
Design	Strategies	2:
Using	a	template

CS	5010	Program	Design	Paradigms
Lesson	2.1

©	Mitchell	Wand,	2012-2014
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License. 1

Generalization

Over	Constants

Over	Expressions

Over	Contexts

Over	Data	
Representations

Over	Method	
Implementations

Mixed	Data

Data	
Representations

Basics

Recursive	Data

Functional	Data

Objects	&	
Classes

Stateful Objects

Design	
Strategies

Combine	simpler	
functions

Use	a	template

Call	a	more	
general	function

Communicate	
via	State

Module	02

2

Divide	into	Cases

Generalization

Over	Constants

Over	Expressions

Over	Contexts

Over	Data	
Representations

Over	Method	
Implementations

Mixed	Data

Data	
Representations

Basics

Recursive	Data

Functional	Data

Objects	&	
Classes

Stateful Objects

Design	
Strategies

Combine	simpler	
functions

Use	a	template

Call	a	more	
general	function

Communicate	
via	State

Lesson	2.1

3

Divide	into	Cases

Introduction

• In	this	lesson,	we	will	show	how	to	take	apart	
non-scalar	data	using	the	observer	template	
for	that	kind	of	data.

• This	is	the	strategy	you	will	use	for	the	vast	
majority	of	your	functions.

4

Let's	see	where	we	are

The	Function	Design	Recipe

1.	Data	Design

2.	Contract	and	Purpose	
Statement

3. Examples	and	Tests

4.	Design	Strategy

5.	Function	Definition

6.	Program Review

5

The	Six	Principles	of	this	course

1.	Programming	is	a	People	Discipline

2.	Represent	Information	as	Data;	Interpret	Data	as	
Information

3. Programs	should	consist	of	functions	and	
methods	that	consume	and	produce	values

4.	Design	Functions Systematically

5.	Design	Systems	Iteratively

6.	Pass	values	when	you	can,	share	state	only	when	
you	must.

Design	Strategies

1.	Combine simpler	functions

2. Use	template	for	<data	def>	
on	<vble>

3.	Divide	into	cases	on	
<condition>

4.	Use	HOF	<mapfn>	on	<vble>

5.	Call	a	more	general	function

Use	a	destructor	template

• Used	when	the	problem	can	be	solved	by	
examining	a	piece	of	non-scalar	data.	

• Slogan:

The	shape	of	the	data	
determines	the	shape	of	

the	program.
6

What	does	it	mean	to	“examine”	a	
piece	of	data?

• If	the	data	is	compound	data,	this	means	extracting	its	
fields.		

• If	the	data	is	itemization	data,	this	means	determining	
which	variant	the	data	is.		

• If	the	data	is	mixed	data,	this	means	determining	which	
variant	the	data	is,	and	then	extracting	its	fields,	if	any.	

• Every	data	definition	includes	a	template	that	shows	
how	this	examination	process	is	to	be	organized.

• Writing	a	function	using	a	template	is	accomplished	by	
filling	in	the	blanks	in	the	template.
– Definition	of	"filling	in	the	blank"	to	come	in	Slide	11.

7

From	Template	to	Function	Definition

Recipe	for	Using	a	Template
1.	Make a	copy	of	the	template	and	uncomment	it
2.	Fill in	the	function	name	and	add	more	arguments	if	
needed
3.	The	strategy	is	“Use	template	for	<data	def>	on	
<vble>,”	where	<data	def>	is	the	kind	of	data	you	are	
taking	apart,	and	<vble>	is	the	variable	whose	value	you	
are	looking	at.
4.	Fill	in	the	blanks	in	the	template	by	combining	the	
arguments	and	the	values	of	the	fields	using	simpler	
functions.

8

Example:	book-receipts
;; book-receipts : Book NonNegInt -> NonNegInt
;; GIVEN: a Book and the number of copies sold
;; RETURNS: the total receipts from the sales of the
;; given book. Ignores the number of copies on hand.
;; EXAMPLE:
;; (book-receipts
;; (make-book "Felleisen" "HtdP2" 13 2795) 100)
;; = 279500

9

To	do	this,	we’ll	need	to	
look	inside	the	Book	to	see	
its	price,	so	we’ll	use	the	

Book	template

1.	Make	a	copy	of	the	template	and	
uncomment	it

(define (book-fn b)
(...
(book-author b)
(book-title b)
(book-on-hand b)
(book-price b)))

10

2.	Fill	in	the	function	name	and	add	
more	arguments	if	needed

(define (book-receipts b sales)
(...
(book-author b)
(book-title b)
(book-on-hand b)
(book-price b)))

11

3.	Write	down	the	strategy

;; STRATEGY: Use template for Book on b.
(define (book-receipts b sales)
(...
(book-author b)
(book-title b)
(book-on-hand b)
(book-price b)))

12

4.	Fill	in	the	blanks	in	the	template

;; STRATEGY: Use template for Book on b.
(define (book-receipts b sales)
(* (book-price b) sales))

Things	we	didn’t	use:
(book-author b)
(book-title b)
(book-on-hand b)

That’s	OK!				

13

We	said:
“4.	Fill	in	the	blanks	in	the	
template	by	combining	the	
arguments	and	the	values	of	the	
fields	using	simpler	functions.”

Example:	next	state	of	traffic	light
;; DATA DEFINITION:
;; a TrafficLightState (TLState) is one of
;; -- "red"
;; -- "yellow"
;; -- "green"
;; INTERPRETATION: self-evident

14

Contract	and	Purpose	Statement
;; next-state : TLState -> TLState
;; GIVEN: a TLState
;; RETURNS: the TLState that follows the given TLState
;; EXAMPLES:
;; (next-state "red") = "green"
;; (next-state "yellow") = "red"
;; (next-state "green") = "yellow"

15

1.	Make	a	copy	of	the	template	and	
uncomment	it

(define (tls-fn state)
(cond
[(string=? state "red") ...]
[(string=? state "yellow") ...]
[(string=? state "green") ...]))

16

2.	Fill	in	the	function	name	and	add	
more	arguments	if	needed

(define (next-state state)
(cond
[(string=? state "red") ...]
[(string=? state "yellow") ...]
[(string=? state "green") ...]))

17

3.	Fill	in	the	strategy
;; STRATEGY: Use template for TLState on state

(define (next-state state)
(cond
[(string=? state "red") ...]
[(string=? state "yellow") ...]
[(string=? state "green") ...]))

18

4.	Fill	in	the	blanks
;; STRATEGY: Use template for TLState on state

(define (next-state state)
(cond
[(string=? state "red") ...]
[(string=? state "yellow") ...]
[(string=? state "green") ...]))

19

What	is	the	answer	for	
“red”?

4.	Fill	in	the	blanks
;; STRATEGY: Use template for TLState on state

(define (next-state state)
(cond
[(string=? state "red") "green"]
[(string=? state "yellow") ...]
[(string=? state "green") ...]))

20

What	is	the	answer	for	
“red”?

Answer	(from	
examples):	“green”

4.	Fill	in	the	blanks
;; STRATEGY: Use template for TLState on state

(define (next-state state)
(cond
[(string=? state "red") "green"]
[(string=? state "yellow") "red"]
[(string=? state "green") ...]))

21

What	is	the	answer	for	
“yellow”?

Answer	(from	
examples):	“red”

4.	Fill	in	the	blanks
;; STRATEGY: Use template for TLState on state

(define (next-state state)
(cond
[(string=? state "red") "green"]
[(string=? state "yellow") "red"]
[(string=? state "green") "yellow"]))

22

What	is	the	answer	for	
“green”?

Answer	(from	
examples):	“yellow”

Working	with	other	kinds	of	data

• We've	seen	how	to	use	templates	for	
compound	data	and	itemization	data

• Mixed	data	works	the	same	way.
• Copy	the	template,	uncomment	it,	and	fill	in	
the	missing	pieces.		That's	it!

• If	you've	thought	hard	enough	about	your	
function,	filling	in	the	blanks	is	easy.

23

What	can	you	put	in	the	blanks?

• We	said:	Fill	in	the	blanks	in	the	template	by	
combining	the	arguments	and	the	values	of	
the	fields	using	simpler	functions.

• This	means	:
– You	don't	have	to	use	all	of	the	fields
– You	can	use	a	field	twice
– You	don't	have	to	use	the	fields	"in	order"

• But	it	has	to	be	simple,	as	in	Lesson	1.7

24

Next	Steps

• Study	02-1-book-receipts.rkt	and	02-2-traffic-
light.rkt	in	the	Examples	folder.
– Be	sure	to	finish	the	previous-state example	in	02-
2-traffic-light.rkt

• If	you	have	questions	or	comments	about	this	
lesson,	post	them	on	the	discussion	board.

• Do	the	Guided	Practices
• Go	on	to	the	next	lesson.

25

