CS 5100: Foundations of
Artificial Intelligence

NLP & Support Vector Machines

Prof. Amy Sliva
December 8, 2011

Outline

- Discuss final exam

- POS tagging and parsing review

- NLP semantics, pragmatics, machine translation
- Neural networks and support vector machines

Final exam

- December 15, room 135 Shillman Hall

- Topics—cumulative exam, but heavily skewed toward post-
midterm material

1. Probability theory

2. Bayesian networks

3. Machine learning
* Naive Bayes
* Decision trees (and information theory)
« Support vector machines

4. NLP
+ Parsing
- POS tagging
« Semantic analysis

Extra credit opportunity!

- IBM Watson talk

- Distinguished Speaker Series
Fri.12/09/11, 10am-11am 90 Snell Library

- What Is Watson?
Michael P. Perrone, PhD
Manager, Multicore Computing, IBM T.]. Watson Research Center

- Attend talk, write a reaction paper
- Max 2 pages
- Insightful thoughts about the application, technical and theoretical Al
content, relevance to what you have learned in the course, etc.

- Up to 4 extra points on final grade!

Natural language processing (review)

- Natural language
- Language spoken by people

- E.g., English, Japanese, Swahili, etc. as opposed to artificial languages
like C++, Java, etc.

- Natural language processing
- Applications that deal with natural language in one way or another

- Levels of analysis
- Lexical
 Syntactic
« Semantic
« Pragmatic

Part-of-speech tagging (lexical analysis)

- Process of assigning a part-of-speech (POS) to each word in

a sentence
heat
waterﬁz N
. \Y
1n p
a \

DET
large / \ AD]
vessel

Significance of parts of speech

- Word'’s POS tells us a lot about the word (and its neighbors)

- Limits range of meanings (deal), pronunciation (object vs object) or
both (wind)

- Limits range of following words
- Help select nouns from a document for summarization

- Parsers can build trees directly on the POS tags instead of maintaining
a lexicon

e
Methods for POS tagging

- Rule-based POS tagging

- E.g.,, ENGTWOL (Voutilainen, 1995)—Ilarge collection (> 1000) of
constraints on what sequences of tags are allowable

- Transformation-based tagging

- E.g., Brill's tagger (Brill, 1995)—sorry, I don’t know anything about
this...

- Stochastic (Probabilistic) tagging
- Uses supervised learning
- E.g.,, TNT (Brants, 2000)—we’ll talk about this in more detail!

Supervised learning approach

- Algorithms “learn” from data by generalizing a set of
examples

» Training set—examples trained on

- Test set—used for evaluating the algorithm

« Must be separate from training set (otherwise you cheated!)
- “Gold” standard

 Test set that a community has agreed on and uses as a common
benchmark

Cross-validation learning algorithms

- Cross-validation set—part of training set

- Used for tuning parameters of the algorithm without
“polluting” (tuning to) the test data

* Train on x%, and then cross-validate on the remaining 1-x%
- E.g., train on 90% training data, cross-validate on the remaining 10%

- Repeat several times with different splits to get the best parameter
estimation

- Allows you to choose the best settings to then use on the real test set

- Only evaluate on the test set at the very end after the algorithm is as good
as possible from cross-validation

Strong baselines

- When designing NLP algorithms, must evaluate by
comparing to others
- Baseline algorithm

- Algorithm that is simple, but can be expected to do well

 Should get the best score possible by doing the somewhat obvious
thing

- POS tagging baseline—for each word, assign its most
frequent tag in the training set

- Want our stochastic taggers to improve on this!

e
N-grams for POS tagging

- N stands for how many terms are used in conditional

probability

 Unigram: 1term (0% order) E.g., P(X)

- Bigram: 2 terms (15t order) E.g, P(X|X.,)

- Trigram: 3 terms (2" order) Eg,PX | X, X.,)

- Can use different kinds of terms
« Character-based n-grams
- Word-based n-grams
- POS-based n-grams

- Helps determine context in which some linguistic
phenomenon happens
- E.g., what POS will a word have, given the preceding parts of speech?

First approach (unigram)

- Assign each word its most likely POS tag

- If w has tags t,,...,t, then use

P(t;|w) = c(w, t;)
c(w, t))+ ... +c(w, t,)

- where c(w, t,) = number of times w/t, appears in the corpus

- Success: 91% for English!

- Example
 heat::noun/89, verb/5

Second approach (bigram)

- Given: sequence of words (i.e., a sentence) W s.t.

W=w,w,..,w,

- E.g.,, W= heat water in a large vessel

- Assign sequence of tags T s.t.
T=t,t,.,t

- Find T that maximizes P(T | W)

L
Practical Stochastic Tagger

- By Bayes Rule:
yayﬁ?ﬁlme/):PW P(T) = a P(W| T) P(T)
J—Hp(w%ﬂ

« So find T that maximizes P(W | T) P(T)

« Chain rule:
P(T) = P(t)P(t, | t) P(E5 | £y t5) P(E5 | £y 5 t5) o P(E, | £y ooy)

- Markov assumption: as an approximation, use:

P(T) = P(t))P(¢t, | 1) P(5] L5) ... P(¢, | E,1)

- Naive Bayes assumption: each word is dependent only on its own POS
tag (given its POS tag, it is conditionally independent of the other words)

P(W|T)=P(w;|t) P(w; | t;) ... P(w, | L)

- So
P(W|T)P(T)=P(w,| t;) P(w;| ;) ... P(w, | t,) P(t,) P(L; | £;) P(L5] E5) ... P(E, [L)

Syntactic analysis (parsing)

- Uses formal grammar and parsing algorithm to find
structure

- Create parse trees from sentences

Sentence S

One or more parse trees for S (or fail)

- Limitations
- Explosion of number of parse trees
- Inability to handle ungrammatical input

Grammars for parsing

- Grammar—specifies the compositional structure of complex messages
- E.g.,, speech (linear), text (linear), music (two-dimensional)

- A formal language is a set of strings of terminal symbols (actual
words)

- Each string in the language can be analyzed /generated by the
grammar

- Grammar is a set of rewrite rules (productions)

S-> NPVP

Article - the|a|an| ..
NP - ...

VP> ..

Here § is the sentence symbol, NP and VP are non-terminals

Parse tree for a sentence

- Parse tree represents grammatical structure of sentence
- May also indicate semantic interpretation

- Any sentence of formal language L has one or more parse
trees

- Show how it can be derived by repeated applications of production
rules in the grammar

L
Parsing with CFGs (or PCFGs)

- Task of assigning correct trees to input strings

 Tree covers all and only the elements of the input and has an § a at
the top

- System may not be able to select the “correct” tree from
among possible trees
- Parsing involves search where choices must be made
- Requires semantics to find the “right” tree!

Wumpus grammar
S-> NPVP [0.90] [+ feel a breeze
| SConjS [0.10] I feel a breeze + and + it stinks
NP - Pronoun [0.30] I
| Name [0.10] John
| Noun [0.10] pits
| Article Noun [0.25] the + wumpus
| Article Adjs Noun [0.05] the + smelly dead + wumpus
| Digit Digit [0.05] 34
| NP PP [0.10] the wumpus +in 13
| NP RelClause [0.05] the wumpus + that is smelly
VP - Verb [0.40] stinks
| VP NP [0.35] feel + a breeze
| VP Adjective [0.05] smells + dead
| VP PP [0.10] is+in13
| VP Adverb [0.10] go + ahead
Adjs - Adjective [0.80] smelly
| Adjective Adj [0.20] smelly + dead
PP - Prep NP [1.00] to + the east

RelClause = RelPro VP [1.00] that + is smelly

Wumpus parse tree

S
/90\
NP VP
02 0.40
Article Noun Verb
005 0.15 0.10
Every wumpus smells

- Total probability of the tree
=0.9 x 0.25 x 0.40 x 0.05 x 0.15 x 0.10 = 0.0000675

Simple parsing exercise
- Context-free grammar for arithmetic expressions

S = digit
S=>S+S
S—>S*S

- 3*4 + 5 has two valid parse trees with different semantics.
What are they?

Top-down parsing

- Trying to find trees rooted with an §, so start with rules that
give us an S

- Work your way down from there to the words

S
/S\ S‘
NP VP A[%IP]\VP VP

VP Aux NP VP Aux NP VP VP VP

AN PN AN

Det Nom PropN om PropN

\"

Bottom up parsing

- Since want trees that cover the input words, start with trees
that match the words right away

- Work your way up from there

NP NP

NoM NM w oM NM
Nolun Det Nolun Verb Det Noun Verb Det Nolun
Bolok thlat ilght Book thlat ight Bolok thlat ilght

NOM NOM NOM

Noun Det Nolun Verb Det Noun

Book thlat ilght Book that ight

Noun Det Noun Verb Det Noun

Bolok thlat ight Bolok thlat ilght

Book that ight

Top-down vs. bottom-up

» Top-down

+ Only searches for trees that can be answers, but suggests trees that
are not consistent with the input words

« Guarantees that tree starts with S as root
- Does not guarantee that tree will match input words

- Bottom-up

+ Only forms trees consistent with the input words, but suggests trees
that make no sense globally

 Guarantees that tree matches input words
- Does not guarantee that parse tree will lead to S as root

- Combine advantages of the two by doing a search
constrained from both sides

Semantic analysis

- Determine the meaning of language

- Importance of semantics?
« Machine translations: wrong translations
- Information retrieval: wrong information
« Anaphora resolution: wrong referents

- Biggest challenge: lexical ambiguity—words are ambiguous
- “plant” = industrial plant
- “plant” = living organism

Why do we need semantics?

- Machine translation example
- The sea is home to millions of plants and animals

English = French translation (commercial MT system)
Le mer est a la maison de billlion des usines et des animaux
French - English

The sea is at the home for billions of factories and animals

- Hmmm...

Lexical ambiguity

- Extreme case—two words with the same spelling
- Wound, wound
- More frequent case—words that can be a noun, verb,
adjective, etc.
« Time, phone
- Many English words have multiple meanings even within
one part of speech (POS)
- Set, head, can, bear, ...
- WordNet—public domain lexical-semantic net
- Demo!! (http://wordvis.com/)
- SemEval—a periodic “shared task” activity to evaluate
semantic analysis tools

How to learn the meaning of words?

- How do we get a training set of semantic examples?

- From dictionaries: word sense

- plant, works, industrial plant—(buildings for carrying on industrial
labor; “They built a large plan to manufacture automobiles.”)

plant, flora, plant life—(a living organism lacking the power of
locomotion)

- Can these definitions help disambiguate all uses?
- They are producing about 1,000 automobiles in the new plant.
- The sea flora consists of 1,000 different plant species.
- The plant was close to the farm.

How to learn the meaning of words? (cont.)

- Learn from annotated examples

- Assume 100 examples containing “plant” previously tagged by a
human

- Train a learning algorithm to classify future instances of “plant”

- How to choose the learning algorithm?
- How to obtain the 100 tagged examples?

Fillmore’s case grammar

- Assign semantically based cases to distinguish a word’s
“role” and disambiguate

- Charles Fillmore, “The Case for Case,” 1968

« Produced more than one version

Case grammar semantics

- Treats the verb as a predicate and the subject, objects, and
other subordinate clauses as the “arguments”

- Labels arguments with their relationship to the verb-
predicate (called cases)

- E.g., John sold his car—agent and object cases
John sold his car to Mary—agent, object, and recipient cases

Fillmore’s list of cases

- Agentive (A)—case of the typically animate perceived instigator of the action
identified by the verb

« Instrumental (I)—case of inanimate force or object causally involved in the action of
state identified by the verb

« Dative (D) (later Experiencer (E))—the case of the animate being affected by the
state or action identified by the verb

« Factive (F) (later Goal (G))—the case of the object or being resulting from the action
or state identified by the verb, or understood as a part of the meaning of the verb

+ Locative (L)—the case identifying location or spatial orientation of the state or
action identified by the verb

« Objective (O)—the semantically most neutral case; anything representable by a
noun whose role in the action or state identified by the verb is identified by the
semantic interpretation of the verb itself

Analysis of case semantics

- Strengths

« Only one Noun Phrase occupies each case role in relation to a
particular verb

« Can classify verbs in terms of which case roles they took
E.g., “open”"—O0, {A}, {I}
“shout”—A, O, {E}

- Weaknesses
- Researchers cannot agree on standard set of cases!
- Not easy to classify Noun Phrases as cases in practice
- Tendency to use the “Objective” case whenever it gets difficult

More issues in semantic analysis

- Reference resolution
“Josh sold a book to Tom. He was happy.”
“Mary and I went out to dinner. It was fun.”

- The pronoun (or other anaphoric noun phrase) may
reference something that is implicitly mentioned by does
not have a specific antecedent.

Pragmatics—semantics and context

- Classical view (pre-1953)—Ilanguage consists of sentences
that are true/false (like logic)
« Why?
To modify the beliefs of other agents

- Modern view (post-1953)—Ilanguage is a form of action
« Why?
To change the actions of other agents

Speech act theory of pragmatics

- Examples: “I pronounce you husband and wife”
“I sentence you to five years”

SITUATION

Speaker - Utterance - Hearer

- Speech acts achieve the speaker’s goals:

- Inform “There is a pit in front of you”
« Query “Can you see the gold?”

- Command “Pick it up”

- Promise “I'll share the gold with you”

- Acknowledge “OK”

- Speech act planning requires knowledge of
- Situation
- Semantic and syntactic conventions
- Hearer’s goals, knowledge base, rationality

Machine translation

- Text to text machine translations
- Speech to speech machine translations

- Most of the work has addressed pairs of widely spread
languages like English-French, English-Chinese

Issues in machine translations

- How to translate text?
- Learn from previously translated data

- Need parallel corpora

« French-English, Chinese-English have the Hansards (transcripts of
parliamentary debates)

- Reasonable translations?

 Application dependent—do we need the general idea or precise
language?

- Lack of data = lack of tools
« Chinese-Hindi—no translator available!

Speech to speech translation challenges

- Stages in communication (informing)

+ Intention S wants to inform H that P

- Generation S selects words W to express P in context C
- Synthesis S utters words W

- Perception H perceives W’in context C’

- Analysis H infers possible meanings P,,....P,,

- Disambiguation H infers intended meaning P;

« Incorporation H incorporates P; into KB

- How could this go wrong?
- Insincerity (S doesn’t believe P)
- Speech wreck ignition (recognition!) failure
- Ambiguous utterance
- Differing understanding of current context (C # C”)

Information extraction

- Extract information and detect new patterns in data
- Detect hacking, hidden information, etc.

- Government and military put a lot of money into IE
research!

- Example:
“There was a group of about 8-9 people close to the
entrance on Highway 75"
- Who? “8-9 people”
- Where? “Highway 75”

Information retrieval

- General model—Huge collection of texts and a query
- Tasks

+ Find documents that are relevant to the given query—Create an
index, like the index in a book

- Retrieve specific information—question answering
“What is the height of Mount Everest?” 11,000 feet

- Types of models

-+ Vector-space models
- Boolean models

- Examples—Google, Yahoo, etc.

Cross-language information retrieval

- Find information across languages!

- Example:
“What is the minimum age requirement for car rental in

[taly?”

- Search English and also Italian texts for “eta minima per noleggio
macchine”

- Integrate large number of languages and into performant IR
engines

Perceptrons and neural networks

- Another supervised learning approach—mathematlcal
model of neurons

Dendritas

7
- Human brains w1
- 10! neurons of > 20 types, : 'y
10'* synapses, 1ms-10ms cycle time "\ (e
- Signals are noisy “spike trains” of N

electrical potential

L
McCulloch-Pitts “unit”

- Simple mathematical model for a neuron

Bias Weight

ag= = o(in.
0 Wwo, a;= g(in))

Input Input Activation
Links Function Function

Output %‘frtlll)(l;t

- Neural network—units connected by directed links
- Propagates activation a;from i toj
- Network is a function h,(a) parameterized by weights

- Outputis a “squashed” linear function of the inputs
a; =g(in) = g(ziwi,j a;)

Activation functions

- Perceptron—hard threshold (step function) activation
function

 Changing the bias weight moves the threshold loction

1 1 ——

0.5 1

0

8-6-4-202 46 8

- Sigmoid—Ilogistic activation function

1 9

0.5 1

6420 2 46

Perceptrons and threshold logic

- Perceptron—single layer neural network with only one
neuron
- Neuron unit calculates input through threshold activation function

- Sometimes called threshold logic unit (TLU)
- Discriminates data depending on whether sum is greater than threshold

- g(in) = 1 iff in > threshold, 0 otherwise

- Can implement every boolean function
W,=1.5 W,=0.5 W,=-0.5

w,=1 w,=1

WZ=1 W2=1

AND OR NOT

Perceptron learning

- Provides linear discriminant for classification

0 1 X 0 1 X 0 1 X%

(a) x; and x, (b) x; or x, (¢) X, XOr X,
- Main learning task is to learn the weights so we know how
to classify new inputs
- Several possible algorithms for training single-layer
perceptrons using
 Perceptron rule

- Gradient descent rule
- Delta rule

Error-correction learning

- All rules for perceptron learning based on error-correction

Assign random weights (or set all to 0)
Cycle through input until change < target
Let a be the “learning coefficient”

> W N e

For each input:
- If perceptron gives correct answer, do nothing

- If perceptron says yes when answer should be no, decrease weights
on all units that “fired” by a

- If perceptron says no when answer should be yes, increase weights by
o

Perceptron rule

- Simple rule for updating the weights when perceptron
answer 1s incorrect

w.=w.+a(y-h,(x])) x

° Perceptron convergence theorem

- For any data set which is linearly separable the perceptron learning
rule is guaranteed to find a solution in a finite number of steps

Perceptron learning example

- Suppose a perceptron accepts two inputs x; = 2 and x, = 1, with weights
w; = 0.5 and w, = 0.3 and w, = -1 (meaning that the threshold is 1)

+ The output of the perceptron is:
h, (x)=2*05+1%0.3-1=0.3 whichis>0

- Therefore the output is 1. If the correct output however is -1, the
weights will be adjusted according to the Perceptron rule as follows:

w,=0.5+0.1%(-1-1)*2=0.1
w,=0.3+0.1%(-1-1)*1= 0.1
wy= -1+ 01*(-1-1)*1=-1.2

- The new weights would classify this input as follows:
h,(x)=2*%01+1%0.1-1.2=-0.9

- Therefore we have done “error correction”

How to optimize the search

- Learn by adjusting weights to reduce error on the training
set

- The squared error for an example with input x and true

output y
E=%Err’= %(y - h,(x))*

- Gradient descent, hill climbing, simulated annealing
- Optimization techniques that search for weights to reduce error faster
- Find a new adjusted activation function g’

- Optimized perceptron learning rule
w,=w,+axErr x g'(x;) x x,

Hill climbing optimization
- Given function F, find the x that gives the best F(x)

- How it works

- Choose point in n-dimensional space to search as current “guess” x = x;...
X, (i.e., our current amount of error)

Take a small step in k directions

Choose the direction that results in maximum improvement in F(x)
i.e., find a new value for g(in) s.t. the error y - g(in) is lower

Make that the new guess
Repeat until no more improvement is possible or desirable

- Simulated annealing—variant that randomly jumps at intervals to
find a better region

Rather than incremental improvements, we can reduce error
faster and get closer to the actual function

Brief overview of support vector machines

- SVMs are also linear classifiers

Brief overview of SVMs

- But, which linear separator do we want to use?

A
o
o
o O
© o
O O
o B O
:DI:IEI
>

- Any is fine, but which is the best?

Maximum margin linear classifier

- Margin of a linear classifier is the width the boundary can be increased
before hitting a data point

« Support vectors—data points that the margin pushes against

- Want to use the linear classifier with the maximum margin

- Conservative estimation—if we have an error in the boundary, higher margin
means less chance of misclassificaiton

- Robust to outliers—strong generalization ability
- Simplest kind of SVM—empirically works really well!

Mathematically specifying a line and margin

Plus plane
Classifier boundary
Minus plane

* Plus-plane ={x: wx+ b =+1}
« Minus-plane = {x: wx + b =-1}

- Classify as

+1 if wx+b >=1
-1 if wxX+b <=-1
universe if -1<wx+b <1

explodes

e
Computing the margin width

\aS® - M = Margin
cL C .

Plus-plane = {x: wx + b = +1}
Minus-plane = {x: wx+ b =-1}

How do we compute the margin M in terms of w and b?

Claim: the vector w is perpendicular to the plus plane (and minus plane)

 Suppose u and v are two vectors on the plus plane
w.(u-v)=0

e
Computing the margin width

M = Margin
width

Plus-plane = {x: wx+ b =+1}
Minus-plane = {x: wx + b =-1}

How do we compute the margin M in terms of w and b?

w is perpendicular to the Plus Plane

- Let x be a point on the Minus Plane
Let x* be the closest point to x- on the Plus Plane

- Claim: x* =x + Aw for some value of A. Why?

e
Computing the margin width

M = Margin
width

* Plus-plane = {x: wx + b =+1}
- Minus-plane = {x: wx + b =-1}

- wis perpendicular to the Plus Plane
- Letx be a point on the Minus Plane
Let x* be the closest point to x- on the Plus Plane

« Claim: x*=x + Aw for some value of . Why?
The line from x* to x" is perpendicular to the planes, so travel some
distance along w to get from one to another

Computing the margin width

M = Margin
width

- What we know now:
wxt+b =1
wx +b =-1
xXt-x = Aw
|Ix*-x'| =M

- Now its easy to get M in terms of w and b

Computing the margin width

M = Margin
width

w.(x+Aw)+b=1

(w.x+b)+Aw.w=1
- What we know now:

wx*+b =1 1+Aaw.w=1
M:X'-_I-b =-1 re 2
X'X =}\.W wW. W
|Ix*-x'| =M

- Now its easy to get M in terms of w and b

e
Computing the margin width

M = Margin
width

M = |x*-x|= |Aw| = A|W]|
- What we know now: =AV(w.w)
wx*+b =1
wx +b =-1 =2V(w.w)= 2
XX = AW w.w V(w.w)
|Ix*-x'| =M
A= 2

w.w

e
Computing the margin width

 Yay! Just maximize M = 2
Viw. w)
- Wait...what about the data?!?

e
Computing the margin width

- Given a guess of w and b we can
- Compute whether all data points are in the correct half-planes
- Compute the width of the margin
- So now we need to write a program to search the space of
w's and b’s that finds the widest margin that fits all data
points
- Gradient descent, simulated annealing, etc.

