
CS 5100, Fall 2011

Assignment 2—Inference and Proof in Propositional Logic

Assigned: September 15, 2011

Part I: Propositional Logic

Due: September 29, 2011 in class (hard copy)
Do the following exercises from your text:

a) Exercise 7.9 modified:

Use truth tables to verify each of the LAST 4 equivalences in FIGURE 7.11:

¬(A ∧B) ≡ (¬A ∨ ¬B)

¬(A ∨B) ≡ (¬A ∧ ¬B)

(A ∧ (B ∨ C)) ≡ ((A ∧B) ∨ (A ∧ C))

(A ∨ (B ∧ C)) ≡ ((A ∨B) ∧ (A ∨ C))

b) Exercise 7.12:

Use resolution to prove the sentence ¬A ∧ ¬B from the clauses in exercise 7.20.

c) Exercise 7.13a:

Show that the clause (¬P1 ∨ . . . ∨ ¬Pm ∨Q) is logically equivalent to (P1 ∧ . . . ∧ Pm)⇒ Q).

d) Exercise 7.20 modified:

Convert the set of sentences S1 – S6 to clause form and identify which of the resulting clauses
are Horn clauses. (NOTE: there will be more than 6 resulting clauses).

S1: A⇔ (B ∨ E).
S2: E ⇒ D.
S3: C ∧ F ⇒ ¬B.
S4: E ⇒ B.
S5: B ⇒ F .
S6: B ⇒ C.

Part II: Implementing a Propositional Logic Reasoning System

Due: October 6, 2011 11:59pm via Blackboard

Objective: Continue to learn python and implement your first significant automated reasoning
system.

1

Project Description: For this assignment, you will create a knowledge-based agent program that
adds new percepts (atomic propositions) to a database of world knowledge, represented as a set
of Horn clauses. The program will perform forward-chaining inference to add not only the new
percepts but ALL the new knowledge that logically follows from combining each new percept with
the agent’s prior knowledge. For example, if the agent’s prior knowledge includes:

apple⇒ fruit.
apple⇒ sweet.
ripe. fruit ∧ sweet ∧ ripe⇒ delicious.

And the percept is apple, then apple, fruit, sweet, and delicious would all be added to the agent’s
knowledge base.

You may assume the knowledge base is “explicit, ” i.e., it does not contain any implicit knowledge.
(The question of what knowledge should be explicitly represented and what knowledge should be
implicit is an important design decision in AI systems, part of the “control of inference” problem,
but we will not address that problem right now).

We will use “logic programming” notation in the assignment, so the input shown above will actually
look like this in your file:

fruit IF apple
ripe
sweet IF apple
delicious IF fruit sweet ripe

Implementation Notes: For full credit, you must use an object-oriented representation of the
clauses in your KB, with good OO technique such as the use of str (note that both the KB
items and the percepts in this assignment are definite clauses).

Input: The knowledge base will be initialized from a file KB.txt. The knowledge base should be
loaded automatically when the source file is loaded. The order of clauses in KB.txt may affect the
order in which answers are generated but will not change any answers.

The reasoning program will be invoked by a top-level function: PLFC() which starts the processing
of new percepts. PLFC stands for propositional logic forward chaining.

The percepts to be processed will be in a file percepts.txt. Both KB.txt and percepts.txt

will be in the same directory as the Python source file. You can assume the input files do not
contain errors. For this assignment the input will NOT put each symbol in quotes, so therefore
your program must process each line of the input as a string and not use eval() for that purpose.

Format of KB.txt: Prior knowledge will be represented one Horn clause per line, in ”reverse”
(logic programming) format:

conclusion IF premise1 . . . premiseN

2

This represents the logical formula: premise1∧ premise2 ∧ . . .∧ premiseN ⇒ conclusion. For a
known ”fact”, the line should just contain that proposition.

Format of percepts.txt: New percepts will be in the form of single propositions, one per line.

Output of PLFC(): Your program should print a comment confirming that the database has been
initialized, along with its size (number of clauses). Each percept should be echoed when you begin
to process it. Each fact added by forward chaining should be displayed, along with its immediate
justifying rule from the KB. Your output should be human-readable.

Algorithm (recursive):

PLFC()

uses and modifies KB -- a global knowledge base of Horn clauses for each new

percept p

PLFC1(p) #use a recursive "helper function"

PLFC1(percept)

if percept is already known, return

else

add percept to knowledge base

for r in rules where conclusion of r is not already known

if percept is a premise of r and all the other premises of r are known

PLFC1(conclusion of r)

Example KB.txt and percepts.txt files will be provided with the program description, repre-
senting knowledge about healthy and unhealthy food. The example files will NOT include every
situation your program needs to handle, so you are responsible for creating additional test cases.

Extra Credit: Extend your program to handle the situation where KB.txt might contain implicit
knowledge. For example, the KB could be:

b IF a
c IF b
r IF c and d
a

This KB implicitly contains the knowledge that b and c are true. If the percept d is found in
the input, the PLFC algorithm above will NOT be able to infer r even though logically it follows
from d + KB. One solution is to fully expand the knowledge in KB before you start processing the
percepts. This would mean a new KB:

3

b IF a
c IF b
r IF c and d
a
b
c

Using this ”explicit” KB, if the percept is d, the algorithm above would be able to infer r. NOTE:
It is highly recommended to get the required version of PLFC() working correctly before you at-
tempt to extend it to handle the case of an incomplete KB.

Submission: Upload your COMMENTED Python source file to Blackboard. Please give the
source file a name that includes your last name (or part of it) and proj2, such as: sliva proj2.py

4

