
CS 5100, Fall 2011

Assignment 3—First-order Logic

Assigned: October 6, 2011

Part I: First-order Logic

Due: October 13, 2011 in class (hard copy)
Do the following exercises from your textbook:

a) Exercise 9.4.

b) Exercise 9.6.

Identify the logial language elements you use for this problem: constants, function symbols
(with arity), predicate symbols (with arity).

c) Convert the 6 kinship axioms from section 8.3 of your textbook to KB in Conjunctive Normal
Form (CNF). Follow the procedure in the text and in teh slides shown in lecture.

d) Draw the AND/OR tree representing backward chaining for the knowledge base shown below
for each of the two queries, AND SHOW WHAT ANSWER WOULD BE RETURNED by
a backward chaining inference engine (show all answers if there are more than one). The
format of the AND/OR tree is the extended format defined in class.

Queries:

i. Plays(?x,Basketball)

ii. Is− happy(?x)

Knowledge base:

R1. Likes(x,Basketball)⇒ Plays(x,Basketball)

R2. Plays(x,Basketball)⇒ Is− healthy(x)

R3. Has− pets(x)⇒ Is− happy(x)

R4. Is− healthy(x) ∧ Is− rich(x)⇒ Is− happy(x)

F1. Likes(John,Basketball)

F2. Plays(Sam,Basketball)

F3. Is− rich(Sam)

F4. Has− pets(Sally)

1

Part II: Implementing a Backward Chaining Program in Python

Due: October 20, 2011 11:59pm via Blackboard

Objective: Implement an automated reasoning system in first-order logic using backward chain-
ing.

Project Description: For this assignment, you will create a backward chaining program in
Python. Your program will have the top level function FOLBC(goal, which returns a list of substi-
tutions that will make the goal true. goal is an instance of a single FOLEexp (the provided class for
representing first-order logic expressions). FOLBC(goal) should include a recursive helper function
FOLBC1(goal,subst). See the example below:

function FOLBC(goal) # goal is a list of FOLexp

ans is a list of substitutions that make goal true, goal is a list of FOLexp,

and θ =[] are the substitutions so far (initially empty)

ans = FOLBC1([goal], [])

return cleanup(ans) #only include variables mentioned in query

Your program must also include a top level function called FOLBCtest() of NO arguments that
gets queries from a file queries.txt and one by one:

1. prints the query

2. calls FOLBC with the query (represented as an FOLexp) as its argument

3. prints the result in human readable form

function FOLBCtest()

for each query in queries.txt

print query

ans = FOLBC([FOLexp(query)])

print answers from ans in human readable form

Input: Your program (as in the forward chaining case), will use a global knowledge base KB,
which you will be read from a file KB.txt consisting of definite clauses:

Atomic-formula
Atomic-formula IF Atomic-formula AND Atomic-Formula . . .

Example:
Likes[John, Pizza]

2

Likes[x, Pizza] IF Likes[x, Tomato] AND Likes[x,Cheese]
Likes[x, Pizza] IF Likes[Father[x], Pizza]

Variables begin with lower case letters.
Constants, predicate symbols, and function symbols begin with upper case letters.
Arguments are represented using Python’s list format.

A query will consist of a list of FOLexp. There will be one query per line in the queries.txt input
file. To get full credit you should find and print ALL the correct answers to the query. If there are
no variables in the query then the answer will just be: Yes or No indicating that it was proved or
not proved. The readability of your output will be part of your grade. Remember, no changes are
made to the KB so each new query is independent of the previous queries.

Some simple test files have been provided, but you should not depend on them to handle every
case.

Submission: Upload your COMMENTED Python source file to Blackboard. Please give the
source file a name that includes your last name (or part of it) and proj2, such as: sliva proj3.py

3

