-6 chromatic maze with a solution length between 20 and
35 steps in 250 ms. To understand the effects of startup costs,
we asked the generator to generate and save 10 000 unique, de-
sirable mazes from the same design space. The operation took
1 s, using an average 100 s per maze. Generating a globally
optimal 6-by-6 maze (requiring 35 steps to solve) took 2.5 s.
Towards matching the largest scale of mazes presented in

the original paper, we modified our maze generator to produce
a sequence of increasingly longer mazes at the 21-by-21 scale
(using the maximize statement instead of the simple threshold
shown previously). While Ashlock demonstrated a 292-step
maze at this scale (requiring an unknown amount of compu-
tation), we can only report the generation of a 114-step maze
after two hours of computation (with longer mazes requiring
increasingly more time to find).
While these performance numbers are highly sensitive to

variable parameters such as the size of the maze, a more im-
portant (though difficult to accurately measure and interpret)
metric is the human programming effort required to produce
the model of the design space. The first author, an experienced
AnsProlog programmer, developed generators for knight-only
chess mazes, chromatic mazes, and a toroidal variant on chro-
matic mazes, along with the visualization logic, without prior
planning, in less than four hours.
While this example permits a direct comparison between

an ASP-based generator and an equivalent evolutionary gen-
erator, the problem of chromatic maze generation should not
be interpreted as a benchmark problem for PCG. In particular,
as defined, chromatic maze generation is not actually a design
problem. Instead, when the design space is locked down, the
problem becomes an engineering problem for which numerical
results comparing two implementations that were not optimized
for runtime performance would be misleading.
Attempts to characterize the runtime performance that should

be expected from common answer set solvers have yielded re-
sults very similar to those seen for SAT solvers [33]. That is,
while solvers generally employ algorithms with worst case ex-
ponential complexity (in terms of a program’s grounded size),
solvers will terminate very quickly on a wide range of problem
instances. Only when random programs have a mix of atoms
and rules that approach a critical ratio (reminiscent of the “phase
transition” for SAT instances) does a solver actually encounter
exponential blowup in its search process. On ASP terms, the
“hardest” problems appear to be those where exactly one an-
swer set from an extremely large space of possibilities is the
only solution. Anecdotally, we have found realistic PCG prob-
lems (large chromatic maze generation not included) such as
those surveyed in the next section to fall on the “easy” size of
the phase transition. That is, their constraints are relatively easy
to satisfy (admitting an estimated number of valid answer sets in
the quadrillions for the case of Variations Forever), but the way
in which they are satisfied leads to interesting game content.
With this tutorial example, we hope to show the reader how

new ASP-based generators can be created at a code level, em-
phasizing the minimum of design commitments made during
development. Practical applications of ASP to PCG will likely
involve artifacts with far richer structure (and smaller numerical
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constants) that are consumed in the context of games with much
more complex mechanics than maze traversal.

VI. CASE STUDIES

In this section, we describe existing applications of ASP
to content generation problems in the domains of real-time
strategy game maps, arcade game mechanics, musical compo-
sitions, and simple narratives. Of known ASP applications, we
judge these to be the most relevant to PCG, with two of the
four actually producing content that is consumed in gameplay.
While ASP has been widely applied, it is only these systems
which have employed the technology in a directly generative
manner (as opposed to general problem solving or satisfiability
testing). In describing them here, we hope to inspire wider
adoption of this approach to content generator design.

A. DIORAMA

DIORAMA3 is an open source, comprehensive map generator
for the real-time strategy gameWarzone 2100 (Pumpkin Studios
1999) which generates natural-looking, detail-decorated terrain
maps with desirable gameplay properties. Internally, DIORAMA
uses ASP to solve two gameplay-critical subproblems in map
generation.
The cliff structure of the terrain in a Warzone map has a

strong impact on gameplay by blocking land-vehicle passage
between tiles with sufficiently different height values. In the first
phase of the map generation process, among other details de-
scribed later, a coarse grid of cells is assigned numerical height
values with terms like cellLevel( , ,Height) (analo-
gous to the assignment of colors to tiles in chromatic mazes).
From cellLevel facts, passage between tiles can be derived
using traditional logical rules (analogous to the traversability
of chromatic mazes). Additional user-settable constraints en-
force the presence of interesting geographical features: undu-
lating plains, smooth sea beds, raised or sunken player bases,
and a prescribed number of unreachable mountain tops. Logical
rules for describing undulation and other modeled properties, of
course, are also included in the AnsProlog program.
The problem of placing player base locations and oil wells

(drivers of the economy in Warzone) is tightly coupled with
the terrain generation problem; cliffs provide a natural, inde-
structible defense against ground-based attacks. Accordingly,
DIORAMA combines these concerns into a single design space
model, effectively solving for terrain, base, and well placement
all at the same time. The baseLocation(Player, , )
and oilLocation(Well, , ) predicates complete the
minimal structure of the generated artifacts at this stage.
To express a preference among the myriad possibilities that

conform to terrain design rules, the AnsProlog program declares
that the solver should first absolutely maximize the distance be-
tween player bases, and then, among solutions with that max-
imal base distance, find a placement of oil wells that maximizes
the minimum interwell and well-base distances. Additional con-
straints optionally enforcing partial cliff-based defensibility of
bases and wells are also active in this process.

3DIORAMA documentation and source: http://warzone2100.org.uk/.

We learned that ASP actually replaced a genetic algorithm so-
lution for this search-intensive phase in a previous version of the
generator [34]. Without an ASP solver, such multilayer global
optimization would be difficult to express with a procedure that
had separate generate and test phases. Even dropping global op-
timization in favor of enforcing a fixed lower bound on base and
well distances would have been difficult otherwise.
Though DIORAMA used a fixed priority scheme to layer dif-

ferent levels of preferences at this stage, a system of numer-
ical weights could have (but was not) used to express trade-
offs between preferences at the same level, e.g., that one point
of resource distance unfairness is a safe trade of two points of
cliff defensibility unfairness. In this case, the AnsProlog pro-
gram would have asked the solver to simply enumerate maps
that maximize the sum of the trade values.
Having committed to bases and oil wells on a naked height

map with known traversability, DIORAMA performs several
non-ASP passes to improve the aesthetics of the final map. To
break the unnaturally straight lines of the original cell grid,
the map is warped in a postprocessing phase and cell borders
are smoothed. A plausibly designed road network is overlaid
which visually guides players from their bases to oil wells and
randomly placed abandoned towns. These phases add visual
flair and cannot break the map’s gameplay, so they proceed in
a nonbacktracking fashion, enriching the map in-place.
Generating a smoothed version of the abstract terrain is an

example of a subproblem in terrain generation for which ASP
is not particularly applicable. Instead of selecting artifacts with
particular properties from a vast-but-finite space, continuous
smoothing is a process more easily described imperatively in
a general purpose programming language. That is, while ge-
ographical features are modeled properties at the (coarse) cell
level, DIORAMA leaves the aesthetics of (fine) tile level details
unmodeled and trusts the imperative passes to cover them in a
feedforward manner.
In a gameplay mode ofWarzone that allows players to start a

match with generous bases prebuilt for them, maps may include
a customized layout of essential buildings and fortifications.
DIORAMA has an option that will cause an ASP-based base
layout phase to be injected into the generation process after
the terrain has been warped and smoothed. At a high level,
location(Building, , ) facts are generated using
choice rules for the origin point of each building, from which
blocked tiles are deduced and the number of lined-up build-
ings is computed. Overlapping buildings are easily rejected
with an integrity constraint. The size of a boundary zone
around blocked areas is calculated and globally maximized,
secondarily maximizing the modeled tidiness property of the
arrangement. The resulting layouts have an organized-looking
grid layout, fit to locally warped terrain features while ensuring
units can still navigate around the base.
In order to perform terrain-adapted base layout, this phase

needs access to terrain details already committed in the pre-
vious phase. DIORAMA dynamically assembles a specialized
generator for the situation by concatenating AnsProlog frag-
ments with facts describing the committed world details. Such
dynamic construction of design space models is very common,
and it represents a kind of adaptability to design problems
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that ASP provides that goes far beyond parameterization via
numeric parameters (which are used often enough, e.g., in
specifying the number of players for which a map should be
designed).
In this system, ASP was used to encapsulate two search-in-

tensive subproblems as feedforward generators in the context of
a larger, multiparadigm generator. Overall, DIORAMA’s genera-
tive procedure is a nonbacktracking pipeline of generate-only
components; the test procedure, if any, is human inspection of
the final maps. Even though map design does not involve a fi-
nite space (as terrain heights have a continuous domain), ASP
was still able to solve the most difficult subproblems, leaving
the other phases of generation free from any handwritten back-
tracking or generate-and-test search.

B. Variations Forever

In our recent project, Variations Forever (VF) [16], we gen-
erated code-like content that describes the game mechanics for
simple arcade games. An AnsProlog program embedded within
our Flash game captured a configurable design space of mini-
game rulesets that was consulted each time the player completed
a challenge.
VF demonstrated the use of ASP-based generators for online

PCG. The design space was parameterized, in a sense, by
Boolean flags such as tech(obstacles) that could be used
to toggle the presence of various mechanics in mini-games (the
optional presence of fixed obstacle tiles in this example). In a
more developed meta-game, these flags would be selectively
unlocked through player exploration, making design-space
sculpting a core mechanic. By communicating with an ASP
solver over the network, our generator delivered content to the
locked-down environment of a web browser at runtime.
In contrast to many of the uniform structures used in

DIORAMA (assigning numeric heights to a regular grid of
cells), VF focused on more complex relational structures de-
scribing the interaction of a smaller number of objects. In the
mini-games, colored squares representing agents moved about,
interacting with other agents and the environment. A string of
facts like the one below might (partially) define a ruleset. Other
facts parameterize an external obstacle placement algorithm
and influence the visual presentation of the mini-game (such as
background art selection and camera control policy).

player_agent(green),

movement_model(green,pacman),

agent_collide_effect(red,green,kill),

obstacle_collide_effect(green,bounce),

goal(kill_all(red)).

With a larger number of term types used in VF (in compar-
ison to DIORAMA), interpretation of answer sets is more com-
plex than setting values in data structures: collision effect rules
control which event handlers are installed in the game engine’s
physics simulation; movement models affect both player key-
board controls and per-frame physics; and the game’s stated
goal becomes a continuously monitored condition. Despite the

complexity of interpretation, many interesting properties of the
resulting mini-games were describable using AnsProlog rules.
The rich, relational representation allowed interesting emer-

gences such as a seemingly-unbeatable gamewhich required the
player to achieve the stated goal by using additional agents as
indirect pushing tools. The other side of rich representations is
undesirable emergences, such as games with the goal of escape
combined with an encircling wall pattern (impossible to com-
plete). In either case, a small set of rules described the essential
property of the emergence. Then, using an integrity constraint,
the properties were either required (effectively producing a spe-
cialized generator for that flavor of artifact) or rejected.
The ruleset generator in VF includes a

winnable_via(Method) predicate which de-
scribes templates for games which can be beaten by a given
method (e.g., escape, direct kill, indirect kill, etc.). Using such
a rule to define recognizable subgenres within VF’s space
eased understanding of unfamiliar mini-games at design time
and enabled the generation of hints at play time. That is, the
estimated mode of winnability was not required by the game
engine, but it provided optional feedback to the designer and
player about which patterns that game ruleset contained.
The tight, design-time loop of modifying VF’s generator

with property definitions after sampling only a few artifacts is a
common (even enjoyable) experience. The temporary employ-
ment of certain integrity constraints to zoom in on a subspace
of interest (called speculative assumptions in LUDOCORE vo-
cabulary [15]) allows the focus on mini-games which highlight
or stress some aspect of a game engine (assisting in debugging
of the larger system) without redesigning the generator. Rapid
iteration on our ruleset design space, in this way, was important
for identifying and addressing potential failure cases of our
game ruleset generator.

C. ANTON

The state-of-the-art automatic music composition system
ANTON [14] uses ASP to produce detailed melodic, harmonic,
and rhythmic musical compositions informed by a seamless
blend of local and global composition knowledge. Although
the musical content is not consumed in the context of any
game (instead in the form printed music notation, rendered
audio tracks, and even real-time performance), the applica-
tion provides examples of potential new directions for PCG
systems.
Until now, we have focused on the use of modeled proper-

ties for the purposes of use in integrity constraints, that is, re-
quiring or rejecting properties. The Palestrina rules of composi-
tion (a codification of renaissance counterpoint in western tonal
music theory) in ANTON serve a dual purpose: the system can
use the same rules to diagnose and informatively report flaws in
an externally provided composition. It might report the message
“middle note of triad doubled” and identify a particular part and
time in the composition, or “invalid minor harmonic combina-
tion” citing another location. Different composition styles carry
different error pattern definitions. As a body of computational
music theory, it is natural to expect ANTON’s knowledge to be
used in both analysis and synthesis.
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The different modes of operation in ANTON are sup-
ported by a program builder that dynamically assembles the
appropriate AnsProlog fragments to craft a design space ap-
propriate to the problem at hand. In a composition mode,
with a certain style and other configuration set, the design
space contains musical scores [represented with chosen-
Note(Part,Time,PitchNumber) terms] that strictly
conform to the assembled rules. In diagnosis mode, a logical
encoding of a human-created composition is combined with
style rules to produce a design space of critiques [including
error(Part,Time,Reason) messages], as opposed to
musical passages.
Automated critique of human-design artifacts can, of course,

help clean up these artifacts, but it can also be used to under-
stand and debug a design space (even suggesting particular con-
straints to relax in the iterative design of a generator). Producing
intelligent answers to a query such as “Why won’t you generate
artifacts like this?” is not an activity supported by any gener-
ators for game content, but perhaps it should be in the future.
Answers to such queries can even point out inconsistencies in
the background theory used by the generator (for example, it is
possible that the Palestrina rules contain contradictions that are
not obvious to human examination).
The ability for the composition mode to accept partial

human-created pieces allows the system to serve a number of
purposes beyond tabula-rasa generation: supplying fragments
allows the constrained generation of music that ends with a
certain pattern or embeds a certain motif; supplying one part
and not others allows solving for a harmonization consistent
with a given melody; and specifying only a chord progression
allows for natural melodic improvisation. By incrementally
committing to (or forbidding) details suggested by the system,
the user can carry out a mixed-initiative interaction with the
system. Nearly all ASP-based generators that employ dynamic
program construction will inherit this give-and-take capability
by default.
Though the connection is subtle, there is a similarity between

the music composition design task and the task of designing
platformer levels (rhythm has been identified as part of this
link [35]). ANTON composes music by selecting a series of
local moves a part should take: step up, leap up, rest, repeat,
etc. The trajectory through the space of absolute pitches and
times is derived as a side effect of these local moves. Rhythmic
and melodic composition rules are often written in terms of the
global trajectory and have a complex relationship to the local
moves. Similarly, Launchpad, a platformer level generator,
works by selecting a sequence from a set of local actions the
player should take: move, jump, and wait [36]. The player’s
trajectory is made concrete by generating geometry which must
fit rhythmic density and style constraints. The line critic in
Launchpad can be seen to be functioning as a melodic compo-
sition rule, with ANTON’s harmonic composition rules speaking
to the gameplay of as-yet-unconsidered platformer levels with
interacting, parallel tracks.

D. RoleModel

Our final example of using ASP for content generation is
our work-in-progress RoleModel story generator [37]. This

system’s narrative model includes characters (as a collection of
static traits and dynamic attributes), events (when a subject acts
on an object), and contextual details (a character’s sentiment for
his actions or notes that modify the effectiveness of an action).
Roles, for which the system is named, are perceived archetypes
of characters which, instead of being inherent properties of
their person, are a judgment made based upon their actions in
the story world. That is, they are an emergent result of how the
story unfolds.
Traditional story generators often adopt a single generation

paradigm such as a story grammar or world simulation (char-
acter modeling) approach. A declarative model of narrative
generation has been successfully demonstrated to allow these
two particular paradigms to be blended; however, the example
system uses a specialized search algorithm to interleave world
simulation with story grammar traversal, generating story
fragments in a strict temporal order [38].
The strength of the story generation approach used in Role-

Model derives, in part, from the declarative knowledge repre-
sentation abilities of logic programming, and also from the use
of sophisticated ASP solvers to implement the search process
used in generation. The system is capable of generating both
character profiles and the actions those characters take in such a
way that characters act in accordance with their traits, as well as
fitting any author-specified constraints on world state and per-
ceived roles (perhaps that an Alice character must have killed
her friend Bob without appearing to be an aggressor).
RoleModel brings to light a useful metaphor that applies

to other PCG problems as well. Suppose you had the prover-
bial million monkeys, each typing away at typewriters. If a
Shakespeare-level work were to be produced, how would you
recognize it? Choice rules stand in for the monkeys, producing
a default search space consisting of the right primitives, but
likely lacking appropriate global structure. The traditional logic
rules define the patterns to watch for in the typewritten results,
and the integrity constraints represent an editorial policy for
rejecting monkey business in terms of the modeled properties.
ASP allows the designer of a content generator to think in terms
of a generate-and-test process while enjoying the performance
of the adaptive search processes in the off-the-shelf solver at
runtime.
Finally, in many domains, story generation included, in-

vention of interesting modeled properties can not only lead
to more interesting generated outputs, but can contribute to
our shared human knowledge in that domain. The concept of
roles in RoleModel would be difficult to experiment with in
a generation paradigm for which emergent roles could not be
directly manipulated.

VII. CONCLUSION

This approach has been rooted in the recognition that PCG
is really concerned with two problems: the reliable generation
of desirable content artifacts from a design space, and the de-
sign of content generation processes which are fast, produce
fancy artifacts, and do so in a flexibleway (in support of iterative
design). Existing applications demonstrate that answer set pro-
gramming is a proven method for quickly (in terms of both run-
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ning time and designer effort) creating trustable, search-inten-
sive solutions to rich content generation problems in a way that
minimizes commitment to procedural details. The coupling of a
declarative specification of design spaces with powerful solvers
in ASP makes this possible.
In this paper, we have laid out a widely applicable framework

for creating content generators. Between here and what might
truly be called a generative space programming paradigm, what
is lacking is a natural, integrated way of leveraging procedural
knowledge where it is applicable. Future PCG research should
investigate how declarative, solver-based generators can be con-
nected with other generative procedures in a way that preserves
the desirable properties of the parts.

APPENDIX

Below is the complete source for our ASP-based chromatic
maze generator (tested in Clingo 2.0.5). To recreate our gener-
ation of the globally optimal 6-by-6 maze, invoke “clingo
appendix.ans -c min_solution=35”. The logical
terms then seen output by the generator are what would be fed
into our Python program for visualizing tile maps.
Clingo is available for free download from the Potassco

website (http://potassco.sourceforge.net/). Experimental
extensions are also available (from http://potassco.source-
forge.net/labs.html) including Xorro, a tool for sampling
answer sets with near-uniform probability, and Metasp, a
meta-programming layer for expressing complex optimization
criteria including Pareto efficiency.

%%%%A chromatic maze generator

#const t_max = .

#const min_solution = .

#const max_solution = .

#const size = .

%%A range of space and time

dim(0..size- ).

time(0..t_max).

%%Neighbor adjacency on grid

adjacent( , , , ):- dim( ), dim( ).

adjacent( , , , ):- dim( ), dim( ).

adjacent( , , , ):- dim( ), dim( ).

adjacent( , , , ):- dim( ), dim( ).

%%Cycling terminal-displayable colors

color(red;yellow;green;cyan;blue;magenta).

next(red,yellow).

next(yellow,green).

next(green,cyan).

next(cyan,blue).

next(blue,magenta).

next(magenta,red).

%%Allowable color transitions

ok( , ):- color( ).

ok( , ):- next( , ).

ok( , ):- next( , ).

%%Allowable steps

passable( , , , ):-

adjacent( , , , ),

cell( , , ),

cell( , , ),

ok( , ).

%%Description of chromatic mazes

1 {cell( , , ):color( )} 1:- dim( ), dim( ).

1 {start( , ):dim( ):dim( )} 1.

1 {finish( , ):dim( ):dim( )} 1.

%%A flood-fill style player exploration

player_at( , , ):- start( , ).

player_at( , , ):-

time( ),

player_at( , , ),

passable( , , , ),

0 {player_at(0.. , , )} 0.

%%The time of earliest completion

victory_at( ):- finish( , ), player_at( , , ).

%%That completion happened at all

victory:- victory_at( ).

%%Requirements on all generated puzzles:

:- not victory.

:- victory_at( ), < min_solution.

:- victory_at( ), max_solution < .

%%%%Visualization support logic

tile_grid(size,size).

tile_char( , , #mod10):-

> 0,

player_at( , , ),

not start( , ),

not finish( , ).

tile_char( , , ):- start( , ).

tile_char( , , ):- finish( , ).

tile_color( , , ):- cell( , , ).
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