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 2. Principles of ontology design 
Ontology is an ancient term used by philosophers to mean “a particular theory about the nature of being 

or reality” (Woolf 1981). Ontology design starts with creating a conceptualization of the domain: one 

that specifies the possible objects or entities about which knowledge can be expressed (the fundamental 

categories), and the relationships that can hold among them. Every knowledge model is committed to 

some conceptualization, implicitly or explicitly. An explicit specification of this conceptualization is 

called an ontology (Gruber 1993). In artificial intelligence, an ontology must be formally specified, so 

that it can be interpreted by a computer program. As discussed in the previous section, the desire to 

share and re-use knowledge bases has created a need for the knowledge-representation community to 

adopt common ontological conventions, which in turn has motivated recent interest in the principles of 

ontology design. 

In this section, we briefly review the major elements of the artificial intelligence approach to ontology 

design1: taxonomy, structured concepts, and axioms. We use a simple example, the familiar “blocks 

world” domain, to illustrate the process of conceptualization and some of the issues that arise in 

creating a formal ontology. We briefly describe two large-scale general-knowledge ontology projects, 

CYC and WordNet, which are very different from each other, illustrating the range of work currently 

being done in the field. A survey and in-depth discussion of the field of ontology design can be found 

in (Fridman Noy and Hafner 1997). 

 2.1 Creating an ontology: an example 
For an example of what an ontology is, consider the simple universe of the blocks world, consisting of 

a number of differently shaped blocks on a table, which can be stacked up in various ways by a robot 

hand. In designing our ontology, we may decide that we do not need to represent some concepts such 
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as the material the blocks are made of, their weight, etc.; in that case, we will not be able to reason 

about these properties of the blocks. The choice of ontology determines what a system can know and 

reason about.  

To begin conceptualizing the blocks world, we need three categories of objects—Block, Hand, and 

Table—along with sub-categories of blocks such as Brick, Cube, and Pyramid. We can 

represent these categories formally as predicates: Block(x), Table(x), Pyramid(x),and so 

on.  A simple relation between a block b and an object x is Supported(b,x), which holds if block 

b is directly supported by object x. We can define another relation Above(b,x) which holds if b is 

any one of a stack of blocks on top of x  (the Figure 1 

 

 

 

 

 

 

 

Figure 1. A scenario described by the blocks world ontology. 
transitive closure of the Supported relation). We can also define other properties of blocks in this 

world: Clear(b) is true if there is nothing resting on block b, and Bottom(b) is true when block b 

is resting on the table.  We can use this ontology to describe formally a particular blocks-world 

scenario, as shown in Figure 1. 

This blocks-world ontology is not yet sufficiently developed to support the intended application: a 

robot hand that moves blocks around and stacks them up in different configurations. For example, we 

may need an additional category in the ontology, Location, to represent the locations of blocks.  We 

could then introduce a function Loc(x) whose value is the location of an object. And we need to 

represent actions performed by the robot: for example Pickup(b) and Putdown(b) for picking up 

and putting down a block, and Move(b,l) for moving a block to a location. 
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Objects:  
  a, b, c, d, t, h 
 
Relations: 
  Table (t), Brick (a), Cube (b)  
  Pyramid (c), Cube (d), Hand (h) 
  Supported (b, a), Supported (c, b) 
  Supported (d, t), Supported (a, t) 
  Above (a, t), Above (b, t),  
  Above(c, t), Above (d, t),  
  Above (b, a), Above (c, a), 
  Above (c, b)  
   
Properties: 
  Clear (c), Clear (d), Bottom (a), 
  Bottom (d) 
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 2. 2 Elements of ontologies 

 2.2.1. Concept taxonomy 
The creation of an explicit classification hierarchy of concepts is usually the first step in ontology 
design. For a small domain-specific ontology such as the blocks world, this process may be 
straightforward; but given the more general goals of ontology design (knowledge sharing and re-use), 
designing the high-level organization of a large taxonomy presents significant challenges. Virtually all 
ontologies contain such taxonomic structures as a high-level division of concepts into objects  and 
events. The treatment of other kinds of concepts, including locations, times, and abstract terms such as 
numbers and ideas, varies from one ontology to another.  

Figure 2 illustrates the concept hierarchy of the blocks-world example from the previous section. 
Assuming there is an explicit taxonomy of concepts, we need to ask the next question: how is the 
taxonomy organized?  In (Fridman Noy and Hafner 1997) we found three different answers: some 
ontologies adopt the approach of having everything in a single tree-like concept hierarchy with multiple 
inheritance. The links in the hierarchy are IS-A links and the division of a concept into subconcepts is 
disjoint. Other ontologies use a multi-dimensional approach, specifying several parallel dimensions 
along which one or more high-level categories are sub-categorized. For example, Real versus Abstract, 
Individual versus Collective, and so on. In this case categories are specified by various combinations of 
values along these dimensions. For instance, HERD can be categorized as being Real and Collective, 
whereas IDEA is Abstract and Individual (Dahlgren 1988). A third major approach to taxonomy 
organization is having a large number of small local taxonomies that may be linked together via 
relations or axioms. 

 

 

 

 

 

 

 

 

 

Figure 2. A taxonomy for the blocks world ontology described in Section 2.1. 
Incompatibility of high-level taxonomic structure poses an obstacle to integration of different 

ontologies. A. Campbell and S. Shapiro in (Campbell and Shapiro 1995) discuss the idea of a 

"mediation interface" that can translate statements made in one ontology to another ontology. They 

LOCATION OBJECT EVENT 

Pickup Move Block Table Hand 

EVERYTHING 

Brick Cube Pyramid 



compare top levels of a number of ontologies in order to determine how similar or different they are 

and, hence how feasible it would be to integrate them. Two of the criteria they use is how tangled and 

how sparse or dense the top-level hierarchy is. For example, a simple tree-like structure with little or no 

multiple inheritance, such as the WordNet taxonomy (Figure 5), would not be considered tangled, 

whereas a system that employs the multi-dimensional approach, such as Cyc (Figure 4) would have a 

highly tangled taxonomy. 

 2.2.2 Structured concepts 
Defining concepts as objects with internal structure representing prototypical properties, components, 

and roles introduces additional complexity and power into ontology design. Structured concepts can be 

formally represented using slot-filler structures known as frames (Minsky 1981). For example, we can 

introduce a property slot called Color for blocks, with a finite set of possible fillers: {red, green, blue 

. . . }. Adding this slot makes the color of a block an inherent part of its definition, rather than an 

incidental relationship. The same approach can also be used to represent expected parts or components 

of objects, such as the seeds of an apple. In the blocks-world ontology, objects of type Location 

might be defined as having three numerical components: X-coordinate, Y-coordinate, and 

Z-coordinate.  If we want blocks to have individual names and to refer to them by their names, we 

would add a Name slot to the internal structure definition of the Block concept. 

In addition to properties and components, some concept definitions (especially those representing 

events) include slots for essential participants, called “roles”.  For example, in representing the concept 

of a Sale in an ontology for commerce, we need to define roles for the Buyer, the Seller, and the 

Goods being sold. In the blocks world, we can define the Move action as a structured concept with 

two roles: the block being moved, and the location which is the destination of the move. (In a more 

complete blocks-world system capable of reasoning about sequences of actions, it would be necessary 

to have temporal concepts in the ontology, and an additional slot in the Move frame to represent the 

time when the move occurred.) 

When structured concepts are combined with IS-A taxonomy, the inheritance rule of inference states 

that a sub-concept is implicitly defined to possess all of the slots of its parent, plus any new slots 

defined specifically for it2. Figure 3 shows part of the blocks-world taxonomy with internal concept 

structure added.  The sub-categories of Block (cube, pyramid, etc.) have a Color property (by 
                                                
2  As in object-oriented programming, knowledge representation systems must decide whether to allow a sub-concept to 

over-ride inheritance by creating a new slot with the same name as a slot of its parent or how to resolve name conflicts if 
multiple inheritance is allowed (Fikes et al. 1997). 



virtue of the inheritance rule), and in addition, cubes have a Side-length property, bricks have a 

Length, Width, and Height property, and so on.  

 2.2.3. Axioms 
In addition to the IS-A hierarchy and internal structure of concepts, axioms are formal assertions that 

provide a way of representing more information about concepts, constraints on their internal structure, 

and their relations to one another. In the blocks world, we can use axioms to represent, for example, the 

following constraints: 

a.  Mutual constraints on the values of several properties of a single object, such as “The length of a 

brick is always greater than its height” 

"X, Brick(X) => (Height(X) > Length(X)) (2.1) 

b.  Facts about the relations among objects, such as “Every block is supported by something”: 

"X, Block(X) => $Y, Supported(X,Y) (2.2) 

c.  Constraints on property or role values for related objects, such as “No cube is supported by a smaller 

cube”: 

"X"Y, (Cube (X) Ù Cube (Y) Ù Suppoted (X,Y))  (2.3) 

=> (Side-length(X) < Side-length(Y)) 

Logically there may be little difference between internal concept structure and axioms. One can define 

a concept using a frame formalism with roles and properties represented by slots of a frame. One can 

also express the same facts using axioms. For example, axiom 2.4 below states that all blocks must 

have a color property. 

"X, Block(X) => $Y,(Color-value (Y) Ù Color(X) = Y) (2.4) 

 

 

 

 

 

 

Concept: Block 
 ISA: Object 
 Name: <String-value> 
 Color: <Color-value> 
 
Concept: Cube 
 ISA: Block 
 Side-length: <Number-value> 
 
Concept: Brick 
 ISA: Block 
 Width: <Number-value> 
 Height: <Number-value> 

Concept: Block 
 ISA: Object 
 Name: <String-value> 
 Color: <Color-value> 
 
Concept: Cube 
 ISA: Block 
 Side-length: <Number-value> 
 
Concept: Brick 
 ISA: Block 
 Width: <Number-value> 
 Height: <Number-value> 



 

 

Figure 3. Blocks World Ontology with Structured Concepts and Inheritance  

An inheritance relation, too, can be represented using an axiom: Axiom 5 states that Cube is a sub-

category of Block. 

"X, Cube(X) => Block (X)  (2.5) 

The major advantages of using explicit taxonomy and structured concepts in ontology design are: 

a.  Focusing the attention of the inference or retrieval engine on what is most important. Taxonomic 

and slot-filler information is central to the identity of objects. It is helpful to identify this essential 

knowledge, rather than mixing it into a large database of axioms, most of which are rarely used. 

b. Supporting special-purpose inference algorithms. Since taxonomic and slot-filler knowledge have a 

restricted logical form, special-purpose programs can use it efficiently, which is not possible if it is 

expressed in the more general formalism of logical axioms. The ability to specify default values for 

slot-fillers is a useful representation convention that is difficult to implement in a general logic-

based inference system, since it requires non-monotonic reasoning (Reiter 1988) 

c. Aiding human understanding of the ontology. The current state-of-the-art requires human 

participation in the construction of ontologies, although there is work aimed at automatically 

inducing taxonomies and other ontological data from large text corpuses (Riloff and Shepherd 

1997). For the present, however, it is essential that researchers can view and understand ontologies 

that they build.  Taxonomy and structured concepts, augmented by axioms, provide a more natural 

way for people to express and comprehend ontologies than a pure axiomatic approach.  

 2. 3 Two large-scale ontologies 

 2.3.1 The Cyc project 
Fourteen years ago a comprehensive effort was commenced to  create a general ontology for common 

sense knowledge: the Cyc project (http://www.cyc.com/cyc-2-1/cover.html ; Lenat 1990; Lenat and Guha 1990; 

Guha and Lenat 1994; Lenat 1995). Cyc contains more than 10,000 concept types used in the rules and facts 

encoded in the knowledge base. It includes all three of the elements discussed in the previous section: a 

large general taxonomy, structured concept definitions, and axioms.  



 

Figure 4. Cyc: Top-level categories (adapted from (Lenat and Guha 1990)) 

The upper level of the Cyc hierarchy is presented in Figure 4. At the top of the hierarchy is the Thing 

concept which does not have any properties of its own. The hierarchy under Thing is quite tangled. Not 

all the subcategories are exclusive. In general, Thing is partitioned in three ways: 

• RepresentedThing versus InternalMachineThing. Every Cyc category must be an instance of 

one and only one of these sets. InternalMachineThing is anything that is local to the platform 

Cyc is running on (strings, numbers and so on). RepresentedThing  is everything else. 

• IndividualObject versus Collection. This is another total partition of Things. Collections include 

all the categories mentioned in Cyc. Hence, Collection doesn't have mass and is imperceptible. 

• Intangible versus TangibleObject versus CompositeTangible&IntangibleObject. Every unit in 

Cyc is an instance of exactly one of these three categories. Intangible is anything that has no 

mass (set of all people, number42, etc.), whereas TangibleObject is anything that does have 

mass-energy (a rock, a person's body). CompositeTangible&-IntangibleObject is something that 

has both a physical extent and intangible extent. For example, a particular person has a body 

(physical extent) and mind (intangible extent). 



 2.3.2 WordNet 
One of the best-developed lexical ontologies is WordNet, a manually-constructed on-line lexical 

reference system (ftp://clarity.princeton.edu/pub/wordnet/ ; Miller 1990). Lexical objects in WordNet are 

organized semantically (with the basic distinction between nouns, verbs, adjectives and adverbs). The 

central object in WordNet is a synset, a set of synonyms. If a word has more than one sense, it will 

appear in more than one synset. There are 70,000 synsets. Synsets are organized in a hierarchy via 

super-class/sub-class relationship (referred to as hypernymy/hyponymy). Part of WordNet hierarchy of 

tangible things is presented in Figure 5. 

WordNet is primarily a taxonomy; it does not include structured concepts or axioms, and it represents 

only a very few non-taxonomic relations among concepts. (Concepts in WordNet are not entirely 

atomic, however, since each concept is represented as a list of the words used to name it.) For noun-

synsets, there is one non-taxonomic relation represented: each noun has a pointer to other nouns 

representing its parts. For example, parts for the bird concept are beak and wings.  

 

Figure 5. WORDNET: Representation of subclass relation among synsets denoting different kinds of 
tangible things (Miller 1990). Braces enclose concepts in the same synset. 

Although WordNet uses a simple hierarchy for noun synsets, it employs a different 

organization of synsets for verbs and adjectives. Descriptive adjectives, are organized in 

bipolar clusters based on antonymy. For example, there is a bipolar cluster generated by 

dry and wet with synonyms of each of the adjectives at the corresponding side of the 

cluster. Verbs are divided into 15 clusters according to their meaning, with entailment 

being the primary relationship between the verbs in a cluster. Most of these clusters 

correspond to semantic domains: verbs of bodily care and functions, change, cognition, 



communication, competition, etc. Verbs such as suffice, belong, and resemble that do 

not belong to any of the semantic domains and refer to states, form a separate cluster. 


