CS 5100: Foundations of
Artificial Intelligence

Agents, Logic, and Reasoning

Prof. Amy Sliva
September 22,2011

Outline

- Propositional logic
- Horn clauses
« Forward-chaining
- Backward-chaining

- First-order logic
- Knowledge engineering for first-order logic

Review: clauses and inference

- Literal is an “atomic sentence” (i.e., P, Q, R) or the negation
of an atom (i.e., = P)

- Clause is a disjunction of literals (i.e, Pv =Q v R)

- KB is in Conjunctive Normal Form (CNF) if represented as
a conjunction of disjunctions of literals
- A set of clauses (AND is implicit) representing the agent’ s knowledge

- With KB in CNF, resolution is sound and complete
inference procedure in a single rule!!

- Theorem: any set of logic sentences can be transformed
into CNF (conjunctive normal form)

Horn clauses

- Horn clause—clause with at most one positive literal
-P,V-P,V...V-P,

- Definite clause—Horn clause with exactly one positive literal
-P,v-P,v...V-P, VR

 Goal clause—Horn clause with no positive literals
-P,V-P,V...V-P,

- Closed under resolution (i.e., resolution of Horn clauses will
return Horn clause)

- Special properties of KBs with Horn clauses
1. Definite clauses can be written as implication rules <body> = <head>
(-P,Vv-P,v...V-P)=R
2. Two inference methods that work for Horn clauses
« Forward chaining (data driven)
« Backward chaining (goal driven)

3. Entailment can be decided in linear time w.r.t. size of KB

Horn clauses and definite clauses

All Clauses

Horn clauses: 0 or 1
positive literals

Definite clauses: 1
positive literal

Which of the following are clauses? IF yes,
convert to implicative form. Which are Horn
clauses? Definite clauses?

AV B

ANB

~AV -B

~AA-B
“AV-BVCVDVE
(AAB)VC
S(AA-B)VC

N o ok W

Which of the following are clauses? IF yes,
convert to implicative form. Which are Horn
clauses? Definite clauses?

1. AVB Yes."A= B

2. ANB No.

3. AV -B Yes. A = =B. Horn clause.
4. —AN-B No.

5. "AV-BVCVDVE YesAANB->CV DV E
6. (ANB)VC No.

7. "(AAN-B)VC No.

Forward-chaining

- Determines if query q is entailed by KB of definite clauses
- Starts with known facts and derives new knowledge

« Horn clauses: Rules:
Cl.-P;,v-P,vP, P, AP,=P,

- Facts: P, , P,

- Step 1: Percepts P, and P, resolve with C1 to get P,
(Add P, to KB)

- Step 2: Resolve P, with C2 to get P:

« This is called rule chaining
- Agent can derive conclusions from incoming percepts

Forward-chaining algorithm

- Algorithm (recursive):

PLForwardChain()

uses KBase -- a knowledge base of Horn clauses for each new
percept p

PLFCl(p) #use a recursive "helper function”

PLFC1 (percept)

if percept is already in KBase, return
else

add percept to Kbase

for r in rules s.t. conclusion is not in Kbase
if percept is a premise of r and all
other premises of r are known

PLFC1l(conclusion of r)

- Note: 1) Efficient implementation requires indexing rules by LHS
2) How are infinite loops prevented by this algorithm?

Forward-chaining algorithm

- Algorithm (recursive):

PLForwardChain()

uses KBase -- a knowledge base of Horn clauses for each new
percept p

PLFCl(p) #use a recursive "helper function”

PLFC1 (percept)
if percept is already in KBase, return
else
add percept to Kbase
for r in rules s.t. conclusion is not in Kbase
if percept is a premise of r and all
other premises of r are known

PLFC1l(conclusion of r)

- Note: 1) Efficient implementation requires indexing rules by LHS
2) How are infinite loops prevented by this algorithm?

Backward-chaining

- Works backward to determine if the query g is true

« Horn clauses: Rules:
Cl.-P,v -P,v P, P,AP,=P,
- Facts: P,, P, Goal: P

- Subgoal: prove P,

+ Sub-sub goal: prove P,
+ Sub-sub goal: prove P,

- Very efficient—only touches relevant facts/rules

Backward-chaining

- Goal-driven reasoning triggered by a new percept (fact)

- Basis of backward-chaining
P A R= (Q is an assertion in the KB
Q is a query we want to prove (or disprove)

Set up P and R as sub-queries, if true then Q is proved

- What if we cannot find Q or a rule that proves Q?

- Answer False—negation by failure
(not the same as a real proof of =Q)

- Note: P= -(Q is not a Horn Clause
- Normalizes to P v Q, which has two positive literals

Backward-chaining

- Goal-driven reasoning triggered by a question being asked

- KB:
fruit = edible
vegetable = edible
edible A green = healthy
apple = fruit
banana = fruit
spinach = vegetable
spinach = green
edible A healthy = recommended
=> apple

- Consider some queries:
7apple 7?fruit ?banana ?edible 7healthy

Sketch of backward-chaining algorithm

- Algorithm (recursive):

backwardChain (KB, query) returns Boolean
if query is in KB, return True
for each rule r in KB such that RHS(r) == query
testing = True
for each element e of the LHS(r)
if backwardChain (KB, e) = False
testing = False
break
if testing = True return True
return False

- NOTE: backward-chaining does not update the KB

Review of the wumpus world in PL

- What do we need to represent?
I. Static knowledge

- Relevant ontology of possible world configurations:
- locations on a 4x4 grid and their properties
(e.g., P,,means a pitin [x,y])

Xy
- Player’s current state (L, , has-arrow)

- The axioms of the world configuration
* L,; A Breeze = P,, Vv P;,

* There is exactly one wumpus:
Wy, vWs,v...vW,,==thereis at least one
- (W, ; A W, ,)—one axiom like this for each pair == there is at
most one

- Player’s current percepts
Breeze, Stench

The wumpus world in PL (cont.)

II. Dynamic Knowledge
- Possible actions: up, down, left, right, grab, shoot

- Effects of actions (requires temporal indexing)
Li;oANupy,=>L,,;, — one for each location [xy] at time ¢
L, 0 A has-arrow, A shoot,=>L;,; A —has-arrow;,

« The frame problem requires exhaustive representation
of effects (and non-effects)
Ligo nupg=>Lyiqn =Ly,
But it gets even worse!
L;,o A has-arrow, A up,=>L,,; A =L, ;A has-arrow,
L;;o N —has-arrow, A up,=>L,,; A =L;;; A =has-arrow,
The frame problem arises when we use temporal indexing—
causes axioms to multiply almost without limit!!!

Pros and cons of propositional logic

© - Propositional logic is declarative
© « PL allows partial /disjunctive /negated information

- Unlike most data structures and databases

- Horn clauses are a nice intermediate form
© - Propositional logic is compositional

* Meaning of B, ; A P, ,is derived from meaning of B, ; and of P, ,
© « Meaning in PL is context-independent

- Unlike natural language, where meaning depends on context
@ - Propositional logic has very limited expressive power

« Unlike natural language...

- E.g., cannot say “pits cause breezes in adjacent squares” (except by
writing one sentence for each square)

First Order Logic (FOL)

» Why FOL?

- Syntax and semantics

 Using FOL

- Wumpus world in FOL!

- Knowledge engineering in FOL

Two parallel tracks in Al

 Track 1: Study important formalisms for representing what
an agent knows and perceives, and the algorithms for
reasoning, understanding, problem solving and learning that
make use of these formalisms.
- E.g., FOL syntax and semantics, and algorithms for logical deduction

- Track 2: Consider the knowledge and reasoning abilities
underlying various kinds of intelligent behavior, learn to
apply the important formalisms and algorithms to these
tasks, and also understand their limitations.

- E.g.,, representing common sense knowledge in FOL; ontology design

First-order logic

- Propositional logic limits world models to atomic facts
Eg,P;,,=B,,

- First-order logic (like natural language) can manipulate
world models that include

- Objects: people, houses, numbers, colors, baseball games, wars, ...

- Relations: red, round, prime, brother of, bigger than, part of, comes
between, ...

- Functions: father, nationality, one more than, plus, ...

and structured facts such as
- Adjacent([xy], [zw]) A Pit(|xy]) < Breeze(|zw])

Basic syntax of FOL

- Constant symbols Kingjohn, 2, NU, ...

- Predicate symbols IsHappy, Likes, >, ...
- Function symbols Sqrt, Nationality, ...
- Variables X,y,a,b, ..

- Connectives - AV, =S

- Equality =

- Quantifiers v, d

- Constant, predicate, and function symbols called a “logical
language”

- Given LL we can define all logical sentences that can be
expressed

Atomic sentences in FOL

- Atomic sentence predicate(term,,...,term,)

or term, = term,

- Term = function(term,,...,term,)
or constant or variable

- Examples
 Brother(KingJohn, RichardTheLionheart)
« >(AgeOf(Richard), AgeOf(John))
- Brother(AgeOf(Richard), AgeOf(John))

Complex sentences

- Complex sentences are made from atomic sentences using
connectives

- Connectives have same semantics as propositional logic

- Examples
« Sibling(John,Richard) < Sibling(Richard,John)
- >(1,2) A £(1,2)
- >(1,2) A =>(1,2)

Complex sentences (cont.)

- Additional complex sentences may include quantifiers: V
and 3
 Syntax
- V<var> [S]
- d<var> [S]
- Short-hand notation
- Abbreviate Vx Vy Vz [5] as Vxy,z [S]
- Abbreviate dx dy 3z [S] as dx,y,z [S]

Break time!
Sign up for presentation teams.

L
Meaning and truth in FOL

- Sentences are true w.r.t. a model and an interpretation

- FOL model contains objects (domain elements) and
relations
- PL model only had truth assignments to proposition symbol

- Interpretation I specifies referents for

- Constant symbols = objects
- Predicate symbols = relations
- Function symbols - functions

- Atomic sentence P(term,,...,term,) is true iff objects referred
to by term,,...,term, are in the relation I(P)

L
Meaning and truth in FOL (cont.)

- Complex sentences—truth is defined using same truth
tables

- E.g, S; A S,istrueiff S, is true and S, is true

- Semantics of quantifiers

- Vx [S5] is true iff, for any object C in the model
S[x/C] is true

- dx [S] is true iff, for at least one object C in the model
S[x/(C] is true

FOL models example

brother

person person

brother

Universal quantification examples

- YV<variables> <sentence>

- Everyone at NU is smart:
Vx [At(x,NU) = Smart(x)]

- Vx Pis true in a model m iff P is true with x being each
possible object in the model

- Roughly speaking, equivalent to the conjunction of all
possible instantiations of P
At(KingJohn,NU) = Smart(KingJohn) A
At(Richard,NU) = Smart(Richard) A
At(NUNU) = Smart(NU)

A common mistake to avoid with V

- Typically, = is the main connective with V

- Common mistake: using A as the main connective with V
E.g., Vx At(x,NU) A Smart(x)
means ~Everyone is at NU and everyone is smart”

Existential quantification examples

- d<variables> <sentence>

« Someone at NU is smart:
dx [At(x,NU) A Smart(x)]

- dx Pis true in a model m iff P is true with x being some
possible object in the model

- Roughly speaking, equivalent to the disjunction of all
possible instantiations of P
At(KingJohn,NU) A Smart(KingJohn) v
At(Richard,NU) A Smart(Richard) %
At(NUNU) A Smart(NU) V..

A common mistake to avoid with 3

- Typically, A is the main connective with 3

- Common mistake: using = as the main connective with 3
E.g., dx At(x,NU) = Smart(x)
is true if there is no one who is at NU!

Properties of quantifiers

- Vx Vy is the same as Vy Vx
- dx dy is the same as dy dx

- dx Yy is not the same as Vy dx
Elx Vy Loves(x,y)

“There is a person who loves everyone in the world”

Vy dx Loves(x,y)
“Everyone in the world is loved by at least one person”

Quantifier duality: each can be expressed using the other
- Vx Likes(x,IceCream) == =3dx - Likes(x,IceCream)
- dx Likes(x,Broccoli) == -V'x - Likes(x,Broccoli)

L
Equality in FOL

- term, = term, is true under a given interpretation iff term,
and term, refer to the same object

- E.g., definition of Sibling in terms of Parent
Vx,y Sibling(x,y) < [-(X=y) A dm,f =(m =f) A Parent(m,x) A
Parent(f,x) A Parent(m,y) A Parent(f,y)]

- We will use a different notation for equality: =(x, y)
- Makes programming simpler

L
A model M for the kinship domain

- Individuals: JKLMNOPQR
- Functions: mom|[1] to mom(N) 2> M
- Relations]arity]

- fem[1] ={M, Q}

- par[2] ={[M, N], [N, R] .. }

- sib[2] ={[M, O], [P,]I, I/, P1}

-------------------- Interpretation I ---------------nnouuuu-
- Constants: John, Mary, Sue, Tom

« [(Mary) =M, I(Sue) = Q, ...
- Function symbol: Mother, I(Mother) = mom

- Relation symbols: Female, Parent, Sibling
I(Female) = fem, I(Parent) = par, I(Sibling) = sib

Using first-order logic

The Kinship domain:
- Brothers are siblings
Vx,y Brother(x,y) = Sibling(x,y)

- “Sibling” is symmetric
Vx,y Sibling(x,y) < Sibling(y,x)

- One's mother is one's female parent
Vm,c =(Mother(c), m) < (Female(m) n Parent(m,c))

- Some mothers are over 40 years old
dm,x =(Mother(x), m) A > (Age(m), 40)

Use of FOL to represent “common sense”

knowledge
- All apples are red

- Some apples are red (“some” means at least one)
- All apples contain (some) worms

- Some apples contain (some) worms

- Every person is mortal

- Every person is male or female (but not both)

Use of FOL to represent “common sense”

knowledge

- All apples are red
Vx Apple(x) = Red(x)
- Some apples are red (“some” means at least one)
dx Apple(x) A Red(x)
- All apples contain (some) worms
Vx Apple(x) = dy Worm(y) A Contains(x,y)
- Some apples contain (some) worms
dx,y Apple(x) A Worm(y) A Contains(x,y)
- Every person is mortal
Vx Person(x) = Mortal(x)
- Every person is male or female (but not both)

Vx Person(x) = (Male(x) A -Female(x)) v (Female(x) A
- Male(x))

L
Wumpus world in FOL

- First step—define constants, function symbols, predicate
symbols to express the facts

- Percept(data, t) means at time t, the agent perceived the
data where data is a 5 element vector
|Stench, Breeze, Glitter, Bump, Scream|
- E.g., Percept(|None, Breeze, None, None, None),2)

- At(Agent, s, t) means agent is at square s at time t
- E.g., At(Agent, [2,1], 2)

Some Wumpus axioms

- Axiom for interpreting percepts in context

Vxt At(Agent, x, t) A Breeze(t) = Breezy(x)
- Definitional axiom

Ya,b,c,d,t Percept([a, Breeze, b, c, d], t) = Breeze(t)
- Diagnostic Axiom

Vx Breezy(x) = dz Adjacent(z, x) A Pit(z)
- Causal Axiom

Vz Pit(z) = (Vx Adjacent(z, x) = Breezy(x))
- World model axioms

Adjacent([1,1],[2,1]) etc.

Vx,y Adjacent(x, y) < Adjacent(y,x)

L
Interacting with FOL KBs

- Wumpus world agent using FOL KB and perceives a stench
and a breeze (but no glitter) at t = 5:
Tell(KB, Percept[Stench, Breeze, None], 5]
Ask(KB, da BestAction(a,5))
- L.e., Does the KB entail some best action at time 5
« Answer: {a/Shoot} « substitution (binding list)

- Given a sentence S and a substitution o

-+ So denotes the result of plugging o into S; e.g.,
S = Smarter(x,y)
o ={x/Hillary,y/Bill}
So =S {x/Hillary,y/Bill} = Smarter(Hillary,Bill)

- Ask(KB,S) returns some/all ¢ such that KB |- So

Knowledge engineering—choosing

representations

- Choice affects the generality at which concepts can be

expressed
- Human(Bob) vs. ISA(Bob, Human)
« Green(B21) vs. Color(B21, Green)

- Inheritance rule:
Vx,y,z ISA(x, y) A ISA(y, z) = ISA(x, Z)

- Two blocks are the same color:
dx Color(B21, x) A Color(B22, x)

Knowledge engineering in FOL

1. Identify the task
2. Assemble the relevant knowledge

3. Decide on a vocabulary of predicates, functions, and
constants (a logical language L)

4. Encode general knowledge about the domain
5. Encode a description of the specific problem instance

6. Pose queries to the inference procedure and get
answers

7. Debug the knowledge base

